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Abstract— Although the hardware subsystems, namely, pro-
cessors, memory, disk, and network interfaces of a server
actually consume power, it is the software activities that
drive the operations of the hardware subsystems leading to
varying dynamic power cost. There are a number of ways
to optimize application programs at their design stages but
it is difficult for the developers to analyse their applications
in terms of power cost on the real servers. In this paper, we
present the design of an automated test bench to measure
the power cost of an application running on a server.
We show how our test bench can be used by software
developers to measure and improve the energy cost of two
Java file access methods. Another benefit of our test bench
has been demonstrated by comparing the energy costs of
compression and decompression features provided by two
popular Linux packages: 7z and rar. Overall, this paper
makes a contribution to reduce the perception gap between
high level programs and the concept of energy efficiency.
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1. Introduction
Electrical energy is a key resource consumed by all

computing platforms [1], [2], and the design of a software
application has a significant impact on the power consump-
tion [3]. Various techniques have been suggested to reduce
the power consumption of software systems in [3] and [4].
Considering the fact that power bill accounts for a significant
portion of the cost to run a data center, it is useful to analyse
and minimize the energy cost of applications running on
large systems, namely, servers. Although there are a number
of ways to optimize the application at its design stage,
developers generally do not consider the energy cost of their
software while making important design decisions. They find
it difficult to measure the energy cost incurred by their
workload and know how it behaves on real servers inside
data centers. In addition to this, the measurement process
takes a lot of human effort and time.

In this paper, we present the design of an automation
system, to measure the energy cost of an application running
on a server, with the following properties: (i) a power
automation software tool (PAST) is developed for automat-
ing the measurement process; (ii) the PAST runs on a
monitoring computer which is the same machine used by

the developer and different than the server under test; (iii)
both the application running on a server (Load) and the
power measurement instrument are remotely controlled by
PAST for synchronization purpose; and (iv) for statistical
data collection of power performance, the PAST can repeat a
test on the Load multiple times without human intervention.

By using the automated test bench, developers can upload
their application to the server and measure the energy cost of
running it for the various design choices. By this way, they
can concentrate more on the development, without wasting
time on the measurement process. By means of our test
bench, we validate the claim in the reference [5] that the
energy cost of one Java file read method, FileInputStream
(M1) is more than the other method, BufferedInputStream
(M2). Then we study the impact of introducing a program-
mer buffer to both the methods, by measuring their energy
cost of reading a file from the disk with varying buffer sizes.
Although M1 consumes more energy than M2, their energy
cost is same for a wide range of buffer sizes. In addition,
the energy cost of M2 is further reduced after selecting the
optimal buffer size. The other benefit of our test bench is
that it can be used to compare the various functions of
software in terms of their energy cost. Nowadays there are
many software applications in the market providing the same
functionality. The information regarding the energy cost of
the same operation by different software applications allows
us to chose the energy efficient ones in data centers. We anal-
yse the energy cost of the compression and decompression
features of two famous Linux packages: 7z and rar.

The rest of the paper is organized as follows. In Section
2, we briefly present the related work and compare our
approach with the other energy measurement tools developed
recently. In Section 3, we explain the system model of
the automation framework. Implementation details of the
automation framework have been explained in Section 4. In
Section 5, we explain how the automated system has been
used to conduct experiments. Some concluding remarks and
directions for future work are provided in Section 6.

2. Related Work
The techniques for understanding the power cost of

servers can be categorized into three major groups: (i) direct
measurement by means of instrumentation of the hardware
[6]; (ii) estimation by means of power models [7], [8];
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and (iii) software measurement by means of various tools
and application programming interface (APIs). A deeper
understanding of power costs of computing subsystems,
namely, memory, processor, hard disk, and other peripherals,
enables better use of storage encryption, virtualization, and
application sandboxing [9], [10]. The authors of the paper
[11] studied in detail the effects of abstraction layers and ap-
plication development environments on the energy efficiency
of software. Their results indicate that greater use of external
libraries is more harmful in terms of energy cost for large
scale applications. Ardito et al. [5] developed the concept
of introducing the energy efficiency into SQALE (Software
Quality Assessment based on Lifecycle Expectations ), one
of the software quality models to monitor the impact of
software on energy consumption during its development.
They identified some energy efficient software guidelines
and translated them into measurable requirements of the
model. Although direct measurement of power consumption
is expensive, it gives more accurate results than estimation
models [7].

Our work also falls in the category of direct measurement.
The tools used by developers to measure the energy cost of
their applications rarely exist. The authors of the paper [12]
presented a new tool for mapping software design to power
consumption and describe how these mappings are useful
for the software designers and developers. In reference [13],
a comprehensive survey of different energy measurement
approaches has been done. Based on this survey, the authors
have come up with four recommendations for the efficient
energy measurement approaches: (i) accurate measurements
for better precision; (ii) fine-grained power models to trace
how and where the energy is being used in software; (iii)
reduce user experience impact - the measurement tools
should not require manual modifications of source code of
the applications; and (iv) software-centric approaches for
better evolution and flexibility.

We have also reviewed those efforts similar to our frame-
work which discuss automation of energy measurement.
PowerPack [14] and pmlib software [15] have automated the

energy profiling of parallel scientific workloads by software
code instrumentation. These tools have a set of user level
APIs which one can insert before and after the code region
of interest to create its energy profile. Both these tools did
not talk about the applicability of their APIs to the target
code of all programming languages. PowerPack requires
additional sensing resistors for each of the power lines
in addition to the power meter. Moreover, these tools can
not be used to measure the energy cost of closed source
applications. In contrast, our framework does not need the
manual modification of source code of the application for
its energy measurement. In another recent work [16], they
have designed a framework called software energy footprint
lab, which executes the software of interest on the server
and output the power consumed during the execution on
a separate machine. Their approach requires manual effort
to start the software under test and sending the commands
to their Data Acquisition System right before the software
is executed and another one right after it terminates, for
synchronization. Our approach is different from them as
PAST controls both the execution of the software as well
as the measurement process. The process of synchronization
between the server and the meter is automated in our
approach. In addition, the measurement process of the same
application can be repeated a number of times for statistical
significance.

3. System Model of Test Bench
The system model of the automation framework has been

shown in Figure 1. The definitions of all the terms used in
the figure are given below.
Server: A system for which we are interested in evaluating
the energy cost of running an application.
Load: A software application that runs on the server, and
we measure the energy cost of running that application.
Power Meter: A data acquisition unit used for measuring
power. We used a Lab-Volt 9063-00 Data Acquisition and
Control Interface as a power meter.
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Wall Power: Supplies AC power to the Server.
Monitoring Station: A computer equipped with the PAST
system which controls both the Server and Meter. A pro-
grammer is developing his application on this machine and
can run PAST to upload the application to the Server and
measure its cost. By running PAST on a separate machine, it
starts executing the Load on the Server as well as starts the
Meter to record current and voltage values simultaneously.

The Monitoring Station is connected to the Meter via
an USB (Universal Serial Bus) interface and to the Server
through a LAN (Local Area Network).

Our test bench can be used to measure: (i) the power con-
sumed by a server’s individual subsystems, namely, memory,
disk, and processor, if their power lines are easily accessible;
and (ii) the total power cost of a server. Only the total power
can be measured for a server where one cannot identify the
power lines to its individual subsystems. To set up the test
bench for power measurement of individual subsystems, we
examined the different power lines from the ATX 24 pin
connector which powers the whole motherboard of desktop
computer. The power lines to the processor (CPU: central
processing unit) operate at 12V , first fed to the voltage
regulator module which converts the voltage to the actual
voltage required by the processor [17]. From the 24 wires
of ATX connector, one yellow wire of 12V is feeding power
to the processor. The other two yellow wires are from the
ATX 4 pin 12V Power Connector (ATX v2.2) dedicated for
the processor. The disk (Hard Disk) is getting power from a
Molex 4 pin power supply connector which operates at two
voltage levels, 5V and 12V . The memory (RAM: random
access memory) system is getting power over three lines
from the 24 pin connector, and the voltage level is 3.3V . The
total power cost can be measured from the AC (Alternating
Current) power lines to the server power supply.

4. Automated Test Bench
In our test bench, we use a Lab-Volt 9063-00 Data

Acquisition and Control Interface system, known as the
Meter in this paper. To read power samples from Meter,
the device supports APIs in the form of Microsoft Dynamic
Link Library (DLL). Therefore, the PAST is developed in
Visual Basic. In the remainder of this section, we explain
the design of PAST by means of its behaviour, which is
represented as a message sequence chart, and then the key
problems faced in the design of the PAST.

4.1 Message Sequence Chart
Figure 2 shows the sequence of steps of the PAST

executed during the whole process of measurement.
PAST is a multi-threaded system, with three threads:

MainThread, LoadThread and MeterThread. The PAST is
launched on the Monitoring station with the location of the
configuration file as its input parameter. A configuration file
is a text file that is stored on the Monitoring Station, it
contains both the Server and Meter information. Figure 3
shows some entries from configuration file. The behaviours
of the three threads is described below: MainThread:
MainThread first reads the configuration file for the
server_ipaddress, username, password and the location
on the server (server_app_loc) where the developer wants
to upload the application. Launch_app_command con-
tains the command to start an application on the server.
meter_inputs in the configuration file tells which current
and voltage input channels of the Meter and at what sam-
pling frequency (meter_ sampling_freq) the Meter should
produce those values. It then starts the LoadThread and waits
for the other threads to finish.
LoadThread: This first uploads the application onto the
server. It stops the process if the application is not uploaded



successfully. If upload is successful, then it initializes the
Meter with the meter information being read from the
configuration file. If the Meter is ready to read then it starts
a new thread MeterThread and starts the application on the
Server.
MeterThread: This starts recording the current and voltage
values from the Meter by using meter API calls. LoadThread
ensures that the MeterThread is recording the values till the
application is running on the server. And finally it saves all
the values in to the file inside directory (Recording_dir)
on the Monitoring Station.

sampleconfig.txt[11/Apr/2014 4:06:00 PM]

server_ipaddress=192.168.1.148 
username=developer
password=developer
local_application=C:\MyApp.jar
server_app_loc=/home/jasmeet/
Launch_app_command=java - jar MyApp.jar 
iterations=5
component=CPU
tunable_parameter=BufferSize
tunable_parameter_array=128,256....
Recording_dir=C:\Power\Results
server=linux
meter_sampling_freq=1000
meter_inputs=E1,I1,I2,I3

Fig. 3: Sample Configuration file

From the recorded values, energy cost of running an
application is computed by using the expression:

Energy_cost =
∑
∀i

V (i).I(i).∆t (1)

where V (i) and I(i) are the ith voltage and current samples,
respectively, and ∆t is the sampling interval.

4.2 Key Challenges
There are some practical problems in measuring the

energy cost of an application at the subsystem level, namely,
processor, memory, and hard disk. There are only 4 current
and voltage inputs to the meter. Therefore, at a time only 4
power channels can be measured. However, in case of our
desktop computer, for all the three components (processor,
memory and disk), there are a total of 8 power lines needed
to be monitored. Therefore, we measured the power cost of
the three subsystems in three repeated experiments.

5. Experiments and Results
In this section, we show how software developers can

use our test bench to evaluate the energy performance of
running an application on a server with various design
options. We compare the energy cost of two Java file access
methods: (i) M1 using FileInputStream only and (ii) M2
using BufferedInputStream. Ardito et al. [5] intuitively claim
about the energy efficiency of these two methods without any

measurements. First, we validate their claim by measuring
the energy cost of the methods on our test bench. Then we
revise the two methods by introducing a buffer into them
and measure their energy cost with varying buffer sizes.
We also compare the revised methods to read extremely

Table 1: Server Machines Configuration

Parameter
Desktop

(ASUS P4P800-VM)

Real Server

(Dell PowerEdge 2950)

Processor
Intel Pentium 4,

3.2 GHz

7x Intel Xeon, 3 GHz,

4 cores per processor

Hard Disk 80 GB IDE 1.7 Tera Bytes SAS

Main Memory 2 GB DIMM 32 GB DIMM

Operating System Linux (Ubuntu 13.10) Linux (Ubuntu 13.10)

large files in terms of their energy cost. Next, we compare
the energy performance of two packages 7z and rar with
respect to compression and decompression. Table 1 shows
the configurations of two machines used in our experiments.

5.1 Example of using test bench to make im-
portant design decisions

Listing 1 and Listing 2 in Figure 4 describe M1 and M2,
respectively. We measure the energy cost of CPU, memory
and disk for reading a video file of size 512 MB (Mega
Bytes) with M1 and M2 on a desktop machine. Figure 4
shows the results of our measurements by comparing the
energy cost of all the three components for both M1 and
M2. The reason behind the less energy consumption by M2,
for all the components is that it reads a file of any size in
larger chunks equal to the size of its internal buffer from
the disk, whereas M1 reads a single byte of data in one read
operation. It is clear from the results that CPU consumes the
maximum energy in reading a file.

We further study the impact of introducing a programmer
defined buffer into both the methods. Listing 3 and Listing
4 describe the modified code of the two methods, and they
are denoted by M1’ and M2’ corresponding to M1 and
M2, respectively. In both M1’ and M2’, line #2 shows the
definition of buffer as an array of type byte, and its size
is equal to bufferSize. Line #4 and #5 of M1’ and M2’
respectively, show that in one call read operation reads
several bytes of data of size, bufferSize. Therefore bufferSize
is a tunable parameter which the developer can vary and run
these methods to read a file. We measure the energy cost of
CPU, memory and Disk for both M1’ and M2’ with buffer
size ranging from 1 Byte to 64 Mega Bytes (MB).

Figure 5 shows the evaluation of the total energy cost
of all the three components for both M1’ and M2’. The
results in Figure 5 show that after introducing a programmer
buffer into M1 and M2, the total energy cost of all the three
components, is maximum at buffer size 1 byte. It started



Listing 2. M2: File Reading using BufferedInputStream 

FileInputStream fis = new FileInputStream(fileName); 

BufferedInputStream bis = new BufferedInputStream(fis); 

int b,cnt = 0; 

while ((b = bis.read()) != -1) 

{ 

if (b == ’\n’) 
cnt++; 

} 
fis.close(); 

Listing 1. M1: File Reading using FileInputStream 

FileInputStream fis = new FileInputStream(fileName); 

int b,cnt = 0; 

while ((b = fis.read()) != -1) 

{ 

if (b == ’\n’) 
cnt++; 

} 
fis.close(); 
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Fig. 4: Energy cost evaluation of CPU, Memory and Disk for M1 and M2 on the Desktop

1 FileInputStream fis = new FileInputStream(fileName);
2 byte[] buffer = new byte[bufferSize];
3 int b,cnt = 0;
4 while ((b = fis.read( buffer )) != 1)
5 {
6 if (b == ’\n’)
7 cnt++;
8 }
9 fis.close();

Listing 3: M1’: Introducing user buffer in M1

1 FileInputStream bis = new FileInputStream(fileName);
2 byte[] buffer = new byte[bufferSize];
3 BufferedInputStream bis = new BufferedInputStream(fis);
4 int b,cnt = 0;
5 while ((b = fis.read( buffer )) != 1)
6 {
7 if (b == ’\n’)
8 cnt++;
9 }

10 fis.close();

Listing 4: M2’: Introducing user buffer in M2

decreasing with the increase in the buffer size till 128 bytes.
We expanded the graphs of Figure 5 in Figure 6 to show the
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Fig. 5: Total energy cost by M1’ and M2’ with different
buffer sizes on the Desktop

energy cost of individual components along with their total
energy cost at the buffer sizes from 128 bytes to 64 MB.

Figures 6(a), 6(b) and 6(c) show the energy cost of CPU,
memory and disk respectively, and their total energy cost in
6(d). The energy cost behaviour between M1’ and M2’ is
same as between M1 and M2 for buffer sizes from 128 bytes
to 8KB; in other words, energy cost of M2’ remains less than
M1’. Then, energy is constant for both the methods ranging
from 8KB to 128KB, except that there is a sharp increase
at 32KB by M1’ for disk. It started increasing from 128KB
to 1 MB then decreases and remains constant till 64MB.
Both M1’ and M2’ consume almost the same energy for
all the three components from 8KB to 64MB and consumes
minimum energy at 16KB. Moreover, this energy is even less
than M2. Therefore, it is clear from our measurements that
there is a further opportunity to decrease the energy cost of
M1 and M2 by introducing a programmer buffer into them.
Both the methods consume almost the same energy at buffer
sizes ranging from 8K to 64 MB which contradicts the claim
by Ardito et. al [5] that M1 always consumes more energy
than M2. In addition to this, 16K is the optimal buffer size
for all the three components.
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Fig. 6: Energy cost of M1’ and M2’ with different buffer sizes on the Desktop

To gain additional insights into the behaviours of M1’
and M2’ while reading extremely large files, we perform
the experiments on the same desktop machine to read files
ranging from 1MB to 32 Giga Bytes(GB), while keeping
the buffer size fixed at 16KB. Figure 7 shows the graphs
plotted for the total AC (Alternating Current) energy cost as
function of different file sizes for both the methods at 16KB
buffer size. It is clear from the graph that both the methods
consume the same energy at 16KB buffer size. We close this
section by noting the above results enable the developer to
chose the right method for reading a file with appropriate
buffer size during the design stage.

5.2 Using the test bench in function level en-
ergy cost measurement

As discussed in Section 1, the test bench can also be used
to measure the energy cost of a specific function of an appli-
cation software whether it is open source or closed source.
To validate this functionality of our test bench we conducted
the experiments on a real server (Table I) from a data center.
We consider two popular Linux packages, namely, 7z and rar
to compress and decompress files. Both the packages output
compressed files in .rar and .7z formats and can decompress

the same to the original files. A video file of size 512 MB is
used in our experiment for compression. Figure 8 shows the
total AC (Alternating Current) energy cost of a server for the
four functionalities of both the packages. The results show
that the 7z package consumes more energy in compressing
the files to .rar and .7z formats compared to the rar package.
However the rar package consumes less energy in producing
.rar files than it consumes to produce in .7z format. In case of
decompression from .rar format, 7z consumes more energy
than it consumes while converting from .7z format while rar
consumes the same energy in decompressing .rar and .7z
formats to produce the original files. Further investigation is
required to find the causes of energy cost differences of the
same operations of two packages.

6. Conclusion and Future Work
In this paper we presented an automation framework to

measure the energy cost of servers while running software
applications. The framework’s infrastructure mainly contains
a power meter, target server and control software (PAST) for
synchronization and monitoring. By using the test bench,
we performed actual measurements to verify the claim in a
previously published paper [5] that energy cost of reading
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files by the method FileInputStream (M1) is greater than
the BufferedInputStream (M2) method. However this claim
is not valid in certain cases, if we introduce a programmer
buffer in both the methods. It holds good for buffer sizes
ranging from 128 bytes till 8KB, but these two methods
consume almost the same energy at buffer sizes from 8KB to
64MB. Also, the introduction of buffer in M2 has further re-
duced its energy cost. Finally, we compared the energy costs
of the same functionality provided by different software
applications by measuring the energy costs of compression
and decompression features of two Linux packages: 7z and
rar. The 7z package consumes more energy than rar in com-
pressing and decompressing files. However, rar consumes
more energy in compressing to .7z format than to .rar format.
The automation framework can be used by programmers to
evaluate the energy cost of their applications. More work is
required to be done to find out the causes of energy cost
differences of the same operations of two packages.(Figure
8)
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