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Abstract - Development of high fidelity earth system models is 
important to the understanding of earth system science. Along 
with several decades of active developments, the complexity of 
the model’s software structure became a barrier that hinders 
model interpretation and further improvements. In this paper, 
a web-based visual analytic system is introduced to better 
understand the software structure of Community Land Model 
(CLM) within an earth system modeling framework. First, the 
software structure is decomposed from source codes and we 
use a graph structure to represent the interrelationships 
among different CLM components. Second, a web-based front 
end is developed to demonstrate the CLM software structure 
in a visual analytical context. Finally, we present a pilot case 
study to discuss how an improved understanding of CLM 
software structure can be achieved from three different 
perspectives, namely CLM structure overview, visualization of 
submodel structure and CLM inter-version comparison. We 
believe the approaches and visualization tools can be 
beneficial to CLM model interpretation and improvements as 
well as other large-scale modeling systems across different 
research domains. 

Keywords - Community Earth System Model, Community 
Land Model, Software Structure Decomposition, Graph 
Visualization. 

1  Introduction 

Researchers have made great progress over the past decades 
in developing high fidelity earth system models [1]. The 
Community Earth System Model (CESM) is one of the leading 
earth system models funded by National Science Foundation 
(NSF) and U.S. Department of Energy (DOE). The Community 
Land Model (CLM) is the land model of CESM that simulates 
surface energy, water, carbon, and nitrogen fluxes and state 
variables for the land surfaces [2-4]. The model formalizes and 
quantifies concepts of ecological climatology under an 

interdisciplinary framework to understand how natural and 
human changes in vegetation affect climate. As a scientific 
application for the earth system simulation, it is important to get 
the fundamental processes correct [5]. This requires a good 
understanding of CLM ecosystem functions as well as the 
interplay among them within the context of ecosystem science.  

The CLM contains several submodels related to land 
biogeophysics, biogeochemistry, hydrologic cycle, human 
dimensions and ecosystem dynamics. The structure of each 
submodel is generally organized by software modules or 
subroutines based on natural system functions such as carbon-
nitrogen cycles, soil temperature, hydrology and photosynthesis 
[6]. Each module or subroutine interacts with a list of variables 
which are globally accessible or subroutine explicit. Several 
efforts have been made to better understand CLM and the 
ecosystem processes through software structure profiling [6], 
functional unit testing [7] and memory pattern analysis [8]. The 
whole CLM modeling system consists of more than 1800 
source files and over 350,000 lines of source code. New CLM 
software analysis methods are much needed for rapid model 
interpretation and improvements. 

In this paper, a web-based visual analytic system is 
introduced to gain an improved understanding of CLM software 
structure. First, we decompose the CLM software from source 
codes and propose a CLM graph structure that summarizes the 
interrelationships among all the function calls and variables. 
Second, a web-based front end with three different views is 
developed to demonstrate the CLM software structure in a 
visual analytical context. A pilot case study is then presented to 
gain insights into the structure using the three views, namely 
CLM structure overview, visualization of submodel structure, 
and CLM inter-version comparison. We believe the 
visualization tools can be beneficial to the understanding of 
CLM software structure. The approaches can also be applied in 
other large-scale modeling systems across different research 
domains. 



 
 

2  Methodology and key components 

In this section, we introduce the key components and work 
flow of our web-based visual analytic system. As shown in Fig. 
1, a CLM Fortran-syntax specific Perl script was developed to 
decompose the CLM software structure into tokens of function 
calls, subroutine explicit parameters and global variables. 
Definition of tokens will be further explained in section 2.1. 
Then, a Python script builds a CLM graph structure, which 
summarizes the interrelationships among all the tokens. Finally, 
the graph structure is visualized in the web-based front end 
using Javascript and D3.js (http://d3js.org). 

2.1 Decomposition of CLM structure 

Understanding complex codes such as CLM undoubtedly 
requires tools to facilitate code decomposition into simpler 
forms. This allows users to use visualization tools to further 
understand the code structure. For this purpose, we developed 
a CLM Fortran-syntax specific Perl script that categorizes key 
variables and data structures into tokens. Herein, we refer to a 
token as any source-code identified function call or variable, 
which includes name of subroutines, global visible variables, as 
well as all the variables used in subroutine definitions 
(subroutine-in, subroutine out). Subroutine-in variables are all 
tokens identified in the subroutine's signature. Subroutine-out 
variables are a subset that was identified to be written to, i.e. 
these tokens were used to store a value. Globally visible 
variables are identified using the pointer assignment syntax 
during source-code scanning. This means that any token found 

in the source-code line that adheres to the general pointer 
assignment syntax is treated as globally visible variable. We 
further break this category into Read-only, Write-only, or 
Modified variables. Specifically, during scanning the script 
stores any pointer to derived member values into a hash of 
tokens. The source code lines are decomposed into left-hand 
(lHand) and right-hand (rHand) statements and further broken 
down if more assignments are present. Every token found on 
the lHand side is a write category and similarly every token on 
the rHand side is a read category token. If a token falls into both 
categories, we will assign that token into the modified category. 
There are, of course, special cases that require further statement 
breakdown using special-case rules. For example, statements 
that use pointers to access other derived types are often found 
in the lHand/rHand statement syntax, thus the script will 
decompose tokens to identify the correct category for the 
globally visible variable. In addition, tokens found in source-
code statements that are identified by special-keywords (e.g., 
call) are used to build static call-graphs, which is a list of calle 
subroutine names originating from the current caller subroutine. 
The Perl scanning process outputs a list of files named after the 
subroutine’s name. Each file records the variables and function 
calls (Calle Subroutines) that a particular subroutine has 
accessed. Table 1 gives an example of the output file of 
CanopyFluxes subroutine.  

 

Table 1. Tokens of Cannopyfluxes Subroutine 
 

 
Fig. 1. Work flow and key components of the web-based visual analytic system for understanding the structure of Community Land Model (CLM) 



 
 

Category Tokens 

Subroutine-In ubg, ubc, lbg, lbp, num_nolakep, …… 

Subroutine-Out Null 

Global Read Only t_grnd, psnsun_wc, alphapsnsun, psnsun, …… 

Global Write Only cgrnd, psnsun, rb1, ulrad, dlrad, …… 

Global Modified displa, rc13_psnsun, z0qv, z0hv, …… 

Global None watopt, watdry 

Function Calls QSat, FrictionVelocity, Photosynthesis, …… 

2.2 Graph construction of CLM software and 

submodels 

Based on the output files generated by the Perl script, we 
developed a Python script to organize the CLM components 
into a graph structure with nodes and edges. The nodes refer to 
all the identified tokens, and the edges are used to describe how 
these tokens access or are accessed by others. We use this graph 
structure to summarize the interrelationships among all the 
function calls, subroutine explicit parameters and global 
variables. As described in section 1, CLM consists of several 
submodels and each submodel is usually organized by 
particular subroutines. In order to incorporate this information 
into the graph, the Python script also records which submodel 
each subroutine belongs to. Then this graph structure is used in 
the web-based front end to facilitate the understanding of the 
CLM structure from multiple perspectives. For example, users 
could get an overall idea of CLM structure by exploring the 
submodels and subroutines contained, or look into the structure 
of particular CLM submodels. The graph structure can also be 
compared across different CLM versions. 

Due to the complexity of CLM software, some tokens 
(nodes) belong to multiple categories in the modeling context. 
For example, in Table 1, the token displa marked as Global 
Modified variable for the subroutine CanopyFluxes while its 
category becomes Subroutine-in for another subroutine 
FrictionVelocity. In order to maintain this information, we 
generate a CLM node group list that enumerates all possible 
combinations of the token categories. As shown in Table 2, 
each Group id corresponds to a particular combination of token 
categories. By introducing the list, we are able to label each 
node with group information during graph construction. For 
example, as shown in Table 1, all Function Calls (e.g., Qsat) 
after graph construction will have a Group id of 1. The 
Subroutine-in variables (e.g., ubg) will have a Group id of 2. 
While variables like displa as described above will have a 
Group id of 11. The group information can be used to 
understand the CLM software structure with respect to token 
category, i.e. its function. 

Table 2. CLM Node Group Information 
 

Group id Combination of Token Categories 

1 Function Calls 

2 Subroutine-in 

3 Subroutine-out 

4 Global Read-only 

5 Global Write-only 

6 Global Modified 

7 Global-None 

8 Subroutine-in & Subroutine-out 

9 Subroutine-in & Global Read-only 

10 Subroutine-in & Global Write-only 

11 Subroutine-in & Global Modified 

12 Subroutine-in & Global-None 

…
…

 

…
…

 

2.3 Web-based front end based on Javascript and 

D3.js 

One of the important components in our system is the web-
based front end, which is designed to facilitate the exploration 
and investigation of CLM software structure in a visual 
analytical context. The web-based front end has three major 
views: CLM structure overview, visualization of submodel 
structure and CLM inter-version comparison. The CLM 
structure overview aims to provide users with an overall picture 
about different CLM software versions and submodels. The 
visualization of submodel structure summarizes the inter-
relationships among all the function calls, subroutine explicit 
parameters and global variables related to that submodel (e.g., 
CanopyFluxes shown in the next section). The inter-version 
comparison is used to demonstrate what changes and 
improvements have been made from one CLM software version 
to another. The web-based front end is developed based on 
Javascript and D3.js (http://d3js.org). D3.js is a Javascript 
library which allows developers to bind their data to a 
Document Object Model (DOM) and then transfer the data 
information into interactive visualizations. As shown in Fig. 1, 
the Python scanning process generates a list of node and edge 
files in JSON format (http://json.org). These files that record 
the CLM software structures are used to create interactive 
visualizations using Javascript and D3.js. 

3  A pilot case study 

As we mentioned before, visualizing and analyzing the 
software structure of large-scale modeling system such as CLM 
is very important to model interpretation and provides 
opportunities for further improvements of model structures. In 
this section, a pilot case study is introduced to describe how an 
improved understanding of CLM software structure can be 
achieved with the web-based visual analytic system. First, a 
collapsible tree is used to demonstrate the overall structure of 
CLM software from a hierarchical perspective. This effort will 
allow users to explore the submodels and subroutines included 
in each CLM version. Second, a directed graph is used to 
visualize the CanopyFluxes submodel within CLM. This effort 



 
 

allows users to further look into the sturcture of particular 
submodels based on their research interests. Finally, we present 
our case study for the CLM inter-version comparison (CLM 
ORNL Bench vs. CLM ORNL Microbe). This effort enables 
users to trace the changes between two CLM versions. 

3.1 CLM structure overview 

The CLM model has several public releases such as CLM 
4.0 and CLM 4.5. At Oak Ridge National Laboratory (ORNL), 
we have our own code repository, which use the official release 
CLM 4.5 as our bench case. Based on that, several new modules 
(e.g., the Microbe module [9]) have been developed. In our 
web-based visual analytic system, a collapsible tree is used to 
demonstrate the CLM software structure from a hierarchical 
perspective. As mentioned in section 2.1, after the 
decomposition of CLM structure, we generate a list of files 
named after the subroutine’s name, which can be used to 
construct the overview software structure. Fig. 2 shows a 
hierarchical tree, which allows users to explore the CLM 
software structure by expanding or collapsing particular nodes. 
For example, when users click the node “CLM”, it will expand 
and show several CLM major release such as “CLM 4.0” and 
“CLM 4.5”. The node “CLM 4.5” can be then expanded to view 
different versions of CLM source codes such as  “CLM ORNL 
Bench” and “CLM ORNL Microbe”. Each CLM2 version can 
be further expanded to view its submodels (e.g., 
“CanopyFluxes”) as well as the corresponding subroutines. The 
visualization also highlights the nodes in yellow to illustrate the 
submodels which are newly developed based on the CLM 
bench version. For example, the node “ch4, n2o, microbeCN” 

in Fig. 2 shows that this submodel is newly incorporated in 
“CLM ORNL Microbe” as compared with its bench version 
“CLM ORNL Bench”. 

The hierarchical visualization provides users with an overall 
picture of CLM software release, submodel components as well 
as the model improvements. The interactive visualization can 
be found at (http://web.ornl.gov/~7xw/CLM_Overview.html).  

3.2 Visualization of submodel structure 

Visualizing the structure of CLM submodels can be useful 
when users want to understand particular CLM components at 
the micro level. As described in section 2.2, the Python script 
generates a comprehensive graph structure recording all the 
submodels and their corresponding subroutines. Within each 
subroutine, the interrelationships among all the function calls 
and variables are recorded. Hence, the web-based front end is 
able to visualize a subset of the whole graph in order to 
demonstrate the structure of a particular CLM submodel. 

Fig. 3 shows the structure of CanopyFluxes submodel 
within CLM. Nodes with different colors and sizes are used to 
denote the types of the tokens. Nodes with bigger size and the 
color of yellow stand for all the function calls (subroutines) for 
the CanopyFluxes submodel. The nodes with smaller size 
denote all the variables and among these variables: (1) green 
nodes stand for subroutine explicit parameters; (2) blue nodes 
stand for global variables; (3) the nodes in red denote the ones 
that are used as both subroutine explicit and global variables. 

 

Fig. 2. Visualization of CLM software structure using a hierarchical collapsible tree. The nodes can be clicked to expand or collapse. The nodes in light blue 
denote the ones that can be expanded. The nodes in yellow represent new model development (e.g., ch4, n2o, microbeCN) based on the bench version (e..g, 
CLM ORNL Bench). 



 
 

The visualization using directed graphs provide users with 
an intuitive way of investigating how function calls and 
variables access or are accessed by others within the context of 
particular submodel. By exploring the submodel structure, 
users could better understand how the tokens are connected 
together as well as the specific role(s) that each of them is 
playing. As shown in Fig. 3, several red nodes exist in the 
structure of CanopyFluxes, which means that these variables 
serve as both global variables for the submodel and explicit 
parameters for the function calls (subroutines). The information 
allows users to further explore the scientific meanings of these 
variables. 

The case study of this visualization can be found at 
(http://web.ornl.gov/~7xw/CanopyFluxes/CanopyFluxes.html)
. When a user puts the mouse over a certain node, the name as 
well as the node group id will pop up. The group id, as described 
in Table 2, offers users detailed information about the specific 

category of an token. For example, the pop up information will 
help users to distinguish if a global variable belongs to the 
category of Read-only, Write-only or Modified. Our web page 
contains a hyperlink (i.e., “View Group Information”) which 
leads to a file similar to Table 2 whenever users want to view 
the group information of the tokens. 

3.3 CLM inter-version comparison 

The CLM is a community model which is open for any 
contributions and usages across the scientific community. For 
example, the current release of CLM 4.5 (i.e., CLM ORNL 
Bench in our case study) consists of four key components: 
biogeophysics, hydrologic cycle, biogeochemistry and dynamic 
vegetation. For the biogeochemistry component in the CLM, 
the carbon and nitrogen cycling in the soil and vegetation under 
the influence of environmental factors are simulated. The 
microbial controls on carbon and nitrogen processes are 

 
Fig. 3. Visualization of CanopyFluxes submodel of CLM ORNL Microbe. Nodes in yellow stand for the function calls (subroutines). Nodes in green denote 
subroutine explicit variables. Nodes in blue represent all the global variables. While nodes in red denote the variables which are used as both subroutine 
explicit/global variables. The edges are used to describe how the variables are accessed by particular function call(s). 



 
 

implicitly represented as a few empirical equations, which are 
one of the primary uncertainties for model improvements 
targeting better predicting biogeochemistry-climate feedbacks. 
Thus, a more advanced model with explicit representation of 
microbial processes which contributes to the soil 
biogeochemical processes is needed. Targeting this need, a new 
modeling structure, CLM ORNL Microbe, is developed to 
improve the CLM Bench version by [9, 10]. 

Our web-based front end uses a rendered directed graph to 
describe the changes between two CLM versions. As described 
in section 2, the CLM graph structure (nodes and edges) that 
summarizes the interrelationships among all the tokens is 
generated using Python script. By comparing the graph 
structures between two different versions, we are able to 
uncover the changes in term of: (1) which function calls and 
variables are newly added, modified or no longer existing; (2) 
the interplay between function calls and variables that are newly 
added or no long existing. Fig. 4 shows an example of our web-

based visualization for comparing CLM ORNL Bench and CLM 
ORNL Microbe. The CLM ORNL Bench is chosen as the base 
version. The blue nodes denote the newly added function calls 
and the yellow nodes stand for the function calls that are 
modified. For example, we can see several new function calls 
that are added into the CLM ORNL Microbe such as n2o, 
microbeCN and microbeRest. 

The nodes with smaller size denote all the variables. We use 
red to represent newly added variables and green to represent 
the ones that are modified. We also use solid and dash lines to 
represent the changing relationships among all the tokens 
through the two CLM software versions. For example, as 
shown in Fig. 4, there are many solid as well as dashed links 
associated with the function call ch4. It means that as compared 
with the based version, the ch4 submodel for CLM ORNL 
Microbe is modified to access some new variables (red nodes 
connected with solid lines). Meanwhile, some of the variables 
(green nodes) and function calls (yellow nodes) are connected 

 
Fig. 4. Graph visualization of CLM inter-version comparison (CLM ORNL Bench  vs. CLM ORNL Microbe). The CLM ORNL Bench  is chosen as the base 
version. Blue nodes represent newly added function calls and the yellow nodes represent the modified function calls. Red nodes denote the newly added 
variables and the onw in green stand for modified variables. The links rendered with solid and dash lines are used to represent newly added and disappeared 
links respectively. 



 
 

to ch4 with dash lines, which means that those variables and 
function calls are accessed by ch4 in the CLM ORNL Bench, but 
are no longer accessed by ch4 in CLM ORNL Microbe. The 
graph structure allows users to easily trace the changes between 
two CLM software versions in a visual analytical context. The 
web-based visualization for this case study can be found at 
(http://web.ornl.gov/~7xw/CLM_Microbe_Comparison/CLM
_Comparison.html). 

4  Conclusions and future work 

In this paper, we present our approaches for better 
understanding the structure of Community Land Model within 
the Earth System Modeling framework. A web-based visual 
analytic system is developed to allow users to gain insights into 
software and data structure from different perspectives. The 
CLM structure overview provides an overall picture of different 
CLM release and the submodels. It helps users to explore major 
components as well as new module development for a 
particular CLM version (e.g., CLM ORNL Microbe). The 
system also enables users to look into the structure of a 
particular submodel by visualizing the interrelationships among 
all the function calls and variables. Moreover, a deeper 
understanding can be obtained by exploring their names and 
categories, which is important for model interpretation and 
further improvements. The CLM inter-version comparison 
allows users to trace the changes between two CLM versions in 
a visual analytical context. Users can easily identify the 
function calls and variables which are added, modified or 
removed from one CLM version to the other. We believe the 
approaches and visualization tools can be beneficial to the 
understanding of CLM software structure as well as other large-
scale modeling systems across different research domains. 

The future work will focus on two directions. First we will 
develop an online database system hosting software structure as 
well as performance data from other advanced tools such as 
Vampir [11] and Valgrind (www.valgrind.org). Users will be 
able to query the database to get detailed information of CLM 
submodels, function calls and variables. Meanwhile, 
visualizations of software and submodel structures will be 
generated on the fly based on the customized queries. Second, 
we will incorporate a web-based functional testing platform 
over the cloud computing infrastructure to facilitate the 
understanding of CLM ecosystem processes.  
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