
Achieving Web Security by Increasing the Web Application Safety

Maryam Abedi

Dept. of Information

Technology Eng., Shiraz

University, Shiraz, Iran

maryam_abedy@yahoo.com

Navid Nikmehr

Dept. of Information

Technology Eng., Shiraz

University, Shiraz, Iran

nikmehr@ieee.org

Mohsen Doroodchi

Dept. of Math/Computer

Science,Cardinal Stritch

University, Milwaukee, WI

mdoroodchi@stritch.edu

Abstract—As web applications have become an integral part of today’s
business operations, the concerns about the security of exchanged
information on the web have been increasing. Issues such as data breach and
leakage of sensitive information is number one concern of businesses for
which the web applications are blamed for the most part. Therefore, in
addition to the common measures used to secure the communications and
transactions on the web, more attention needs to be paid to the preventive
measures of integrating security into the development phase. However, for
evaluation of effectiveness of such measures, a quantitative method is very
essential to calculate the safety of an application against different
vulnerabilities. This work presents a new model for measurement of overall
safety of web applications. The keyword “safety” is coined to distinguish this
measure from the traditional methods.

Keywords: quantitative measurement,web application security, safety,
vulnerability

I. INTRODUCTION
Enterprises’ critical resources are highly in risk of cyber-attacks due to

the vast delivery of enterprise applications with vulnerabilities over the
web. Reports of the catastrophic hacking stories reveal that the sensitive
data are compromised through web application vulnerabilities. In order to
deliver safe applications over the web, such vulnerabilities are required to
be studied and understood in depth.

 Different forms of injections are reported to be the major concern with
web applications. According to OWASP [25] and SANS 2011 Top 25
[41], SQL injection is ranked first among web application vulnerabilities.
After that, code and shell injection are introduced as the second security
issue in today’s’ web applications. Based on a report by Viega and
McGraw, code injection is known as the most challenging security
breach as a result of poor input sanitization [39].

Despite considerable research on understanding and managing the
security issues, including qualitative aspect of security measurement such
as BS7799 [4, 5], ISO17799, NIST SP800-33 [2, 29, 30], there are only
few quantitative metrics [3] available for measuring security related
issues. These methods are often either not comprehensive enough [19,
22] or are limited only to their specific measurement model which
reduces the usability of the model and some are too complicated to be
used by developers [26].

This is an undeniable consensus that the capability of measuring,
comparing, and contrasting different entities provides the opportunity of a
thorough understanding of the underlying concept [22] as Lord Kelvin in
1883 stated: “When you can measure what you are speaking about and
express it in numbers you know something about it, but when you cannot

measure it, when you cannot express it in numbers, your knowledge is of
a meager and unsatisfactory kind”. And security management of web
applications through measurement is not an exception.

In this paper, we overlook the concept of enterprise application
security in terms of a quantifiable concept we coined as web application
safety. The proposed measurements model is using the known
vulnerabilities and at the same time is scalable to use the new
vulnerabilities. Our aim is to find a practical and universally acceptable
quantitative model that can be integrated into the software development
life cycle. The proposed model allows the developers to measure the
safety of their under application during different development phases.

The foundation of our model is based on measurement of two aspects
of standard and best practice prevention methods integrated into the
projects. These two aspects are called efficiency and sufficiency of the
methods which are explained in details later. In addition, we quantify the
effectiveness for each method. At this time, the coefficient of
effectiveness is determined subjectively based on experts’ perspective.

Since the discovered vulnerabilities are rapidly increasing, the
capability of appending additional vulnerabilities to our model along with
their corresponding mitigation methods, leads to enhance the flexibility
and extensibility of the proposed measurement model. In addition, this
extensibility feature provides flexibility to redefine, modify, and improve
the proposed quantification metric definitions throughout the
development process.

The rest of this paper is organized as follows. Next section covers the
proposed model for web application safety measurement followed by
proposed metrics used in the overall calculations followed by the
experimental results. The last section of this paper is the conclusion.

It is notable to mention that quantified level of safety against specific
vulnerabilities for any application is specific to that application and it
cannot have a specific scale and range. Therefore, this method is best fit
for comparison of the safety level for different versions of the same
application.

II. PROPOSED SAFTEY MODEL
As mentioned, this model starts from a list of known vulnerabilities

and the corresponding measurement metrics to calculate the overall
safety of a web application. To achieve this task, we propose a
hierarchical model as illustrated in figure 1. The metrics are categorized
based on different vulnerability types as depicted in this figure.
Furthermore, in order to evaluate the model we select different metrics to
measure the safety of a web application against SQL injection and Shell
injection as explained in the following sections. We chose six metrics for
each category. Each metric evaluates the sufficiency (and/or) efficiency of

possible preventative method that could have been implemented to raise
the overall safety of the application.

The overall safety of an application can be visualized as the root of a
tree as shown in Fig. 1 in which the branches are providing the particular
safety measurement for a given preventative method.

This approach has a number of benefits. First, the security tester can
plan the test using different combination of available vulnerabilities.
Second, these metrics reveal the interdependencies of different
vulnerabilities to the developers, and consequently the application
developer could provide additional isolation between them.

Moreover, this model is scalable and flexible to add new metrics for
known or new vulnerabilities. Next section explains each metric in
details. For this purpose, we consider the following two parameters for
each metric, 1) a name, and 2) a description. The description provides
information about the vulnerability and corresponding mitigation
methods which can increase safety. It also provides a proposed formula
that measures the sufficiency and/or efficiency of mitigation method and
returns a numerical value. Each mentioned formula needs some inputs –
aka vector of inputs- to return the safety value. We also define two
properties for each member of this vector; input name, description
description and a numerical value.

This numerical value can be entered by the user of the model based
on the application or comes from another formula’s numerical result of
other metrics. Clearly, larger values of the results of each of the formula
would contribute directly to a safer application which consequently
results in an overall increase of security.

In addition, this model has three more parameters to achieve more
accurate value for overall safety. These parameters are listed as follows.
The first parameter is “e”, the effectiveness coefficient, as shown in Fig. 1.
It is clear that all the mitigation mechanisms do not have the same
contribution toward the application safety improvement. With respect to
this fact, this parameter reflects the metric’s relative importance and
effectiveness in mitigating the overall vulnerability of the application.
Obviously, the ones that are more effective have greater weight. We
recruit fuzzy logic to determine effectiveness coefficients’ value. The
process of determining this value is fully explained in section V.

The second parameter is “score of vulnerability” as shown in figure 1.
It is clear that all types of vulnerabilities do not endanger the safety of
a web- application equally; hence this parameter reflects the weight of
the vulnerability. In this work, its value equals to the score of the
vulnerability in CWE/SANS ranking system, as a reputed reference in
this area. The vulnerabilities are prioritized and scored according to their
prevalence, importance, and likelihood of exploiting [8].

The third parameter is “Phase of lifecycle” as depicted in Fig. 1. Our
model is capable of evaluating a web application safety in any of the
main three phases of analysis, design, or implementation phase of SDLC.
This parameter should be applied as a consistent value throughout the
safety evaluation process. Given the fact that implementing of any
prevention method in the earlier phases has more effectiveness than
postponing them to next phases [13], we assign a greater coefficient to
earlier phases. Note that the formulas of metrics for one phase are
different with another phase, but the general principle of the model is the
same. On the other hand, obviously, the value for all parameters of the
model should be obtained from the same phase.

Based on the above explanations, the overall safety against a specified
vulnerability is demonstrated as OSAV function as follows.

OSAV=𝑐 ∗� (𝑛
𝑖=0 fi (p)) (2)

𝑓(𝑝) = 𝑎 ∗� (𝑛
𝑗=0 ej *pj) (2)

, where c is score of vulnerability based on “CWE /SANS” [8], and a
represents phase of lifecycle of given project, and e is effectiveness ∈
[0,1], and p represents result value of quantification formula for
evaluation of specific preventative method.

As mentioned before, in this work we examine our model and its
metrics for the first two highest ranked vulnerabilities as mentioned in the
‘Top 25 Common Weaknesses Enumeration (CWE) database’ [1]. The
database that is sponsored by Mitre, is used frequently as a reference by
application developers and security engineers to identifying possible
weaknesses to attack in software applications. However, it does not
mean that this model is restricted to assess safety against this
database’s vulnerabilities. The proposed associated quantitaitive
formulas for mentioned vulnerabilities are defined in next section.

Fig.1.The proposed model

III. PROPOSED METRICS

In this section, we explain the details of proposed quantitative metric for
the top-two web application vulnerabilities from “Top 25 Common
Weaknesses Enumeration (CWE) database” [1] to evaluate the sufficiency
and/or efficiency of common (and standard) preventive mechanisms in a
given application.

A. SQL Injection Vulnarability

According to [35], “SQL injection is an attack in which malicious
code is inserted into strings that are later passed to an instance of SQL
Server for parsing and execution. Any procedure that constructs SQL
statements should be reviewed for injection vulnerabilities because SQL
Server will execute all syntactically valid queries that it receives.” SQL
Injection vulnerabilities represent about 20% of reported vulnerabilities
recorded in commonly availablevulnerability databases1 as CWE/SANS
assign the score of 93.8 to this vulnerability [8]. Therefore, safety against
SQL injection is very critical to web applications. The following list
introduces metrics for quantifying safety of an application against SQL
injection.

1) Type of Inputs used on the Forms

• Name: SQLInj-001- Form Field Type

1www2.cenzic.com/downloads/Cenzic_AppSecTrends_Q1-Q2-2010.pdf

c a

OSAV

f1(p)
. . .

p1

pn

p1

pn

. . .

fn(p) e1

en

a c

e1

en

. . .

http://cwe.mitre.org/top25/#CWE-78

• Description: When textboxes are used to get the user inputs, they can
also be used by dynamic SQL queries to boost the danger of SQL
injection attacks [37]. Thus, more textboxes for inputs/outputs, more
chance of possible dynamic SQL queries which leads to less safety
against SQL injection. We propose the efficiency function f(n1, n2) as
the ratio of total number of inputs to the number of textboxes as shown
below.

 (3)

, wheren1is total number of form fields such as textboxes, radio buttons,
checkboxes, dropdown menus, etc., and n2 represents total number of
textboxes in project’s forms that collect and send user’s data to
dynamic SQL statements.

2) Error Presentation Mode

• Name : SQLInj-002-Error presentation Mode
• Description: due to default database management system behavior of

throwing error messages, attackers can potentially expose the structure
of databases and It is obvious these error messages help attackers to get
a hold of the information which they are looking for (such as the
database name, table name, usernames, password hashes etc.). As a
mitigation strategy, a particular generic or specific error message should
be used in error susceptible cases [36, 18]. To assess the potential
database exposure through error messages, wedefine f(n1, n2) to
measure the sufficiency of error exception handling of application as
follows.

 (4)

, where n1 is total number of exception handling mechanisms
implemented in the project and n2is total number of scenarios that are
prone to throw default error message. As we mentioned in previous
section , the more value this equation has, the error exception handling -as
a mitigation strategy - has been performed the better.

3) Input Validation

• Name: SQLInj-003 - Input validation
• Description: The common weakness that can make an application

susceptible to SQL injection is weak input validation. These inputs
normally include form data, URL parameters, hidden fields, cookie
data, HTTP Headers, and essentially anything in the HTTP request
[32].

Constraining input for type, length, format, and range [32], filtering

meta characters such as beginning of a comment character, or characters
that denote the end of one query or the beginning of a SQL statement
[28] are useful strategies to validate data and prevent SQL injection.

As previously mentioned, default error messages may expose the
structure of database. An attacker can penetrate into the database by
trying particular SQL commands. Accordingly, SQL statements that are
used to retrieve or manipulate data are better to be filtered [38].

One of the most common validating strategies to increase security is
recruiting range validation technic and also data validation based on
matching with a proper regular expression. In other words, we ought to
use the approach “Accept Known Good” instead of “Reject Known
Bad” [33].

The following function evaluates the sufficiency of validation
strategies in an application.

,where m is total number of any data input that are thrown to dynamic
generated SQL statements including form data, URL parameters, hidden
fields, cookie data, HTTP headers, and any piece of data in HTTP request
[32], n1 is total number of any data type validation, n2 is total number of
any data format validation, n3 is total number of any data range
validation, n4is total number of any SQL meta-characters that has been
filtered, n5 is total number of any SQL commands that has been filtered,
n6 is total numbers of regular expression validators, and n7 represents total
number of range validators that have been recruited in application.

4) SQL Statement Generation Mode

• Name: SQLInj-004 -SQL statement generation mode
• Description: SQL Injection flaws are introduced by utilizing dynamic

queries. In this scenario SQL statements are generated based on user’s
input and each user could be potentially an attacker. Therefore,
implementing more dynamic database queries in an application makes
it more vulnerable to SQL Injection [34]. The function f(n1, n2)
measures the efficiency of SQL statement generation approach, by
ratio of total number of SQL statements as numerator and total number
of dynamical SQL statements as denominator.

,where n1 is total number of SQL statements including static and dynamic
ones, and n2 is total number of SQL statements that are generated
dynamically.

5) Efficieny of stored procedure

• Name: SQLInj-005-Efficient utilization of srored procedure
• Description: A stored procedure is a group of SQL statements that has

been created and stored in the database [15].To boost safety agnist SQL
injection flaws, use of stored procedure is highly recommended as long
as they do not include any unsafe dynamic SQL generation [11]. Not
only the number of implemented stored procedure increases the
application safety, but also their performance contribute to more
safety.Thus, here we use the aforementioned input validation
sufficiency function as well as the SQL statement generation efficiency
function to measure the efficiency of implemented stored procedures.
Furthermore, since more stored procedure implementation increases
application safety against SQL injection, considering total number of
stored procedure is also required. Therefore, f(a,b) is used to assess the
competence of stored procedue engagment in software.

, where ai is value of “Input Validation” metric function (SQLInj-003)
of the (stored procedure)i, bi is value of the “SQL Statement Generation”

f(n1, n2)= =
n1/n2 n2 >0

n1 n2=0

f(a,b) =
� (𝑛

𝑖=0 ai +bi) n>0
 (7)

0 n=0

f(n1, n2) =

n1/n2 n2 >0

n1 n2=0

f(n1, n2) =

(n1 +n2 + n3 + n4+ n5+ n6+n7) /m m> 0

0 m= 0

(5)

f(n1, n2) =

n1/n2 n2 > 0

n1 n2= 0

(6)

http://msdn.microsoft.com/en-us/magazine/cc163917.aspx
https://www.owasp.org/index.php/Secure_Coding_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

metric function (SQLInj-004) of the (stored procedure)i , and n represent
total number of stored procedures.

6) Access Restriction

• Name: SQLInj-006 -Access restriction
• Description: Safety against SQL injection attacks is related to how

many users access to how much of data and more exposure of data in
term of number users that access it causes application to be more
vulnerable.

Hence, to measure the efficiency of access restriction policy in
application, it is required to define that each level of access permission
is granted to how many users as the first variable. Each level’s access
permission should be specified also to reflect the accessible data
through that particular level, as the second variable. Our assumption is
that the greater value for level of access permission corresponds to
higher access permission.

Therefore proposed f(n) calculates its value by multiplying
abovementioned variables for each level. Then summarize the products
values of all implemented levels.
Obviously, the greater value of each multiplication (and following that
the summarized value) implies the less imposition of access restriction
policy which has an adverse effect on safety. Since safety against SQL
injection ∝1/data accessibility, we propose f(n) as follows:

f(n)=1 /� (𝑚
𝑖=0 ni * i) (8)

, where ni is total number of granted accesses to level i, and m is total
number of access levels which has been defined in application.

B. OS Command Injection

Briefly, applications are considered vulnerable to the OS command
injection also known as shell injection attack if they utilize user input in a
system level command. Shell injection attacks lead to execute risky
commands on operating system through an application when the attacker
does not have direct access to OS. Alternatively, it may make a number
of OS restricted commands accessible for attacker when application is
privileged [6]. This vulnerability mostly happens when there is an under
control procedure in application which needs externally-supplied input
arguments to be executed and/or when there is the possibility of getting
the externally-supplied procedure or commands calls.Then entire given
command has been sent directly to OS for ecxecution [9, 24].According
to CWE/SANS findings, the score for this vulnerability is 83.3 [8].

In this section, a number of common preventative methods to raise
safety of a project against shell injection compromise are introduce and
then corresponding metrics are proposed to quantify the sufficiency
and/or efficiency of thoes methods.

1) Function type generation

• Name: ShellInj-001- Function type generation
• Description: To boost control on input data, it is recommended to

recruit library call policy, instead of using external proccess [9]. We
quantify sufficiency of using library calls by calculating the ratio of
number of library calls in the application as numerator, over total
number of library call plus external processes as denomirator through
f(n1, n2). Obviously, the greater numerator value means more satefty
provision.

 f(n1, n2)=n1 / n2+ n1 (9)

, wheren1 is total numbers of third-party libraries that are called to
generate functions, and n2 is total number of external processes
recruited to generate functions.

2) Jail Or Sandbox Utilization

• Name: ShellInj-002- Jail and Sandbox Utilization
• Description: Itis recommended to enforce strict boundaries between

process and operating system.This may restrict which data can be
accessed or which commands can be executed by application.

However, this solution may only limits the impact to operating
systembut rest of the application may still be subject to compromise
[9]. A possible solution for such enforcement is to utilize sandbox
enviroment.

A sandbox is a security mechanism for separating running programs
and quarantining untrusted running programs. It can be used to execute
untested code or untrusted programs from unverified third-parties,
suppliers, untrusted users and untrusted websites [16]. Jail sets is a
common strategy of sandbox mechanism. Jail is a set of resources
limits imposed on programs by operating system kernel (e.g. I/O
bandwidth caps and disk quotas) [16,10].The effectiveness of this
method depends on the deterrence capabilities of the particular sandbox
or jail.It may only reduce the scope of an attack, such as restricting the
violator to excecute certain system commands or limiting the data that
can be accessed. We demonstrate f(a1,a,2) by imposing a logical OR
function on thoese above mentioned strategies recruitment.

f(a1 a,2)= (a1)OR(a2) (10)

, wherea1 is “code runs in jail sets” as a boolean variable (a1∈ {0,1}),
and a2 is “code runs in other forms of sandbox environment” as a
boolean variable and a2 ∈ {0,1}.

3) Input Validation
• UniqueID: ShellInj-003≡SQLInjection.SQLInj-003 (Input Validation)
• Description: It is highly recommended to validate input since it has a

deterrent effect for OS command injection, [21,31]. we quantify its
sufficiency and efficiency in the same that has been disccuesed in
SQLInj-003 metric in previous section.

4) Error Presentation Mode
• Name:ShellInj-004≡SQLInjection.SQLInj-002:Error presentation

Mode
• Description: Stephanie Reetz considered system defualt error messages

as informative and precious data for adversaries thatraisesthe risk of
shell injection compromise, [36]. Therefore the more managed error
messages is implemented in application, the risk of penetration will be
declined. We quantify sufficiency of implemented error exception
handeling mechanisms same way that has been discussed in SQLInj-
004 metric in previous section.

5) Accounts Isolation
• Name: ShellInj-005-Accounts isolation
• Description: In order to mitigate shell injection breaches, it is

recommended to create role-based access control scheme with
restricted privileges in order to be used only for a group of specified
tasks and users. By following this strategy, a successful attack will not
accompolished because the rest of application or its environment is not
accessible to attacker [40, 23].

We quantify the efficiency of implemetation of this policy by means
of a linear function. f(n1,n2,n3) is the ratio of specified roles in

http://cwe.mitre.org/top25/#CWE-78
http://www.cgisecurity.com/lib/sips.html

application over the total number of critical tasks plus critical resources.
The more specific roles is defined (i.e greater numerator value) to
access and excute respectively critical resources and tasks, leads
toincrease theefficiency of account isolation policy.

f (n1, n2, n3) =n1/ (n2 + n3) (11)

, wheren1is total number of access roles that are specified to access
critical resources and execute critical procedures, n2 is total number of
critical resources, and n3 representstotal number of critical procedures

6) Reduction of Attack Surface

• Name : ShellInj-06-Attack Surface value
• Description:It is obvious that the more resources are available to users,

the more exposed to attacks the application is [27, 12]. In [20], the
authors argues that the attack surface of an application environment is
the sum of the different waysthat an attack action can perform through
them in order to enter or extract data from an environment. They
measure attack surfaceby means of quantifying the application’s
interaction with its environment through three types of
recourses;entry/exit points, channels, and untrusted data items.
According to them, in order to measure the attack surface,we should
evaluatethe probability that an adversary will use each specific resource
in an attack. This evaluation is also accomplished in another work
using the ratio of the potential damage-termed Damage/effort
Ratio(DER) [14], where damage corresponds to possible technical
advantages of that resource,and effort isthe amount of effort needed to
access that. The value for effort in this ratio can be derived from level of
access rights that isneeded to access that specific resource. The final
measurement formula is expressed in a triplet of three DERs of three
mentined resouces types includes entry/exit points, channels and un-
trusted data items[14]. The greater value of this triplet implies more
damage for a consistent effortvalue, which means greater attack surface
value as an application’s weakness. To utilize this triplet to measure
attack surface, we have to slightly modify it for two reasons. First, note
that we are about to measure application’s safety against OS command
injection vularibility not its weakness. Second, appearantly the vector
charactericity aspect of this triplet is not practical for our model. Given
the above ,the triplet introduced by Gennari, J., and Garlan, D [14], is
modifed to a linear combination of 1/(DERm, DERc and DERi) values
, as follows:

f(DERm, DERc, DERi)=1 /(DERm+ DERc+ DERi) (12)

, whereDERmis damage/effort ratio of entry/exit points. These points
return to methods which accept or process data that are originated
outside of the system and quantify as follows:

DERm= � ((𝑀
𝑖=0 a)i / (b)i) (13)

, whereM:Total number of entry/exit points, a is the level of privilege
associated with (Entry/Exit point)I, and b isthe level of rights needed to
access (Entry/Exit point)i.

DERc is damage/effortRatio of Channels. Channels are the
communication mechanisms used for system interaction with its
environment, such as network or inter-process communication
mechanisms. Channel damage/effort ratio is measured based on the
restrictions imposed on the data that a channel can transmit via their
protocols. Less restricted protocols ease compromising for attackers

since they can transmit more types of data, such as executable codes.
DER ratio for channels (DERc) is evaluated in terms of number of data
types that are restricted to transmit over channel’s protocol as
numerator over level of access right needed to access that channel.
Hence, the larger numerator values show less restriction on data to
transmit over that channel:

DERc = � (𝐶
𝑖=0 a) i / (bi) (14)

, where C is total number of channels, a is total number of data types
that are restricted to transmit over (channel)I and brepresents the level of
rights that is required to access the (channel)i

DERi is damage/effortratio of untrusted data items. Untrusted data items
are the external exited data stores that application uses them. DER for
untrusted data items is measured based on restrictions areput on the
data stores.

DERi=� (𝐼
𝑖=0 a)i /(b)I (15)

, where I is total number of external data stores that are utilized by
application, ais total number of untrusted data items, and b is the level
of rights needed to access that data items.

IV. EFFECTIVENESS COEFFICIENT NUMERIC VALUE ATTAINMENT METHOD

In this section, we explain our approach for calculation of the
effectiveness coefficient of each metric in mitigating certain vulnerability.
Evidently, there are always a number of mitigation strategies that have
been recommended to reduce the adverse effects of common
vulnerabilities. However, they do not demonstrate comparable
effectiveness. For example, suppose that “Input Validation” metric is far
more effective than “engaging Stored Procedures” in improving safety
against SQL Injection attacks. Therefore, we should consider a greater
weight for “Input Validation”. One of the common methods to find this
parameter is to find a compelling argument from other reliable researches
which in our case was not available. Therefore, we picked the alternative
method of asking expert developers to fill out questionnaires while using
the method.

To answer the question about “effectiveness extent of the preventaitve
method” there are five options on the survey to choose from. We assign
eff ∈ {0, 1, 2, 3, 4} from these options as follows:

1) eff=0 for “It has no effectiveness.”
2) eff=1 for “It has low effectiveness.”
3) eff=2 for “It is fairly effective.”
4) eff=3 for “I is highly effective.”
5) eff=4 for “It is extremely highly effective.”

Moreover, as all the respondents were not equally familiar with the

subject, we also included a “familiarity weight” parameter as fm∈{0, 1, 2,
3, 4} in calculation of “e”. Similarly, we assign fm value from the survey
options as follows:

1) fm=0 for “I have never heard about it before.”
2) fm=1 for “I know this method, but never used it.”
3) fm=2 for “I rarlely use this method.”
4) fm=3 for “I ferequently use this method.”
5) fm=4 for “I always use this method.”

Another parameter that is involved in our calculation is respondent

experience, We interprete value from their answer to correspondent
question as follows:

1) exp=1 for “Below 1 year.”
2) exp=2 for “Between 3 to 5 years.”
3) exp=3 for “More than 5 years”

Moreover, we recruit fuzzy logic to transform the mentioned obtained
rational values into numerical ones– e ∈ [0, 1], and exploit them in our
final safety calculation formula. In this formula , the product of
respondents’ “experience” and “familiarity” is considered as weight. The
final value is the weighted average of effeciveness values. Then inorder to
map the result to a number beween 0 to 1, we devided the result to 4 as
the maximum value, which acures when all variables have their
maximum value, and is calculated as follow.

m* [Max(X)*Max(W)] / [m* Max (W)]= m * (12*4)/ (m*12) =4

Based on above discussion, the membership function for effectiveness of
each metrics defined as follows:

(16)
, where X:eff ∈ {0, 4}, Z : fm∈ {0, 4}, Y: exp∈ {1, 3}, W: exp*fm ∈ {0,
12}, and m : number of respondents
We examined this approach with three respondents (m=3). Table 1
contains the generated “e” value for each metrics.

Table 1: “e” value for each metrics

V. RESULTS

To examine our model, various developers used the proposed metrics in
their projects. The applications included different types of web
applications and E-commerce/E-business applications. An Excel
worksheet was made and presented to developers to enter the metric
parameters to find the overall safety. Once each metric is calculated, the
safety against SQL injection and Shell injection vulnerabilities can be
found. Table 2 summarizes the detailed results for different tested
applications.

Table 2: Results of using metrics in different applications.

Furthermore, the examiners evaluated the usability and functionality of
our formulas and metrics by means of another questionnaire. Tables 3
and 4 depict the results.

Table 3: Average Results of usability questionnaires for formulas. The

number are from 1 to 100.

Table 4: Average Results of funtionnality of metrics. The numbers are

from 1-100.

VI. CONCLUSION

Using proper metrics in software engineering has not been very
common as opposed to other engineering disciplines due to availability of
such metrics. Furthermore, the need for safety and security metrics is
probably the most important of all in-demand metrics in software
engineering. This work is an attempt to fill out the lack of quantitative
metrics in application development and software engineering. In this
innovative method, new quantitative model for evaluating the safety of
web applications is proposed. The metrics can quantify the overall safety
of an application against known vulnerabilities. The main goal in
developing this method was to provide an easy-to-use, scalable and
flexible model for web application developers. In this way, they can
measure the safety at different phases of development. This addresses the
issue that web application security has to be looked at as an integrated
factor in development and not as an add-on element. In addition to test of
the method, different surveys were conducted to evaluate the usability of
the formulas and metrics by developers. The feedback from web
developers demonstrates that the proposed method is effective to provide
a more secure application. This future work would enhance the
experiments on the method in real application development.

metric “e” value
SQLInj-001 0.72
SQLInj-002 0.58
SQLInj-003 1.00
SQLInj-004 0.83
SQLInj-005 0.57
SQLInj-006 0.69
ShellInj-001 0.85
ShellInj-002 0.62
ShellInj-003 1.00
ShellInj-004 0.58
ShellInj-005 0.94
ShellInj-006 0.44

Metric name App1 App2 App3 App4 App5 App6 App7

SQLInj-001 3.00 2.00 4.43 2.75 3.00 1.44 4.00
SQLInj-002 1.00 1.00 0.79 1.25 1.00 0.73 0.93
SQLInj-003 0.00 2.00 0.71 0.00 0.00 2.20 3.00
SQLInj-004 1.00 1.92 1.86 1.25 1.35 1.93 1.30
SQLInj-005 0.00 14.08 8.67 1.00 1.20 9.29 5.67
SQLInj-006 0.00 0.01 0.00 0.25 0.40 0.37 0.04
ShellInj-001 1.00 4.00 1.00 1.00 1.25 4.60 1.23
ShellInj-002 1.00 0.00 0.00 1.50 1.00 0.30 0.02
ShellInj-003 0.00 2.00 0.71 0.00 0.28 2.20 0.83
ShellInj-004 1.00 1.92 1.86 1.25 1.50 2.50 2.87
ShellInj-005 0.57 3.56 1.09 0.60 0.32 4.50 1.09
ShellInj-006 0.13 0.06 0.13 0.25 0.38 0.04 1.23
OSAV 697.49 3439.82 1820.63 827.79

869.44

3978.27

2002.41

 Metricsare
usable

Metrics
increased

safety

Definitely will
use Metrics in

future

Definitely will
recommened

Metrics
to Colleagues

Easy to
calculate
formulas
of metrics

Average score 89.00 68.00 74.71 60.43 94.43

 All metric’s variables are
necessary

Easy to find
variables in
application

No improvement
required

Average score 82.29 80.14 64.71

(e)Metric n = (� ((𝑋𝑛)𝑖𝑚
𝑖=0 ∗ (𝑍𝑛)𝑖 ∗ (𝑌𝑛)𝑖)/(� (𝑍𝑛)𝑖 ∗𝑚

𝑖=0
(𝑌𝑛)𝑖)/4

→ (e)Metric n = (� ((𝑋𝑛)𝑖𝑚

𝑖=0 ∗ (𝑊𝑛)𝑖) / � (𝑊)𝑖)𝑚
𝑖=0) /4

VII. REFERENCES
1. CWE, “About CWE”, http://cwe.mitre.org/about/index.html, n.p. ,

2011, Last acessed on Sep. 25,2013.
2. Braungarten, R., “The SMPI model: A stepwise process model to

facilitate software measurement process improvement along the
measurement paradigms”, 2007, PhD Thesis.University
ofMagdeburg, Germany.

3. Brian, C., “Metrics that matter: Quantifying software security risk”,
Feb. 2006, Workshop on Software Security Assurance Tools,
Techniques, and Metrics,. NIST Special Publication 500-265.

4. British Standard Inst., “Information Security Management.
Specification for Information Security Management Systems
(BS7799-2)”, 1999, British Standard Institute, London.

5. British Standard Institute, Information Security Management. Code
of Practice for Information Security Management.(BS7799-1)” ,
1999, British Standard Inst., London.

6. CAPEC, “CAPEC-88: OS Command Injection”,
http://capec.mitre.org /data/definitions/88.html/ ,n.p. , June 21, 2013 ,
Last accessed on Sep. 25, 2013.

7. Microsoft, “Create Views”, http://technet.microsoft.com/en-
us/library/ ms175503.aspx ,n.p. , 2013 , Last accessed on Sep. 25,
2013.

8. CWE, “CWE/SANS Top 25 Most Dangerous Software Errors”,
http://cwe.mitre.org, n.p. , 2011, Web, Last acessed on Sep. 25,
2013.

9. CWE, “CWE-78: Improper Neutralization of Special Elements used
in an OS Command ('OS Command Injection')”,
http://cwe.mitre.org/data/definitions/78.html#Demonstrative%20Exa
mples, n.p., 2011, Last accessed on Sep. 25, 2013.

10. Deborah R., Gangemi, G.T., “Computer Security Basics”, chapter 3
:"Computer System Security and Access Controls", 1st Edition , July
1991, O'Reilly Media, ISBN 10:0-937175-71-4.

11. OWASP,“Defense Option 2:Stored Procedures”,
https://www.owasp.org/index.php/SQL_Injection_Prevention_Chea
t_Sheet#Defense_Option_2:_Stored_Procedures, , n.p., Dec. 6,
2012, Last accessed on Sep. 25, 2013.

12. Howard, M., “Fending off Future Attacks by Reducing Attack
Surface",http://msdn.microsoft.com/en-us/library/ms972812.aspx,
Feb. 4, 2003, Last accessed on Sep. 25, 2013.

13. McGraw,G., “Software Security: Building Security In”, Feb. 2006,
Addison-Wesley, ISBN: 0-321-35670-5.

14. Gennari, J., and Garlan, D., “Measuring attack surface in software
architecture”, 2011, Tech. Rep. CMU-ISR-11-121, Inst. for
Software Research, School of Computer Science, Carnegie-Mellon
University.

15. Microsoft, “How To: Protect From SQL Injection in
ASP.NET”,http://msdn.microsoft.com/en-us/library/ff648339.aspx,
Last accessed on Sep. 25, 2013.

16. Goldberg, I., Wagner, D., Thomas, R., and Brewer, E., "A Secure
Environment for untrusted Helper Applications (Confining the Wily
Hacker)", July 1996, Proceedings of the 6th USENIX UNIX
Security Symposium.

17. J. W. P. Manadhata. Measuring a system’s attack surface. Technical
Report CMU-CS-04-102, 2004

18. J.D. Meier, Alex Mackman, Blaine Wastell, Prashant Bansode,
AndyWigley,”http://msdn.microsoft.com/en-
us/library/ff650175.aspx”,Sep2005, Web, Access Date :Sep.25.2013

19. M.Howard, J.Pincus, J.M.Wing, “Measuring Relative Attack
Surfaces”, August 2003, Proc. Workshop Advanced Developments
in Software and Systems Security

20. Manadhata, P. and Wing, J., ” An Attack Surface Metric”, Software
Eng., IEEE Trans on ,Vol:37 , Issue: 3 , 07 June 2010,pages: 371 –
386.Mark Dowd, John McDonald and Justin Schuh. "The Art of
Software Security Assessment". Chapter 8: "Shell Metacharacters",
2006, 1st Edition. Addison Wesley, Page 425.

21. Mazinanian, D., Doroodchi, M. , Hassany, M., “WDMES: A
Comprehensive Measurement System for Web Application
Development” 2012, Telematics and Information Systems (EATIS),
6th Euro American Conf. on, pages:1 –8

22. Howard, M. and LeBlanc, D., “Writing Secure Code”, Nov. 30,
2009, Microsoft Press, 2nd edition, ASIN: B0043M4ZPC

23. Howard, M., LeBlanc, D., and Viega, J."24 Deadly Sins of Software
Security". "Sin 10: Command Injection." September 3, 2009 ,
McGraw-Hill, ISBN: 0071626751 , Page 171.

24. OWASP, “2010 OWASP Top 10”, 2010.
25. National Vulnerability Database, “NVD Common Vulnerability

Scoring System Support v2". National Institute of Standards and
Technology. Last accessed on Sep. 25, 2013.

26. Manadhata, P. K. and Wing, J. M., "Measuring a System's Attack
Surface," Jan. 2004, Technical Report CMU-CS-04-102, Carnegie
Mellon Univ.

27. Roy, A. K. Singh, and A. S. Sairam, “Analyzing SQL Meta
Characters and Preventing SQL Injection Attacks Using Meta
Filter”, 2011, Int’l Conf. on Information and Electronics Engineering,
Singapore

28. S. R. Kumar, T, Alagarsamy K. “A Stake Holder Based Model for
Software Security Metrics” ,2011, International Journal of Computer
Science issues, Vol. 8, Issue 2, ISSN (Online):1694-0814, Available
at: www.IJCSI.org

29. Jaquith, A., “Sample Questions for Finding Information Security
Weaknesses”, CSO,
http://www.csoonline.com/article/221202/sample-questions-for-
finding-information-security-weaknesses, May 18, 2007, Last
accessed on Sep. 25, 2013.

30. SANS, “SANS Critical Vulnerability Analysis Archive”, http://
www.sans.org, n.p. , March 16, 2007 , Last accessed on Sep. 25,
2013.

31. OWASP,“SecureCodingCheatSheet”,https://www.owasp.org
/index.php/Secure_Coding_Cheat_Sheet, n.p., April, 15, 2013, Last
accessed on Sep. 25, 2013.

32. Cigital,“SecurityIssuesinPerlScripts”,http://www.cgisecurity.com/lib/
sips.html, Jordan Dimov, n.d. , Last accessed on Sep. 25, 2013.

33. OWASP,“SQLInjection Prevention Cheat Sheet”,
https://www.owasp.org/index.php/SQL_Injection_Prevention_Chea
t_Sheet, n.p., Dec. 2012, Last accessed on Sep. 25, 2013.

34. Microsoft,“SQLInjection",http://technet.microsoft.com/en-us/library/
ms161953%28v=SQL.105%29.aspx, n.d.,Last accessed on Sep.
252013

35. “SQL injection”,MS ISAC, http://msisac. cisecurity.org/
resources/reports /documents/SQLInjection.pdf , Stephanie Reetz ,
23 January 2013, Last accessed on Sep. 25, 2013.

36. Litwin,P., Stop SQL Injection Attacks Before They Stop
You”,Microsoft,http://msdn.microsoft.com/en-
us/magazine/cc163917.aspx, 2013, Last a, ccessed on Sep. 25, 2013.

http://oreilly.com/catalog/csb/chapter/ch03.html
http://oreilly.com/catalog/csb/chapter/ch03.html
http://oreilly.com/catalog/csb/chapter/ch03.html
http://www.swsec.com/
http://www.swsec.com/
http://www.usenix.org/publications/library/proceedings/sec96/full_papers/goldberg/goldberg.pdf
http://www.usenix.org/publications/library/proceedings/sec96/full_papers/goldberg/goldberg.pdf
http://www.usenix.org/publications/library/proceedings/sec96/full_papers/goldberg/goldberg.pdf
http://www.usenix.org/publications/library/proceedings/sec96/full_papers/goldberg/goldberg.pdf
http://msdn.microsoft.com/en-us/library/ff650175.aspx
http://msdn.microsoft.com/en-us/library/ff650175.aspx
http://nvd.nist.gov/cvss.cfm
http://nvd.nist.gov/cvss.cfm
http://nvd.nist.gov/cvss.cfm
http://www.ijcsi.org/
http://www.ijcsi.org/
http://www.ijcsi.org/
http://www.ijcsi.org/

37. Cisco,“UnderstandingSQLInjection”,http://www.cisco.com/web/ab
out/security/intelligence/sql_injection.html, n.p., n.d, Last accessed on
Sep. 25, 2013.

38. Holm, H., Ekstedt, M., Sommestad, T., “Effort estimates on web
application vulnerability discovery”, 2013, 46th Hawaii International
Conference on System Sciences.

39. Viega, J. and McGraw, G.,“Building Secure Software: How to
Avoid Security Problems the Right Way”,2002,Boston,Addison-
Wesley

40. Martin B.,Brown M., Paller A., kriby D., Christey S., “2011
CWE/SANS Top 25 Most Dengrous Software Errors”, 2011.

	Achieving Web Security by Increasing the Web Application Safety
	I. INTRODUCTION
	II. PROPOSED SAFTEY MODEL
	III. PROPOSED METRICS
	IV. EFFECTIVENESS COEFFICIENT NUMERIC VALUE ATTAINMENT METHOD
	V. RESULTS
	VI. CONCLUSION
	VII. REFERENCES

