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Abstract— The paper describes the group structure of cy-
clotomic cosets modula 2n − 1, the group is cyclic when
2n−1 is a prime. The integers modula 2n−1 can be regarded
as the exponents of a primitive element α ∈ GF (pn). The
traces of αi show the same structure as the cyclic group
of the cyclotomic cosets modula 2n − 1. The coefficients of
the minimal polynomial of a specific αj consist of the sum
of the traces of different αi, which follow the cyclic group
structure. We demonstrate that all the primitive polynomials
can be calculated fast through the permutation of the traces
of αi.
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1. Introduction
The theory of finite fields has played important roles

in code design and cryptography[1], [2]. The irreducible
polynomials of degree n over GF (p), where p > 0 is a
prime, is of special interest[3], [4]. Many algorithms require
the calculations of different irreducible polynomials of a
fixed degree n.

There has been various methods for constructing irre-
ducible polynomials of the same degree n[1], [2], [4] from
a given primitive polynomial. And one direct way is to use
the relations between the coefficients and the roots of the
irreducible polynomials[1], [2], [5]. For a defining element
α of a finite field GF (pn), the coefficients of the minimal
polynomials of different αk are the sum of different αt. This
means that one specific power αt appears in different posi-
tions in the coefficients of minimal polynomials of different
elements. In this paper, we show that the reason is the group
structure of cyclomotic cosets. For a Mersenne prime, which
is defined to be the primes of the form 2n − 1, the group
structure of the cyclotomic cosets reduces the computing
work to simple group permutations. The group structure can
also explain why some former classical algorithms[2], [6]
using the cubic root and permutation succeeded.

The paper are organized as follows. In Section 2 some
preliminary results are given. Section 3 introduces our main

theory. Experiment results are given in Section 4. Section 5
concludes our work.

2. Newton Formula and Cyclomotic
Cosets

We first give some preliminaries that are useful for our
theory. In a finite field F = GF (pn), where p is a prime
and n > 0 is an integer, the trace function of an element
α ∈ F is defined as:

tr(α) = α+ αp + αp
2

+ · · ·+ αp
n−1

∈ GF (p) (1)

Assume f(x) to be an irreducible polynomial over
GF (p) of degree n whose roots are x1 = α, x2 =
αp, · · · , xn = αp

n−1

. The elementary symmetric polyno-
mials σ1, σ2, · · · , σn are the coefficients of f(x):

f(x) = (x− x1)(x− x2) · · · (x− xn)
= xn − σ1xn−1 + σ2x

n−2

− · · ·+ (−1)n−1σn−1x+ (−1)nσn
(2)

Another kind of symmetric polynomial is defined as:

sk = sk(x1, x2, . . . , xn)

= xk1 + xk2 + · · ·+ xkn

=
∑

1≤t≤n

(αp
n−1

)k,
(3)

where k ≥ 1 is an integer.
The Newton Formula is [7, p.12]:

sk − sk−1σ1 + · · ·+ (−1)isk−iσi
+ · · ·+ (−1)k−1s1σk−i

+ (−1)kkσk = 0, σj = 0 for j > n.

(4)

The trace of αk equals to the symmetric polynomial sk
induced by the roots of f(x). If f(x) is primitive, then αk

can denote all the elements in the finite fields, and we can
use the Newton Formula to compute the trace of any element
of the finite field via linear iteration.

In the expansion of f(x), σi is the sum of all powers of
α having exponents which, when written as p-ary n-tubles,



have i ones and n − i zeroes. The exponents of α in one
trace function also have the same ones when written as p-ary
n-tubles. So the coefficients σi could be decomposed into
the sum of traces of some specific elements.

Cyclomotic cosets[2, p.42] are a classification of the
non-zero residues modula pn − 1. Each coset contains the
numbers that are congruent to each other modula pn − 1
by multiplying a power of p, e.g. {1, 2, 4}, {3, 6, 5} are two
cyclomotic cosets modula 23− 1 = 7. Every coset equals to
a set of the exponents of the powers appeared in the trace
function of a finite field element β = αk, k is an integer. All
αi where i runs through a cyclomotic coset have the same
minimal polynomial in the finite field[2].

3. Group Structure and Minimal Polyno-
mials

We present our main theory in this section. According to
number theory, the residues modula q = pn − 1 forms an
Abelian group with respect to multiplication. The group is
cyclic for p = 2 and q = 2n − 1 prime, and we denote the
cyclic group as G. And all the cyclomotic cosets have the
same length n as all the irreducible polynomials are primitive
polynomials for q prime.

Considering cyclomotic coset modula q, H =
{1, 2, 22, . . . , 2n−1}. It is also a cyclic subgroup of
G. We have the following relations between G and H .

Proposition 1: H is a normal subgroup of G. The quo-
tient group G/H is a cyclic group. Multiplying any 1 ≤ k <
2n − 1 to all the elements in G/H means a permutation of
the quotient group.

Proof: Because G is commutative, the subgroups of G
are all normal, so does H . Both G and H are cyclic, G/H
is also cyclic by group theory.

Let H1 ∈ G/H , then H1 = k1H , where 1 ≤ k1 < 2n−1,
then k ·H1 = k ·k1H = kH ·k1H = k2H where 1 ≤ k, k2 <
2n − 1. Consider kH as a group member of G/H , hence
the theorem follows.

Example 1: p = 2, n = 5, q = 31, G =
{1, 2, . . . , 30}, H = {1, 2, 4, 8, 16}.
Then G/H is an cyclic group of order 6.

H1 = H = {1, 2, 4, 8, 16},
H2 = 3H = {3, 6, 12, 24, 17},
H3 = 5H = {5, 10, 20, 9, 18},
H4 = 7H = {7, 14, 28, 25, 19},
H5 = 11H = {11, 22, 13, 26, 21},
H6 = 15H = {15, 30, 29, 27, 23},
G/H = {H1, H2, . . . ,H6}.

H2 is a generator of G/H . H2
2 = 9H = 5H = H3, H

3
2 =

15H = H6, H
4
2 = 45H = 14H = H4, H

5
2 = 11H =

H5, H
6
2 = 2H = H1.

We want to find all the primitive polynomials from a given
primitive polynomial of degree n over GF (2). The coef-
ficients of the primitive polynomials consists of the traces
of αk where k belongs to cyclomotic cosets leaders for a
Mersenne prime q.

From finite field theory, q is the smallest integer such
that αq = 1. So any β ∈ GF (q) can be written in
the form αk and has the same order q as α. This means
the minimal polynomials of all αk where k belongs to
different cyclomotic cosets, are all the primitive polynomials
of degree n.

From the general structure of minimal polynomials dis-
cussed in the former section, the exponents of powers of α
contained in the coefficients of f(x) cover all the cyclomotic
cosets. Every exponent needs to be multiplied by k to
compute the minimal polynomial of a specific element αk.
The numbers in the same cosets appear as a whole in the
same coefficient of a primitive polynomial, as proved in
Proposition 1. The coefficients of the minimal polynomial
of αk are the sum of permuted elements of the quotient
group defined in Proposition 1.

For example, the minimal polynomial of a primitive
element α ∈ GF (25) has the following form.

fα(x) = x5 + tr(α)x4 + (tr(α3) + tr(α5))x3

+ (tr(α7) + tr(α11))x2 + tr(α15)x+ 1
(5)

The minimal polynomial of any element β = αk ∈ GF (q)
is a primitive polynomial of the same form shown in (5).
The trace function has the exponent property tr((αk)t) =
tr(αkt), so the minimal polynomial of β can be represented
by α. Continued from (5), let k = 3, then:

fβ(x) = x5 + tr(β)x4 + (tr(β3) + tr(β5))x3

+ (tr(β7) + tr(β11))x2 + tr(β15)x+ 1

= x5 + tr(α3)x4 + (tr(α9) + tr(α15))x3

+ (tr(α21) + tr(α33))x2 + tr(α45)x+ 1

= x5 + tr(α3)x4 + (tr(α5) + tr(α15))x3

+ (tr(α11) + tr(α))x2 + tr(α7)x+ 1

(6)

The last step in the deduction is due to tr(α31) = 1
and the trace is the same for the exponents of powers
of α in the same cyclomotic coset. Comparing (5)
with (6), the coefficients of the minimal polynomials
of α and β = α3 are permutations of the traces
tr(α), tr(α3), tr(α5), tr(α7), tr(α11), tr(α15).

A generator of the cyclic cyclomotic cosets group is
needed to get all the primitive polynomials of degree n, .
Multiplying the generator gives a permutation chain among
all the cyclic group elements. Then all the primitive poly-
nomials can be calculated by iteration.

Example 2 (continued from Example 1): p = 2, n =
5, q = 31. Then f1(x) = x5 + x3 + 1 is a primitive



polynomial over GF(2) with a root α. So σ1 = σ3 = σ4 =
0, σ2 = σ5 = 1, s1 = σ1 = 0.

By Newton Formula, s2 − σ1s1 + 2σ2 = 0, s2 = 0, then
s3 = tr(α3) = 0, s4 = 0, s5 = tr(α5) = 1. For k > 5,
we have sk = sk−2 + sk−5. We get s7 = tr(α7) = 1,
s11 = tr(α11) = 1, s15 = tr(α15) = 0.

The basic structure of the minimal polynomial of de-
gree 5 over GF (2) is shown in (5). We use the form
(γ1 γ2 . . . γm) to show a permutation σ over some
elements {γ1, γ2, γ3, . . . , γm} of a group where σ(γi) =
γi+1, for 1 ≤ i ≤ m− 1, σ(γm) = γ1.

Example 1 shows that H2 = 3H is a generator of the
cyclic group G/H . The cyclic relation can be written in a
permutation form.

(H 3H 5H 15H 7H 11H)

= (1 3 5 15 7 11)

= (tr(α) tr(α3) tr(α5) tr(α15) tr(α7) tr(α11))

This leads to the conversion from (5) to (6) . So the
other primitive polynomials of degree 5 over GF (2) can
be computed by the permutation sequently.

fα5(x) = x5 + tr(α5)x4 + (tr(α15) + tr(α7))x3

+ (tr(α) + tr(α3))x2 + tr(α11)x+ 1

fα15(x) = x5 + tr(α15)x4 + (tr(α7) + tr(α11))x3

+ (tr(α3) + tr(α5))x2 + tr(α)x+ 1

fα7(x) = x5 + tr(α7)x4 + (tr(α11) + tr(α))x3

+ (tr(α5) + tr(α15))x2 + tr(α3)x+ 1

fα11(x) = x5 + tr(α11)x4 + (tr(α) + tr(α3))x3

+ (tr(α15) + tr(α7))x2 + tr(α5)x+ 1

Combining with the traces computed by Newton Formula,
it follows:

fα(x) = x5 + x3 + 1,

fα3(x) = x5 + x3 + x2 + x+ 1,

fα5(x) = x5 + x4 + x3 + x+ 1,

fα15(x) = x5 + x2 + 1,

fα7(x) = x5 + x4 + x3 + x2 + 1,

fα11(x) = x5 + x4 + x2 + x+ 1.

4. Experiments
We give some numerical experiments to show the effi-

ciency of our algorithm.
The next Mersenne prime after 31 is 27−1 = 127, and we

know its primitive root is 3. Starting from a given primitive
polynomial of degree 7, f(x) = x7 + x + 1, the next table
shows the cosets 3kmod127 and their binary representative,

Table 1: The Coset Leaders And Their sk
k 3kmod127 binary form sk
1 3 1 1 0 0 0 0 0 0
2 9 1 0 0 1 0 0 0 0
3 27 1 1 0 1 1 0 0 1
4 81 1 0 0 0 1 0 1 1
5 116 0 0 1 0 1 1 1 0
6 94 0 1 1 1 1 0 1 1
7 28 0 0 1 1 1 0 0 1
8 84 0 0 1 0 1 0 1 1
9 125 1 0 1 1 1 1 1 1
10 121 1 0 0 1 1 1 1 1
11 109 1 0 1 1 0 1 1 0
12 73 1 0 0 1 0 0 1 1
13 92 0 0 1 1 1 0 1 0
14 22 0 1 1 0 1 0 0 0
15 66 0 1 0 0 0 0 1 0
16 71 1 1 1 0 0 0 1 0
17 86 0 1 1 0 1 0 1 1

from low digits to high digits, and their sk computed by
Newton Formula.

The number of ones in the binary form in the table shows
the position the coset belongs in f(x). The order of Table
1 shows the permutation structure. For a fixed permutation,
one coset is replaced by a coset whose place has a fixed
distance from the former one in Table 1. We compute all
the other primitive polynomial according to the sum of the
permuted sk in Table 2. The polynomial is written in a short
form, where 10101011 stands for x7 + x5 + x3 + x+ 1.

We have also tested the Mersenne prime 213 − 1, 217 −
1, 219 − 1, the result is too long for our paper, but we get
all the polynomials in this simple way.

Table 2: The Primitive Polynomials Of Degree 7 Over GF(2)
k minimal polynomial of αk

3 1 0 1 0 1 0 1 1
9 1 0 1 1 1 0 0 1
27 1 1 1 1 0 1 1 1
81 1 1 1 0 0 1 0 1

116 1 0 0 1 0 0 0 1
94 1 1 1 1 0 0 0 1
28 1 1 1 1 1 1 0 1
84 1 1 0 0 1 0 1 1

125 1 1 0 0 0 0 0 1
121 1 1 0 1 0 1 0 1
109 1 0 0 1 1 1 0 1
73 1 1 1 0 1 1 1 1
92 1 0 1 0 0 1 1 1
22 1 0 0 0 1 0 0 1
66 1 0 0 0 1 1 1 1
71 1 0 1 1 1 1 1 1
86 1 1 0 1 0 0 1 1

5. Conclusion
This paper associates the computation of minimal polyno-

mial with the group structure of cyclotomic cosets modula
2n − 1 for 2n − 1 is a Mersenne prime. From the examples
and experiments, we see the computation of the primitive
polynomials is simple and efficient due to the cyclic group



structure of the cyclomotic cosets, and the usual knowledge
of the tables of the sums and products in the finite field is
not required. This cyclic group structure is also the reason
for the “rational algorithm” in [2, p.48] and for the valid
assignments yielded by permutation in [6].
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