
Relational Metrics Model for Software

 Configuration Management

Charles Donald Carson, Jr.

 Hassan Pournaghshband

Department of Computer Science and Software Engineering

Southern Polytechnic State University

Abstract - Changes during a software products life

cycle are inevitable. These changes can correct or

enhance software functionality and/or reduce costs

associated with the software product. However,

changes can also introduce added risks and unknowns

during a software products life cycle and can result in

unpredictable software behavior. Software

configuration management (SCM) is a part of

configuration management (CM) which supports a

complex framework for monitoring, managing, and

controlling changes to a software products

configuration during its life cycle. In this paper, we

introduce the development of a relational metrics

model as a possible means for better managing and

controlling software configuration change during a

software products life cycle from the SCM activities,

software engineering measures, and any available

CM metrics. This relational approach to managing

changes within a software product life cycle will

result in a more effective means of validating change

configurations by envisioning change from a unified

quantifiable view instead of by individual change

artifacts and components within the SCM framework.

1. Introduction

 Software Configuration Management (SCM) is a

software change management framework for

managing any configuration changes during the

development of a software product. A software

configuration can include existing, functional and

physical attributes of a software system as well as

combinations of software systems [1.] “Software

Configuration Management is an umbrella activity

that is applied throughout the software process.

Because software configuration change can occur at

any time, SCM activities are developed to (1) identify

change, (2) control change, (3) ensures that change is

being properly implemented, and (4) report changes

to others who may have an interest” [2.] Changes to a

software product's configuration can typically result

in revised software characteristics, and by derivation,

affect the metrics that report on the software product

itself. Though changes to a software product are

intended to enhance its performance, and/or reduce

costs, they can also introduce added risks. Software

systems can comprise of multitudes of individual

change artifacts and components. Furthermore, each

of these change artifacts and components can involve

individual dependencies and constraints.

Documentation of changes in these systems can be

inconsistent, incomplete, and may or may not

adequately cover the individual changes in each of

the change artifacts and components as a whole. It is

difficult to control the software configuration change

process solely by visualizing individual change

artifacts and components with the expectation of

accurately and consistently controlling any resulting

new software configuration behavior. In this paper,

we propose a relational approach to help in managing

software configuration changes throughout the life

cycle of a software product.

 Also we will investigate the development of

relations between entities and attributes derived from

the various activities within the SCM framework

along with the available software engineering

measures and associated CM metrics.

2. Our Approach

 In developing our relational metrics model, the

primary functional elements of SCM, that is,

configuration identification, configuration change

control, configuration status accounting, and

configuration audit were analyzed. Possible entities

and attributes from activities within these functional

elements of SCM are then derived, as well as

resulting software engineering product, process, and

project measures.

 Primary elements of SCM activities and any

resulting software engineering measures were used in

establishing the data requirements of the relational

metrics model as listed below in Table 1;

 Table 1

SCM Activity/Software Engineering Measures Description

 Configuration identification Identification of software configuration items.

 Configuration control activity Change process, control, and release process.

 Configuration status accounting Reports based on any configuration management data.

 Configuration accounting audit Recording and reporting the status of change

requests/components in the software product.

 Product measure metrics Indirect and or direct measurements of software related

activities.

 Process measures metrics Deliverables involving artifacts and or documents

resulting from process activities.

 Project measures metrics Production of items used by processes in order to

produce their outputs.

 Through the use of an Entity Relation Diagram

(ERD), we represent our established data

requirements as relationships between the individual

configuration item entities undergoing the actual

configuration change, as well as the SCM process

activities and any resulting software metrics that are

expressed as attributes of these [3.] Subsequently, the

ERD will then be converted into the relational

metrics model itself.

 In Figure 1, we have illustrated placing

configuration items (CI’s) that are typical in the

development of a software product, such as software

component, related requirements, and associated test

cases under SCM control. During particular points of

the CI’s life cycle, the CI’s undergoing any

configuration change is represented as versions as

reflected through the various entities illustrated in the

diagram. The attributes of these entities are the actual

representations of the activities and resulting

software engineering metrics within the functional

elements of the SCM process. In the example entity,

Configuration Item Version, changes to a CI are

represented as change attributes; the individual

change activities within the functional elements of

SCM and any artifacts from these activities. The

resulting metrics are represented as attributes of that

entity. An actual abstraction of the SCM process; its

activities and metrics produced within each of the

functional elements is essentially represented

throughout the ER diagram.

 We have organized any metrics produced from

the various activities within the SCM process into the

respective areas of the software engineering

measurements. From this type of organization, a

better understanding can be realized regarding the

measurements produced from the various activities

within the functional activities of the SCM process

and how these impact the software product and the

SCM process itself.

 Typical metrics within configuration

management can be correlated with each of the

software engineering measures based on the product,

process, and project measurement types and what

these might represent. Correlation of CM metrics and

these software engineering measures are discussed in

[1.] From the analysis of the individual activities

derived from functional elements of SCM process

and the correlation of the CM metrics with its

respective software engineering measures, we have

established an understanding of the SCM process as a

whole.

 Through correlating the entities and their

respective attributes we have indicated that the

conceptual model provides a sufficient representation

of the overall activities within the functional elements

of the SCM process.

Figure 1 - ER Diagram of Relational Metrics Model

 Furthermore, the activities within the functional

elements of the SCM process provides a means of

identifying what CI’s in the various software

configuration baselines are undergoing changes at

various points in time. The conceptual relation

metrics model through the use of relations provides

an overall view of the SCM process by envisioning

change from a unified quantifiable view instead of by

individual change artifacts and components within

the SCM framework [1.] Figure 2 shows the relation

metrics data model resulting from the conversion of

each entity and its respective attributes represented in

the ER diagram into individual relations.

3. Traditional SCM Approach and

the Relational Metrics Model

 We have found that the traditional approach to

SCM consists mainly of individually managing the

individual change artifacts and components within a

software products lifecycle. However, this presents a

level of difficulty, possible inconstancies, and is

susceptible to being error prone. Furthermore, it is

difficult to control the software configuration change

process solely by visualizing individual change

artifacts and components with the expectation of

accurately and consistently controlling any resulting

new software configuration behavior. Though various

SCM tools exist, these tools can tend to focus only on

the SCM aspect and does not fully integrate any

software engineering measures which can be crucial

in providing any important SCM activity metrics.

 Software engineering metrics which consists of

product, process, and project measures can be derived

from any of the various SCM activities. These

measures can help in quantifying change within the

SCM activity framework and help drive any

necessary improvements in the SCM process as well

of improvements to individual artifacts of the

software project and the software project itself.

 Lastly, in comparing the proposed Relational

Metrics Model to traditional SCM approaches, we

believe there exits an advantage to managing change

configuration from a unified view perspective

through interrelations of the SCM activities and the

software engineering metrics rather than by

individual change artifacts and components as

presented by traditional SCM approaches and tools.

Although change activities within traditional SCM

approaches track changes and any artifacts affected,

however questions arise in quantifying the various

areas of change in order to identify, correlate, and

prioritize changes. Through an abstracted view of

software products change activities and related

metrics, software project managers for example, can

anticipate and project issues and establish a

“preemptive” approach rather than a “reactive”

approach which is a prevailing factor in many

software projects presently.

4. Conclusions

 In this study, we proposed the development of a

relational model as a possible means for managing

and controlling software configuration change during

a software products life-cycle from the SCM

activities and the available software engineering

metrics. Current approaches to SCM focus primarily

on individually managing the individual change

artifacts and components within a software products

lifecycle which is susceptible to errors as well as not

providing an abstracted view of a software products

change activities. We demonstrated that our relational

approach to managing changes within a software

product lifecycle will result in a more effective

means of validating change configurations by

visualizing change from a unified quantifiable view

rather than by individual change artifacts and

components within the SCM framework.

Figure 2- Relation Metrics Data Model

References

[1].J.Keyes, “Software Configuration

Management,” Auerbach Publications, 2004.

[2]. R.Pressman, “Software Engineering-A

Practitioner's Approach,” Seventh

Edition, McGraw-Hill, 2010.

[3]. Gornik, D. (2003). Enity Relationship

Modeling With UML. Retrieved from

www.ibm.com/developerworks/rational/libr

ary/content/03July/2500/27

5/2785_uml.pdf

[4].Software Metrics

(http://www.cs.ucl.ac.uk/staff/A.Finkelstein/

advmsc/11.pdf)

[5]. Harrington, J. (2002). Relational

Database Design, San Diego, California:

Morgan Kaufmann Publishers

[6]. IEEE Standards: "IEEE 828-2012:

STANDARD FOR CONFIGURATION

MANAGEMENT IN SYSTEMS ANS

SOFTWARE ENGINEERING."

http://www.cs.ucl.ac.uk/staff/A.Finkelstein/advmsc/11.pdf
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/advmsc/11.pdf

