

A Web-based Visual Analytic System for Understanding the
Structure of Community Land Model

Yang Xu 1, Dali Wang 2 *, Tomislav Janjusic 3, Xiaofeng Xu 2

1 Department of Geography
University of Tennessee, Knoxville

TN 37996, USA
yxu30@utk.edu

2 Climate Change Science Institute

Oak Ridge National Laboratory
TN 37831, USA

{wangd, xux4}@ornl.gov

3 Computer Science and Mathematics Division

Oak Ridge National Laboratory
TN 37831, USA

janjusict@ornl.gov

* Corresponding author, Tel +1 8652418679, Fax +1
865 5749501. Email: wangd@ornl.gov

Abstract - Development of high fidelity earth system models is
important to the understanding of earth system science. Along
with several decades of active developments, the complexity of
the model’s software structure became a barrier that hinders
model interpretation and further improvements. In this paper,
a web-based visual analytic system is introduced to better
understand the software structure of Community Land Model
(CLM) within an earth system modeling framework. First, the
software structure is decomposed from source codes and we
use a graph structure to represent the interrelationships
among different CLM components. Second, a web-based front
end is developed to demonstrate the CLM software structure
in a visual analytical context. Finally, we present a pilot case
study to discuss how an improved understanding of CLM
software structure can be achieved from three different
perspectives, namely CLM structure overview, visualization of
submodel structure and CLM inter-version comparison. We
believe the approaches and visualization tools can be
beneficial to CLM model interpretation and improvements as
well as other large-scale modeling systems across different
research domains.

Keywords - Community Earth System Model, Community
Land Model, Software Structure Decomposition, Graph
Visualization.

1 Introduction

Researchers have made great progress over the past decades
in developing high fidelity earth system models [1]. The
Community Earth System Model (CESM) is one of the leading
earth system models funded by National Science Foundation
(NSF) and U.S. Department of Energy (DOE). The Community
Land Model (CLM) is the land model of CESM that simulates
surface energy, water, carbon, and nitrogen fluxes and state
variables for the land surfaces [2-4]. The model formalizes and
quantifies concepts of ecological climatology under an

interdisciplinary framework to understand how natural and
human changes in vegetation affect climate. As a scientific
application for the earth system simulation, it is important to get
the fundamental processes correct [5]. This requires a good
understanding of CLM ecosystem functions as well as the
interplay among them within the context of ecosystem science.

The CLM contains several submodels related to land
biogeophysics, biogeochemistry, hydrologic cycle, human
dimensions and ecosystem dynamics. The structure of each
submodel is generally organized by software modules or
subroutines based on natural system functions such as carbon-
nitrogen cycles, soil temperature, hydrology and photosynthesis
[6]. Each module or subroutine interacts with a list of variables
which are globally accessible or subroutine explicit. Several
efforts have been made to better understand CLM and the
ecosystem processes through software structure profiling [6],
functional unit testing [7] and memory pattern analysis [8]. The
whole CLM modeling system consists of more than 1800
source files and over 350,000 lines of source code. New CLM
software analysis methods are much needed for rapid model
interpretation and improvements.

In this paper, a web-based visual analytic system is
introduced to gain an improved understanding of CLM software
structure. First, we decompose the CLM software from source
codes and propose a CLM graph structure that summarizes the
interrelationships among all the function calls and variables.
Second, a web-based front end with three different views is
developed to demonstrate the CLM software structure in a
visual analytical context. A pilot case study is then presented to
gain insights into the structure using the three views, namely
CLM structure overview, visualization of submodel structure,
and CLM inter-version comparison. We believe the
visualization tools can be beneficial to the understanding of
CLM software structure. The approaches can also be applied in
other large-scale modeling systems across different research
domains.

2 Methodology and key components

In this section, we introduce the key components and work
flow of our web-based visual analytic system. As shown in Fig.
1, a CLM Fortran-syntax specific Perl script was developed to
decompose the CLM software structure into tokens of function
calls, subroutine explicit parameters and global variables.
Definition of tokens will be further explained in section 2.1.
Then, a Python script builds a CLM graph structure, which
summarizes the interrelationships among all the tokens. Finally,
the graph structure is visualized in the web-based front end
using Javascript and D3.js (http://d3js.org).

2.1 Decomposition of CLM structure

Understanding complex codes such as CLM undoubtedly
requires tools to facilitate code decomposition into simpler
forms. This allows users to use visualization tools to further
understand the code structure. For this purpose, we developed
a CLM Fortran-syntax specific Perl script that categorizes key
variables and data structures into tokens. Herein, we refer to a
token as any source-code identified function call or variable,
which includes name of subroutines, global visible variables, as
well as all the variables used in subroutine definitions
(subroutine-in, subroutine out). Subroutine-in variables are all
tokens identified in the subroutine's signature. Subroutine-out
variables are a subset that was identified to be written to, i.e.
these tokens were used to store a value. Globally visible
variables are identified using the pointer assignment syntax
during source-code scanning. This means that any token found

in the source-code line that adheres to the general pointer
assignment syntax is treated as globally visible variable. We
further break this category into Read-only, Write-only, or
Modified variables. Specifically, during scanning the script
stores any pointer to derived member values into a hash of
tokens. The source code lines are decomposed into left-hand
(lHand) and right-hand (rHand) statements and further broken
down if more assignments are present. Every token found on
the lHand side is a write category and similarly every token on
the rHand side is a read category token. If a token falls into both
categories, we will assign that token into the modified category.
There are, of course, special cases that require further statement
breakdown using special-case rules. For example, statements
that use pointers to access other derived types are often found
in the lHand/rHand statement syntax, thus the script will
decompose tokens to identify the correct category for the
globally visible variable. In addition, tokens found in source-
code statements that are identified by special-keywords (e.g.,
call) are used to build static call-graphs, which is a list of calle
subroutine names originating from the current caller subroutine.
The Perl scanning process outputs a list of files named after the
subroutine’s name. Each file records the variables and function
calls (Calle Subroutines) that a particular subroutine has
accessed. Table 1 gives an example of the output file of
CanopyFluxes subroutine.

Table 1. Tokens of Cannopyfluxes Subroutine

Fig. 1. Work flow and key components of the web-based visual analytic system for understanding the structure of Community Land Model (CLM)

Category Tokens

Subroutine-In ubg, ubc, lbg, lbp, num_nolakep, ……

Subroutine-Out Null

Global Read Only t_grnd, psnsun_wc, alphapsnsun, psnsun, ……

Global Write Only cgrnd, psnsun, rb1, ulrad, dlrad, ……

Global Modified displa, rc13_psnsun, z0qv, z0hv, ……

Global None watopt, watdry

Function Calls QSat, FrictionVelocity, Photosynthesis, ……

2.2 Graph construction of CLM software and

submodels

Based on the output files generated by the Perl script, we
developed a Python script to organize the CLM components
into a graph structure with nodes and edges. The nodes refer to
all the identified tokens, and the edges are used to describe how
these tokens access or are accessed by others. We use this graph
structure to summarize the interrelationships among all the
function calls, subroutine explicit parameters and global
variables. As described in section 1, CLM consists of several
submodels and each submodel is usually organized by
particular subroutines. In order to incorporate this information
into the graph, the Python script also records which submodel
each subroutine belongs to. Then this graph structure is used in
the web-based front end to facilitate the understanding of the
CLM structure from multiple perspectives. For example, users
could get an overall idea of CLM structure by exploring the
submodels and subroutines contained, or look into the structure
of particular CLM submodels. The graph structure can also be
compared across different CLM versions.

Due to the complexity of CLM software, some tokens
(nodes) belong to multiple categories in the modeling context.
For example, in Table 1, the token displa marked as Global
Modified variable for the subroutine CanopyFluxes while its
category becomes Subroutine-in for another subroutine
FrictionVelocity. In order to maintain this information, we
generate a CLM node group list that enumerates all possible
combinations of the token categories. As shown in Table 2,
each Group id corresponds to a particular combination of token
categories. By introducing the list, we are able to label each
node with group information during graph construction. For
example, as shown in Table 1, all Function Calls (e.g., Qsat)
after graph construction will have a Group id of 1. The
Subroutine-in variables (e.g., ubg) will have a Group id of 2.
While variables like displa as described above will have a
Group id of 11. The group information can be used to
understand the CLM software structure with respect to token
category, i.e. its function.

Table 2. CLM Node Group Information

Group id Combination of Token Categories

1 Function Calls

2 Subroutine-in

3 Subroutine-out

4 Global Read-only

5 Global Write-only

6 Global Modified

7 Global-None

8 Subroutine-in & Subroutine-out

9 Subroutine-in & Global Read-only

10 Subroutine-in & Global Write-only

11 Subroutine-in & Global Modified

12 Subroutine-in & Global-None

…
…

…
…

2.3 Web-based front end based on Javascript and

D3.js

One of the important components in our system is the web-
based front end, which is designed to facilitate the exploration
and investigation of CLM software structure in a visual
analytical context. The web-based front end has three major
views: CLM structure overview, visualization of submodel
structure and CLM inter-version comparison. The CLM
structure overview aims to provide users with an overall picture
about different CLM software versions and submodels. The
visualization of submodel structure summarizes the inter-
relationships among all the function calls, subroutine explicit
parameters and global variables related to that submodel (e.g.,
CanopyFluxes shown in the next section). The inter-version
comparison is used to demonstrate what changes and
improvements have been made from one CLM software version
to another. The web-based front end is developed based on
Javascript and D3.js (http://d3js.org). D3.js is a Javascript
library which allows developers to bind their data to a
Document Object Model (DOM) and then transfer the data
information into interactive visualizations. As shown in Fig. 1,
the Python scanning process generates a list of node and edge
files in JSON format (http://json.org). These files that record
the CLM software structures are used to create interactive
visualizations using Javascript and D3.js.

3 A pilot case study

As we mentioned before, visualizing and analyzing the
software structure of large-scale modeling system such as CLM
is very important to model interpretation and provides
opportunities for further improvements of model structures. In
this section, a pilot case study is introduced to describe how an
improved understanding of CLM software structure can be
achieved with the web-based visual analytic system. First, a
collapsible tree is used to demonstrate the overall structure of
CLM software from a hierarchical perspective. This effort will
allow users to explore the submodels and subroutines included
in each CLM version. Second, a directed graph is used to
visualize the CanopyFluxes submodel within CLM. This effort

allows users to further look into the sturcture of particular
submodels based on their research interests. Finally, we present
our case study for the CLM inter-version comparison (CLM
ORNL Bench vs. CLM ORNL Microbe). This effort enables
users to trace the changes between two CLM versions.

3.1 CLM structure overview

The CLM model has several public releases such as CLM
4.0 and CLM 4.5. At Oak Ridge National Laboratory (ORNL),
we have our own code repository, which use the official release
CLM 4.5 as our bench case. Based on that, several new modules
(e.g., the Microbe module [9]) have been developed. In our
web-based visual analytic system, a collapsible tree is used to
demonstrate the CLM software structure from a hierarchical
perspective. As mentioned in section 2.1, after the
decomposition of CLM structure, we generate a list of files
named after the subroutine’s name, which can be used to
construct the overview software structure. Fig. 2 shows a
hierarchical tree, which allows users to explore the CLM
software structure by expanding or collapsing particular nodes.
For example, when users click the node “CLM”, it will expand
and show several CLM major release such as “CLM 4.0” and
“CLM 4.5”. The node “CLM 4.5” can be then expanded to view
different versions of CLM source codes such as “CLM ORNL
Bench” and “CLM ORNL Microbe”. Each CLM2 version can
be further expanded to view its submodels (e.g.,
“CanopyFluxes”) as well as the corresponding subroutines. The
visualization also highlights the nodes in yellow to illustrate the
submodels which are newly developed based on the CLM
bench version. For example, the node “ch4, n2o, microbeCN”

in Fig. 2 shows that this submodel is newly incorporated in
“CLM ORNL Microbe” as compared with its bench version
“CLM ORNL Bench”.

The hierarchical visualization provides users with an overall
picture of CLM software release, submodel components as well
as the model improvements. The interactive visualization can
be found at (http://web.ornl.gov/~7xw/CLM_Overview.html).

3.2 Visualization of submodel structure

Visualizing the structure of CLM submodels can be useful
when users want to understand particular CLM components at
the micro level. As described in section 2.2, the Python script
generates a comprehensive graph structure recording all the
submodels and their corresponding subroutines. Within each
subroutine, the interrelationships among all the function calls
and variables are recorded. Hence, the web-based front end is
able to visualize a subset of the whole graph in order to
demonstrate the structure of a particular CLM submodel.

Fig. 3 shows the structure of CanopyFluxes submodel
within CLM. Nodes with different colors and sizes are used to
denote the types of the tokens. Nodes with bigger size and the
color of yellow stand for all the function calls (subroutines) for
the CanopyFluxes submodel. The nodes with smaller size
denote all the variables and among these variables: (1) green
nodes stand for subroutine explicit parameters; (2) blue nodes
stand for global variables; (3) the nodes in red denote the ones
that are used as both subroutine explicit and global variables.

Fig. 2. Visualization of CLM software structure using a hierarchical collapsible tree. The nodes can be clicked to expand or collapse. The nodes in light blue
denote the ones that can be expanded. The nodes in yellow represent new model development (e.g., ch4, n2o, microbeCN) based on the bench version (e..g,
CLM ORNL Bench).

The visualization using directed graphs provide users with
an intuitive way of investigating how function calls and
variables access or are accessed by others within the context of
particular submodel. By exploring the submodel structure,
users could better understand how the tokens are connected
together as well as the specific role(s) that each of them is
playing. As shown in Fig. 3, several red nodes exist in the
structure of CanopyFluxes, which means that these variables
serve as both global variables for the submodel and explicit
parameters for the function calls (subroutines). The information
allows users to further explore the scientific meanings of these
variables.

The case study of this visualization can be found at
(http://web.ornl.gov/~7xw/CanopyFluxes/CanopyFluxes.html)
. When a user puts the mouse over a certain node, the name as
well as the node group id will pop up. The group id, as described
in Table 2, offers users detailed information about the specific

category of an token. For example, the pop up information will
help users to distinguish if a global variable belongs to the
category of Read-only, Write-only or Modified. Our web page
contains a hyperlink (i.e., “View Group Information”) which
leads to a file similar to Table 2 whenever users want to view
the group information of the tokens.

3.3 CLM inter-version comparison

The CLM is a community model which is open for any
contributions and usages across the scientific community. For
example, the current release of CLM 4.5 (i.e., CLM ORNL
Bench in our case study) consists of four key components:
biogeophysics, hydrologic cycle, biogeochemistry and dynamic
vegetation. For the biogeochemistry component in the CLM,
the carbon and nitrogen cycling in the soil and vegetation under
the influence of environmental factors are simulated. The
microbial controls on carbon and nitrogen processes are

Fig. 3. Visualization of CanopyFluxes submodel of CLM ORNL Microbe. Nodes in yellow stand for the function calls (subroutines). Nodes in green denote
subroutine explicit variables. Nodes in blue represent all the global variables. While nodes in red denote the variables which are used as both subroutine
explicit/global variables. The edges are used to describe how the variables are accessed by particular function call(s).

implicitly represented as a few empirical equations, which are
one of the primary uncertainties for model improvements
targeting better predicting biogeochemistry-climate feedbacks.
Thus, a more advanced model with explicit representation of
microbial processes which contributes to the soil
biogeochemical processes is needed. Targeting this need, a new
modeling structure, CLM ORNL Microbe, is developed to
improve the CLM Bench version by [9, 10].

Our web-based front end uses a rendered directed graph to
describe the changes between two CLM versions. As described
in section 2, the CLM graph structure (nodes and edges) that
summarizes the interrelationships among all the tokens is
generated using Python script. By comparing the graph
structures between two different versions, we are able to
uncover the changes in term of: (1) which function calls and
variables are newly added, modified or no longer existing; (2)
the interplay between function calls and variables that are newly
added or no long existing. Fig. 4 shows an example of our web-

based visualization for comparing CLM ORNL Bench and CLM
ORNL Microbe. The CLM ORNL Bench is chosen as the base
version. The blue nodes denote the newly added function calls
and the yellow nodes stand for the function calls that are
modified. For example, we can see several new function calls
that are added into the CLM ORNL Microbe such as n2o,
microbeCN and microbeRest.

The nodes with smaller size denote all the variables. We use
red to represent newly added variables and green to represent
the ones that are modified. We also use solid and dash lines to
represent the changing relationships among all the tokens
through the two CLM software versions. For example, as
shown in Fig. 4, there are many solid as well as dashed links
associated with the function call ch4. It means that as compared
with the based version, the ch4 submodel for CLM ORNL
Microbe is modified to access some new variables (red nodes
connected with solid lines). Meanwhile, some of the variables
(green nodes) and function calls (yellow nodes) are connected

Fig. 4. Graph visualization of CLM inter-version comparison (CLM ORNL Bench vs. CLM ORNL Microbe). The CLM ORNL Bench is chosen as the base
version. Blue nodes represent newly added function calls and the yellow nodes represent the modified function calls. Red nodes denote the newly added
variables and the onw in green stand for modified variables. The links rendered with solid and dash lines are used to represent newly added and disappeared
links respectively.

to ch4 with dash lines, which means that those variables and
function calls are accessed by ch4 in the CLM ORNL Bench, but
are no longer accessed by ch4 in CLM ORNL Microbe. The
graph structure allows users to easily trace the changes between
two CLM software versions in a visual analytical context. The
web-based visualization for this case study can be found at
(http://web.ornl.gov/~7xw/CLM_Microbe_Comparison/CLM
_Comparison.html).

4 Conclusions and future work

In this paper, we present our approaches for better
understanding the structure of Community Land Model within
the Earth System Modeling framework. A web-based visual
analytic system is developed to allow users to gain insights into
software and data structure from different perspectives. The
CLM structure overview provides an overall picture of different
CLM release and the submodels. It helps users to explore major
components as well as new module development for a
particular CLM version (e.g., CLM ORNL Microbe). The
system also enables users to look into the structure of a
particular submodel by visualizing the interrelationships among
all the function calls and variables. Moreover, a deeper
understanding can be obtained by exploring their names and
categories, which is important for model interpretation and
further improvements. The CLM inter-version comparison
allows users to trace the changes between two CLM versions in
a visual analytical context. Users can easily identify the
function calls and variables which are added, modified or
removed from one CLM version to the other. We believe the
approaches and visualization tools can be beneficial to the
understanding of CLM software structure as well as other large-
scale modeling systems across different research domains.

The future work will focus on two directions. First we will
develop an online database system hosting software structure as
well as performance data from other advanced tools such as
Vampir [11] and Valgrind (www.valgrind.org). Users will be
able to query the database to get detailed information of CLM
submodels, function calls and variables. Meanwhile,
visualizations of software and submodel structures will be
generated on the fly based on the customized queries. Second,
we will incorporate a web-based functional testing platform
over the cloud computing infrastructure to facilitate the
understanding of CLM ecosystem processes.

ACKNOWLEDGMENT

This research was partially funded by the U.S. Department
of Energy (DOE), Office of Science, Biological and
Environmental Research (BER). This research used resources
of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office of
Science of the Department of Energy under Contract DE-
AC05-00OR22725. Yang Xu’s work is partially supported

through a subcontract to the University of Tennessee,
Knoxville. Oak Ridge National Laboratory is managed by UT-
Battelle LLC for the Department of Energy under contract DE-
AC05-00OR22725.

REFERENCES

[1] W.M. Washington and C.L. Parkinson, An Introduction to
Three-Dimensional Climate Modeling, 2nd ed. University
Science Books, 2005.

[2] G.B. Bonan, “The Land Surface Climatology of the
NCAR Land Surface Model Coupled to the NCAR
Community Climate Model”, J. of Climate. vol. 11(6),
pp.1307-1326, 1998.

[3] R.E. Dickinson, K.W. Oleson, G. Bonan, F. Hoffman, P.
Thornton, M. Vertenstein, et al. The Community Land
Model and Its Climate Statistics as a Component of the
Community Climate System Model, J. of Climate. Vol.
19(11), pp.2302-2324, 2006.

[4] K. Oleson, D. Lawrence, B. Gordon, M. Flanner, E.
Kluzek, J. Peter , et al. “Technical Description of Version
4.0 of the Community Land Model (CLM)”, 2010.

[5] D. Wang, D. Ricciuto, W. Post and M. Berry. “Terrestrial
Ecosystem Carbon Modeling”, Encyclopedia for parallel
Computing, pp.2034-2039, 2011.

[6] D. Wang, J. Schuchart, T. Janjusic, F. Winkler and Y. Xu,
Toward Better Understanding of the Community Land
Model within the Earth System Modeling Framework.
International Conference on Computational Science.
2014. In press.

[7] D. Wang, Y. Xu, P. Thornton, A. King, C. Steed, L. Gu
and J. Schuchart. “A Functional Test Platform for the
Community Land Model”, Environment Modeling &
Software, vol. 55, pp. 25-31, 2014.

[8] T. Janjusic, K. Kavi and B. Potter. “A Memory Analysis
Tool”, Procedia Computer Science. Vol. 4, pp. 2058-
2067. 2011.

[9] X. Xu, J.P. Schimel, P. Thornton, X. Song, F. Yuan, S.
Goswami. “Substrate and Environmental Controls on
Microbial Assimilation of Soil Organic Carbon: A
Framework for Earth System Models”. Ecology Letters,
DOI: 10.1111/ele.12254. 2014.

[10] X. Xu, D.A. Elias, D.E. Graham, T.J. Phelps, S.L. Carrol
and P. Thornton. “A Microbial Functional Group Based
Model for Simulating CO2 and CH4 Dynamics”.
unpublished.

[11] M.S. Müller, A. Knüpfer, M. Jurenz, M. Lieber, H. Brunst,
H. Mix, et al. “Developing Scalabe Applications with
Vampir, VampirServer and VampirTrace”. Parallel
Computing: Architectures, Algorithms and Applications.
Vol. 15, pp. 637–644. 2008

