
Formal Verification of Improved Numeric Comparison Protocol for
Secure Simple Paring in Bluetooth Using ProVerif

Kenichi Arai and Toshinobu Kaneko
Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science

2641 Yamazaki, Noda, Chiba, 278-8510 Japan

Abstract— Recently, research has been conducted on auto-
matic verification of cryptographic security protocols with
the formal method. An automatic verifier is very useful be-
cause the risk of human error in such complicated protocols
can be reduced. In this paper, we introduce our formalization
of an improved Numeric Comparison protocol for Secure
Simple Pairing in Bluetooth proposed by Yeh et al. and verify
its security using ProVerif as an automatic cryptographic
protocol verifier. As a result, we show that this improved
protocol is subject to attacks. Moreover, we propose coun-
termeasures against these attacks on this improved protocol.
Our proposal provides this improved protocol with a higher
level of security.

Keywords: Formal Verification, Security, ProVerif, Bluetooth,
Secure Simple Pairing, Improved Numeric Comparison Protocol

1. Introduction
Generally, cryptographic protocols hold some security

properties, but it is difficult for a non-security specialist
to verify the security of cryptographic protocols because of
their complexity. Recently, research has been conducted on
automatic verification of security with the formal method.
ProVerif[1], [2] is a known successful automatic verifier for
cryptographic protocols defined in the formal model (the so-
called Dolev–Yao model[3]). It is based on a representation
of the protocol by Horn clauses[4] and can verify the security
properties of secrecy and authentication. Therefore, many
cryptographic protocols have been verified by ProVerif[5],
[6], and it has succeeded in determining their security weak-
nesses. The main objective of using an automatic verifier
is to reduce the risk of human error in such complicated
protocols.

On the other hand, Bluetooth[7], [8], which is built into
many devices, is a wireless communication standard con-
necting digital devices. The mutual authentication procedure
between Bluetooth devices is called “pairing.” The pairing
protocol is only able to select the protocol that uses a
personal identification number (PIN) in Bluetooth Core
Specification Version 2.0 + EDR[7] and earlier versions.
However, an attacker can obtain the PIN with relative ease
because many of these Bluetooth devices use a 4-digit PIN
or a fixed PIN of commonly known values.

Secure Simple Pairing (SSP) is a protocol that improves
the security weakness of the pairing protocol that uses a
PIN . SSP is a new pairing protocol specified in Bluetooth
Core Specification Version 2.1 + EDR[8]. It uses four mod-
els: “Numeric Comparison,” “Just Works,” “Out Of Band,”
and “Passkey Entry.” However, potential attacks against SSP
have been identified in recent years. Chang and Shmatikov
proposed an attack against the Numeric Comparison protocol
using ProVerif[5]. Lindell, Phan, and Mingard proposed an
attack against the Passkey Entry protocol[9], [10]. Moreover,
Nomura and Matsuo proposed a more practical attack on this
protocol[11]. Yeh et al. pointed out a security weakness in
the Numeric Comparison protocol different from Chang and
Shmatikov, and proposed an improved version[12].

In this paper, we introduce our formalization of the
improved Numeric Comparison protocol proposed by Yeh
et al. and verify its security using ProVerif. This paper also
discusses countermeasures against attacks on this improved
protocol.

The remainder of this paper is organized as follows. In
Section 2, we briefly introduce ProVerif, and in Section
3, we introduce Secure Simple Pairing and the improved
Numeric Comparison protocol proposed by Yeh et al. In
Sections 4 and 5, we introduce our formalization of the
improved Numeric Comparison protocol. In Section 6, we
show verification results of executing our formalization of
the improved Numeric Comparison protocol on ProVerif. In
Section 7, we present attacks against the improved Numeric
Comparison protocol derived using ProVerif, and in Section
8, we discuss countermeasures against these attacks. We
conclude the study in Section 9.

2. ProVerif
ProVerif is an automatic cryptographic protocol verifier

in the formal model (the Dolev–Yao model) and enables
the verification of the security of cryptographic protocols
under the assumption that the cryptographic primitives are
idealized. Since the attacker has complete control of the
communication channels, it may read, modify, delete, and
inject messages.

In ProVerif, cryptographic protocols are described using
the syntax (grammar) of Blanchet’s process calculus, based
on applied π-calculus[13]. The syntax used in this paper is
shown as follows:

� �
M, N ::= terms

a, b, c, k, m, n, s names
x, y, z variables
(M1, . . . , Mk) tuple
h(M1, . . . , Mk) constructor/destructor

application
M = N term equality
M <> N term inequality
not(M) negation

P, Q ::= processes
0 null process
P |Q parallel composition
!P replication
new n : t; P name restriction
in(M, x : t); P message input
out(M, N); P message output
if M then P else Q conditional
let x = M in P else Q term evaluation
R(M1, . . . , Mn) macro usage
event e(M1, . . . , Mn); P events� �

Please refer to [2] for more details of this syntax. The
cryptographic protocol described using this syntax is auto-
matically translated into a set of Horn clauses by ProVerif. It
is also possible to describe the cryptographic protocol using
a set of Horn clauses from the start.

A clause is a Horn clause if it contains at most one
positive literal and is defined as F1 ∧ . . . ∧ Fn ⇒ F
(≡ ¬F1 ∨ . . . ∨ ¬Fn ∨ F), where n ≥ 0 and F is the
only positive literal. F is also called a fact. A Horn clause
F1∧. . .∧Fn ⇒ F means that, if all facts F1, . . . , Fn are true,
then F is also true. A Horn clause with no hypothesis ⇒ F
is simply written as F . Here, a fact F = p(M1, . . . , Mn)
expresses a property of the messages M1, . . . , Mn. p denotes
predicates, and several predicates can be used. The term
M also represents messages that are exchanged between
the protocol’s participants. The main predicate used by the
Horn clause representation of protocols is attacker: the fact
attacker(M) means “the attacker may have the message M .”
Actions of the adversary and the protocol participants can
be modeled because of this predicate.

A set of Horn clauses obtained by automatic translation
is called an initial clause. This is composed of the at-
tacker’s computational abilities, its initial knowledge, and the
cryptographic protocol itself. ProVerif executes a resolution
algorithm using initial clauses and verifies whether a fact in
contradiction to the desired security property can be derived.
When it can, there is an attack against the desired security
property. In this case, ProVerif displays an explanation of the
actions that the attacker has to perform to break the desired
security property. Conversely, when the fact in contradiction
to the desired security property cannot be derived, there is no
attack. Please refer to [4], [14] for details of the resolution
algorithm.

ProVerif can verify the security properties of secrecy[14]

and authentication[15]. The verification of secrecy is the
most basic capability in ProVerif. To test secrecy of the
term M , ProVerif attempts to verify that the state in which
the term M is known to the adversary is unreachable.
Authentication means “if Alice thinks she is talking to Bob,
then she really is talking to Bob.” Authentication can be
defined using correspondence assertions. These are used to
capture relationships between events that can be expressed
in the form “if an event e has been executed, then event e′

was previously executed.”

3. Secure Simple Pairing
In this section, we briefly review SSP[8], and review the

improved Numeric Comparison protocol proposed by Yeh et
al.[12].

SSP is a new pairing protocol specified in Bluetooth
Core Specification Version 2.1 + EDR and has two se-
curity goals: protection against passive eavesdropping and
protection against man-in-the-middle attacks. It also aims to
exceed the maximum security level provided by the use of
a PIN with the pairing algorithm used in Bluetooth Core
Specification Version 2.0 + EDR and earlier versions.

There are five phases of SSP. Phases 1,3,4, and 5 are
the same for all protocols, whereas Phase 2 is different
depending on the protocol used.

Phase 1 (Public Key Exchange) exchanges public keys
using the Elliptic Curve Diffie–Hellman (ECDH) protocol,
and a shared key between both devices is generated. Devices
A and B first generate their own ECDH private–public key
pair (skA,pkA) and (skB ,pkB), respectively, and then each
sends its own public key to the other device. Devices A and
B then each compute a shared key DHKey using the other
device’s public key and its own private key.

Phase 2 (Authentication Stage 1) exchanges authentication
parameters used by Phases 3 and 4 and confirm these
parameters. Phase 2 has three different protocols: Numeric
Comparison, Out-of-Band, and Passkey Entry. Note that the
Just Works model uses the Numeric Comparison protocol.
These protocols are chosen based on the I/O capabilities of
both devices. The Numeric Comparison protocol is designed
for scenarios where both devices are capable of displaying
a 6-digit number and of having the user enter “yes” or
“no.” The user is shown a 6-digit number on both displays,
and then asked whether the numbers are the same on both
devices. If “yes” is entered on both devices, the pairing is
successful. An example of this protocol is the cell phone/PC
scenario.

Phase 3 (Authentication Stage 2) confirms that both de-
vices have successfully completed the exchange.

Phases 4 (Link Key Calculation) and 5 (LMP Authentica-
tion and Encryption) compute a link key and an encryption
key, respectively. The link key is used to maintain the
pairing. The final phase is the same as the final steps in
legacy pairing.

Please refer to [8] for more details of the five phases of
SSP.

3.1 Improved Numeric Comparison Protocol
The ECDH protocol (Phase 1 of standard SSP) has a secu-

rity weakness against man-in-the-middle attacks because the
senders of the public keys (pkA, pkB) are not authenticated.

A man-in-the-middle attack occurs when a user wants to
connect devices A and B but instead of directly connecting
them, they unknowingly connect to an attacker device M
that masquerades as the intended device.

To prevent this attack, a visual number confirmation is
designed in the Numeric Comparison protocol (Phase 2
of standard SSP). However, Nokia Research Center con-
ducted a usability experiment and pointed out the possibil-
ity that user error occurs when conducting visual number
confirmation[16]. SSP has remained vulnerable to man-in-
the-middle attacks because of this user error. Therefore,
Yeh et al. proposed an improved Numeric Comparison
protocol[12]. This improved protocol is composed of three
phases and uses a PIN instead of confirming the displayed
numbers. We review this improved protocol as follows
(Figure 1):

Phase 1: Public Key Exchange and Authentication.
1. The user inputs a PIN on both devices A (the initiating

device) and B (the responding device). Devices A and
B then each generate their own ECDH private–public
key pair (skA,pkA) and (skB ,pkB), respectively.

2. Device A XORs pkA with the PIN and sends
A,IOcapA and its XOR value to device B. Here,
IOcapA and A are the I/O capability of A and Blue-
tooth address of A, respectively.

3. Device B XORs the received (pkA ⊕ PIN) with the
PIN entered by the user to obtain pkA and computes
a shared key DHKey to pkA and its own private
key. DHKey is computed as a function P192 of these
values. Device B then computes a commitment value
CB to DHKey, IOcapB, IOcapA, B, and A. CB

is computed as a function f1 of these values. Device
B XORs its own public key with the PIN , and then
sends B, IOcapB, its XOR value, and CB to device
A. Here, IOcapB and B are the I/O capability of B
and Bluetooth address of B, respectively.

4. Device A XORs the received (pkB ⊕ PIN) with the
PIN entered by the user to obtain pkB and computes
DHKey to pkB and its own private key. Device A then
computes CB and compares its CB with the received
CB . If this check fails, the protocol is aborted. Device
A then computes a commitment value CA to DHKey,
IOcapA, IOcapB, A, and B. CA is computed as the
function f1 of these values. Device A then sends CA

to device B.

5. Device B computes CA and compares its CA with the
received CA. If this check fails, the protocol is aborted.

Phase 2: Link Key Calculation.
Devices A and B compute a link key LK to the previ-
ously shared key (DHKey) and the publicly exchanged
data (constant string “btlk,” A, and B). This link key
LK is computed as a hash function f2 of these values.

Phase 3: LMP Authentication and Encryption.
After the link key is computed by Phase 2, devices A
and B compute an encryption key KC to the link key
(LK), the random number EN_RAND, and cipher-
ing offset number COF . This encryption key KC is
computed as a hash function E3 of these values.

See [8] for details of the function P192 and hash functions
f1,f2,E3. Note that the ECDH private–public key pair needs
to be generated only once per device and may be computed
in advance of pairing. Moreover, devices A and B may, at
any time, choose to discard the ECDH private–public key
pair and generate a new one, although it is not required
to do so. These assumptions are the same as those of the
standard SSP protocol.

Figure 1: Improved Numeric Comparison protocol

4. Formalization of Cryptographic
Primitives

Many cryptographic primitives can be modeled in
ProVerif. It is necessary to model function P192, exclusive
OR (XOR), hash functions, and symmetric encryption for
the formalization of the improved Numeric Comparison
protocol. Symmetric encryption and hash functions have
already been modeled in ProVerif[2]. In this section, we
formalize function P192 and XOR.

4.1 Function P192

Function P192 is defined as follows: given a scalar a and a
point P on curve E, the value P192(a,P) is computed as the
x-coordinate of the a-th multiple aP of point P . Therefore,
function P192 means scalar multiplication on elliptic curves.

We formalize function P192 as follows:

1 type G1.
2 type scalar.
3 const P:G1 [data].
3 fun P192(scalar,G1):G1.
4 equation forall a:scalar, b:scalar;

P192(a,P192(b,P)) = P192(b,P192(a,P)).

This formalization is based on the model of the Diffie–
Hellman key agreement[2] that has already been formalized
and models the ECDH key agreement. This key agreement
relies on scalar multiplication in a cyclic group G1 of prime
order q; let P be a point of G1. Alice selects a random
scalar a and sends aP to Bob. Similarly, Bob selects a
random scalar b and sends bP to Alice. Alice and Bob then
compute a(bP) and b(aP), respectively. These two keys
are equal since a(bP) = b(aP) and cannot be obtained
by an adversary who has aP and bP but neither a nor b.
Here, the elements of G1 have type G1, the scalars have
type scalar, and P is point P . P192 also models scalar
multiplication P192(a,P) = aP . The equation at Line 4
means that a(bP) = b(aP).

4.2 Exclusive OR

We formalize XOR as follows:

1 fun xor(G1,G1):G1.
2 equation forall x:G1,y:G1; xor(xor(x,y),y) = x.
3 equation forall x:G1; xor(x, xor(x,x)) = x.
4 equation forall x:G1; xor(xor(x,x),x) = x.
5 equation forall x:G1,y:G1; xor(y,xor(x,x)) = y.

Here, xor models xor(a,b) = a ⊕ b. Line 2 means that
((x⊕ y)⊕ y) = x. Lines 3,4, and 5 refer to the idempotent
and associative properties. Note that ProVerif cannot handle
the commutative property (that means (x ⊕ y) = (y ⊕ x))
together with the property of Line 2.

5. Improved Numeric Comparison Pro-
tocol
5.1 Declarations

The declarations specify a public channel c and crypto-
graphic primitives (constructors/destructors). We formalize
declarations as follows (for brevity, we omit cryptographic
primitive declarations formalized in Section 4):

1 free c:channel.
2 free PIN:G1[private].
3 type tag.
4 const COF,EN_RAND,btlk:tag.
5 (* Shared key encryption *)
6 fun enc(bitstring, G1): bitstring.
7 reduc forall x:bitstring,y:G1;

dec(enc(x,y),y) = x.
8 (* Hash functions *)
9 type nonce.

10 type key.
11 fun f1(G1,tag,tag,tag,tag):nonce.
12 fun f2(G1,tag,tag,tag):key.
13 fun E3(key,tag,tag):key.

Here, we assume that a PIN of the same value is always
input to devices A and B. That is, the PIN always uses the
same value. Please refer to [2] for details of function/type
declarations.

5.2 Security Properties
Authentication can be defined using correspondence

assertions[2]. The syntax to query a basic (non-injective)
correspondence assertion is query x1:t1, . . ., xn:tn;
event(e(M1, . . . , Mj)) =⇒ event(e′(N1, . . . , Nk)). The
query is satisfied if for each occurrence of the event
e(M1, . . . , Mj), there is a previous execution of the event
e′(N1, . . . , Nk). When the query is not satisfied, the crypto-
graphic protocol of the verification target is subject to an
“impersonation attack.” The definition of the basic (non-
injective) correspondence assertion is also insufficient to
capture authentication in cases where a one-to-one relation-
ship between the number of protocol runs performed by
each participant is desired. Injective correspondence asser-
tions capture the one-to-one relationship and are denoted
as query x1:t1, . . ., xn:tn; inj–event(e(M1, . . . , Mj)) =⇒
inj–event(e′(N1, . . . , Nk)). This correspondence asserts that
for each occurrence of the event e(M1, . . . , Mj), there is
a distinct earlier occurrence of the event e′(N1, . . . , Nk).
When this query is not satisfied, the cryptographic protocol
of the verification target is subject to a “replay attack.”

The main objective of SSP is mutual authentication of
devices A and B. Accordingly, when device A reaches the
end of the protocol with the belief that it has done so with
device B, then device B has indeed engaged in a session
with device A. The opposite is also true for device B. We
declare four events as follows.

event beginAkey(G1,G1), which is used by device B to
record the belief that the initiator whose public key and

shared key are supplied as a parameter has commenced a
run of the protocol with device B. event endAkey(G1,G1),
which denotes that device A believes it has successfully
completed the protocol with device B. This event is executed
only when device A believes it runs the protocol with
device B. Device A supplies its public key and shared key
DHKey as the parameter. event beginBkey(G1,G1), which
denotes device A’s intention to initiate the protocol with
an interlocutor whose device public key and shared key are
supplied as a parameter. event endBkey(G1,G1), records
device B’s belief that it has completed the protocol with
device A. Device B supplies its public key and shared key
DHKey as the parameter.

If device A believes it has completed the protocol with
device B, and hence executes the event endAkey, then
there should have been an earlier occurrence of the event
beginAkey, indicating that device B started a session with
device A. Moreover, the relationship should be injective. A
similar property should hold for device B.

In addition, we test whether the shared key DHKey is
secret at the end of the protocol. The reason for testing the
secrecy of DHKey is because the link key and encryption
key are computed using DHKey. DHKey is a name
created by variables such as DHKeyA and DHKeyB,
while the standard secrecy queries of ProVerif deal with the
secrecy of private free names. To solve this problem, the
following general technique is used in ProVerif: instead of
directly testing the secrecy of the shared keys, ProVerif uses
them as session keys to encrypt some free name and test the
secrecy of that free name. For example, in the process for
device A, we describe enc(secretA,DHKeyA) at the end of
the protocol and test the secrecy of secretA. SecretA is secret
if and only if DHKeyA (that is, the shared key DHKey
that device A has) is secret. We proceed symmetrically for
device B using secretB.

The ProVerif code to verify the properties of secrecy and
authentication can be described as follows:

14 (* Secrecy queries *)
15 free secretA,secretB:bitstring[private].
16 query attacker(secretA); attacker(secretB).
17 (* Authentication queries *)
18 event endAkey(G1,G1).
19 event beginAkey(G1,G1).
20 event endBkey(G1,G1).
21 event beginBkey(G1,G1).
22 query x:G1,y:G1; inj-event(endAkey(x,y)) ==>

inj-event(beginAkey(x,y)).
23 query x:G1,y:G1; inj-event(endBkey(x,y)) ==>

inj-event(beginBkey(x,y)).
24 (* Secrecy assumptions *)
25 not attacker(new skA).
26 not attacker(new skB).
27
28 (* Device A *)
29 let processA(skA:scalar,pkA:G1,

A:tag,B:tag,IOcapA:tag,IOcapB:tag) =
30 out(c,(A,IOcapA,xor(pkA,PIN)));
31 in(c,(X:tag,IOcapB’:tag,m1:G1,CB1:nonce));
32 let pkX=xor(m1,PIN) in

33 let DHKeyA=P192(skA,pkX) in
34 event beginBkey(pkX,DHKeyA);
35 let CB1’=f1(DHKeyA,IOcapB’,IOcapA,X,A) in
36 if CB1=CB1’ then
37 let CA1=f1(DHKeyA,IOcapA,IOcapB’,A,X) in
38 out(c,CA1);
39 let LKA=f2(DHKeyA,btlk,A,X) in
40 let KCA=E3(LKA,EN_RAND,COF) in
41 event endAkey(pkA,DHKeyA);
42 out(c,enc(secretA,DHKeyA)).
43
44 (* Device B *)
45 let processB(skB:scalar,pkB:G1,

A:tag,B:tag,IOcapA:tag,IOcapB:tag)=
46 in(c,(Y:tag,IOcapA’:tag,m0:G1));
47 let pkY=xor(m0,PIN) in
48 let DHKeyB=P192(skB,pkY) in
49 event beginAkey(pkY,DHKeyB);
50 let CB1=f1(DHKeyB,IOcapB,IOcapA’,B,Y) in
51 out(c,(B,IOcapB,xor(pkB,PIN),CB1));
52 in(c,CA1:nonce);
53 let CA1’=f1(DHKeyB,IOcapA’,IOcapB,Y,B) in
54 if CA1=CA1’ then
55 let LKB=f2(DHKeyB,btlk,Y,B) in
56 let KCB=E3(LKB,EN_RAND,COF) in
57 event endBkey(pkB,DHKeyB);
58 out(c,enc(secretB,DHKeyB)).
59
60 (* Main *)
61 process
62 new skA:scalar; let pkA = P192(skA,P) in
63 new skB:scalar; let pkB = P192(skB,P) in
64 new IOcapA:tag; out(c,IOcapA);
65 new A:tag; out(c,A);
66 new IOcapB:tag; out(c,IOcapB);
67 new B:tag; out(c,B);
68 ((!processA(skA,pkA,A,B,IOcapA,IOcapB)) |
69 (!processB(skB,pkB,A,B,IOcapA,IOcapB)))

Queries for secrecy and authentication are specified in
Lines 15–16 and Lines 18–23, respectively. Lines 25–26
refer to security assumptions and inform ProVerif that the
attacker cannot have the ECDH private key skA and skB .
Process macros for devices A and B are specified in Lines
29–42 and Lines 45–58, respectively. The main process
is also specified in Lines 61–69. This process begins by
constructing the ECDH private–public key pair (skA,pkA)
and (skB ,pkB) for devices A and B, respectively. IO-
capA,IOcapB,A,and B are then output on the public com-
munication channel c, ensuring they are available to the ad-
versary. An unbounded number of instances of processA and
processB are then instantiated with the relevant parameters.

6. Verification Results
Verification results of executing our formalization of the

improved Numeric Comparison protocol on ProVerif are
shown in Table 1.

This means that the non-injective authentication of device
B to A, secrecy for device A (secrecy of secretA), and
secrecy for device B (secrecy of secretB) hold; whereas the
injective authentications of device A to B and of device B
to A, and the non-injective authentication of device A to B
are violated.

Property Result
Secrecy for Device A True
Secrecy for Device B True

Injective Authentication
A to B False
B to A False

Non-Injective Authentication
A to B False
B to A True

Table 1: Security properties

The non-injective authentication of device A to B is
“false,” meaning that device B may end the protocol thinking
it has been talking to device A when device A has never run
the protocol with device B. This means an impersonation
attack. When the injective authentication of device A to B
(device B to A) is false, it means that replay attacks are
possible for the attacker. If secrecy for device A (device
B) is “true,” it means that the attacker cannot obtain the
shared key DHKey. If the non-injective authentication of
device B to A is true, it means that impersonation attacks
are impossible for the attacker.

7. Derived Attacks
In this section, we review attacks against the improved

Numeric Comparison protocol derived using ProVerif.

7.1 Replay Attacks
When the PIN always uses the same value, devices A

and B are subject to replay attacks. We explain this attack
derived using ProVerif as follows.

Device A sends (A,IOcapA,pkA ⊕ PIN) and CA(=
f1(DHKey, IOcapA, IOcapB, A,B)) to device B in
Phase 1, but these values are always the same. Therefore,
an attacker can eavesdrop on communication between both
devices during a certain session and obtain these values. The
attacker then sends these values to device B, causing a replay
attack. Device A is similarly compromised.

7.2 Impersonation Attacks
Device B is subject to impersonation attacks. We explain

this attack derived using ProVerif as follows.
Device A sends (A,IOcapA,pkA ⊕ PIN) to device

B in Phase 1. An attacker device M intercepts these
values, modifies them to (B,IOcapB,mM), and sends
(B,IOcapB,mM) to device B. Here, mM is a random
number that device M generated. Device B then com-
putes DHKey′ = P192(skB , xor(mM , P IN)) and C ′

B =
f1(DHKey′, IOcapB, IOcapB,B,B) using these modi-
fied values and sends (B,IOcapB,pkB⊕PIN ,C ′

B) to device
A. Device M eavesdrops on the communication and obtains
these values. Device A then computes DHKey and CB

and compares its CB with the received C ′
B . This check fails

because its CB is not equal to the received C ′
B , and device

A aborts the protocol. Therefore, device A is not subject to
impersonation attacks.

Meanwhile, device M sends C ′
B instead of sending

CA to device B. Device B then computes C ′
A =

f1(DHKey′, IOcapB, IOcapB,B,B) and compares its
C ′

A with the received C ′
B . However, this check succeeds

because its C ′
A is equal to the received C ′

B . Therefore, device
B is subject to impersonation attacks because there is no
check (comparison) after Phase 2.

8. Countermeasures against Attacks
In this section, we propose countermeasures against the

attacks mentioned in Section 7.

8.1 Countermeasure against Replay Attacks
In Phase 1, device A sends (A,IOcapA,pkA ⊕PIN) and

CA to device B, and device B sends (B,IOcapB,pkB ⊕
PIN ,CB) to device A. However, these values are always
the same; because (pkA ⊕ PIN) and (pkB ⊕ PIN) values
are always the same, DHKey value is always the same. That
is, CA and CB values are also always the same. Therefore,
devices A and B are subject to replay attacks.

Since the values sent by devices A and B are always the
same, we change them to a different value, changing the
computational method of obtaining DHKey. We explain
this countermeasure as follows.

[Phase 1-2]: Device A first selects a random number NA.
Device A then concatenates its own public key with NA,
XORs its concatenation value (pkA||NA) with the PIN ,
and sends (A,IOcapA,(pkA||NA) ⊕ PIN) to device B.

[Phase 1-3]: Device B first selects a random number NB .
Device B XORs the received (pkA||NA) ⊕ PIN with the
PIN entered by the user to obtain pkA,NA and computes
a shared key DHKey to NA, its own random number, its
own private key, and pkA. DHKey is computed using a
hash function f and function P192 as follows:

DHKey = f(NA, NB ,P192(skB , pkA)).

Here, we define hash function f using hash functions already
defined in SSP. Device B also computes a commitment
value CB = f1(DHKey, IOcapB, IOcapA, B,A). Device
B then concatenates its own public key with its own random
number, XORs its concatenation value (pkB ||NB) with the
PIN , and sends (B,IOcapB,(pkB ||NB) ⊕ PIN ,CB) to
device A.

[Phase 1-4]: Device A XORs the received (pkB ||NB) ⊕
PIN with the PIN entered by the user to obtain pkB ,NB

and computes DHKey(= f(NA, NB ,P192(skA, pkB))).
Device A then computes CB and compares its CB with the
received CB . Device A then computes a commitment value
CA = f1(DHKey, IOcapA, IOcapB, A,B) and sends CA

to device B.

In this countermeasure, we add random numbers to the
values sent by devices A and B, and can change these values

to a unique value. Moreover, DHKey can be changed to a
unique value using hash function f and random numbers
(NA,NB).

Note that we have formalized with the assumption that
the ECDH private–public key pair is generated only once
per device. DHKey can be changed to a unique value
by generating the ECDH private–public key pair for each
pairing. Therefore, devices A and B are not subject to replay
attacks by generating the ECDH private–public key pair for
each pairing.

8.2 Countermeasure against Impersonation At-
tacks

In Phase 1-3, in receiving B and IOcapB sent from the
attacker, device B is subject to impersonation attacks. There-
fore, device B checks whether the Bluetooth address that it
has received is its own (B), and similarly checks whether
the I/O capability that it received is its own (IOcapB). We
add the following procedures to Phase 1-3.

[Phase 1-3]: Device B compares the received Bluetooth
address with its own. If it is not the same, the protocol is
continued, otherwise the protocol is aborted (A1). Device
B then compares the received I/O capability with its own.
Again, the protocol is continued if the received I/O capability
is not equal to its own, otherwise the protocol is aborted
(A2).
46 in(c,(Y:tag,IOcapA’:tag,m0:G1));
A1 if Y <> B then
A2 if IOcapA’ <> IOcapB then
47 let pkY=xor(m0,PIN) in

8.3 Verification Results after Countermeasures
Verification results of executing our formalization of the

proposed countermeasures on ProVerif are shown in Table
2.

Property Result
Secrecy for Device A True
Secrecy for Device B True

Injective Authentication
A to B True
B to A True

Non-Injective Authentication
A to B True
B to A True

Table 2: Security properties after countermeasures

This means that all properties of secrecy and authentica-
tion are held. That is, we have succeeded in making replay
and impersonation attacks against the improved Numeric
Comparison protocol impossible.

9. Conclusion
In this paper, we introduced our formalization of the

improved Numeric Comparison protocol for Secure Simple
Pairing in Bluetooth proposed by Yeh et al. and verified its

security using ProVerif. We also formalized cryptographic
primitives needed to formalize this improved protocol. As a
result, we succeeded in deriving replay attacks and imper-
sonation attacks against this improved protocol. We also pro-
posed countermeasures against these attacks on the improved
protocol, making them impossible. In future, we would like
to verify the security of many cryptographic protocols using
ProVerif.

References
[1] B.Blanchet(Project leader), “ProVerif: Cryptographic protocol veri-

fier in the formal model,” Available at http://prosecco.gforge.inria.fr/
personal/bblanche/proverif/.

[2] B.Blanchet, B.Smyth, and V.Cheval, “ProVerif 1.88: Automatic Cryp-
tographic Protocol Verifier, User Manual and Tutorial,” Available at
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf.

[3] D.Dolev and A.Yao, “On the Security of Public Key Protocols,” IEEE
Transactions on Information Theory, Vol.29(2), pp.198–208, 1983. doi:
10.1109/TIT.1983.1056650.

[4] B.Blanchet, “Using Horn Clauses for Analyzing Security Protocols,”
Formal Models and Techniques for Analyzing Security Protocols,
Cryptology and Information Security Series, Vol.5, pp.86–111, 2011.
doi: 10.3233/978-1-60750-714-7-86.

[5] R.Chang and V.Shmatikov, “Formal Analysis of Authentication in
Bluetooth Device Pairing,” In Proc. of LICS/ICALP Workshop on
Foundations of Computer Security and Automated Reasoning for
Security Protocol Analysis, 2007. Available at http://www.cs.utexas.
edu/~shmat/shmat_fcs07.pdf.

[6] M.Christofi and A.Goujet, “Formal Verification of the mERA-Based
eServices with Trusted Third Party Protocol,” Information Security
and Privacy Research, IFIP Advances in Information and Com-
munication Technology, Vol.376, 2012, pp.299–314. doi: 10.1007/
978-3-642-30436-1_25.

[7] Bluetooth SIG, “Bluetooth 2.0 + EDR Core Specification,”
2004. Available at https://www.bluetooth.org/docman/handlers/
DownloadDoc.ashx?doc_id=40560.

[8] Bluetooth SIG, “Bluetooth 2.1 + EDR Core Specification,” 2007.
Available at https://www.bluetooth.org/docman/handlers/downloaddoc.
ashx?doc_id=241363.

[9] A.Lindell, “Attacks on the Pairing Protocol of Bluetooth v2.1,” In
Blackhat USA, 2008.

[10] R.Phan and P.Mingard, “Analyzing the Secure Simple Pairing in Blue-
tooth v4.0,” Wireless Personal Communications, Vol.64(4), pp.719–
737, 2012. doi: 10.1007/s11277-010-0215-1.

[11] D.Nomura and K.Matsuo, “A Man-in-the-Middle Attack against
Secure Simple Pairing in Bluetooth,” IPSJ (Information Processing
Society of Japan) Journal, Vol.53(9), pp.2225–2233,2012.(in Japanese)

[12] T.Yeh, J.Peng, S.Wang, and J.Hsu, “Securing Bluetooth Communi-
cations,” International Journal of Network Security,Vol.14(4),PP.229–
235,2012.

[13] M.Abadi and C.Fournet, “Mobile Values, New names, and Secure
Communication,” In Proc. of the 28th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pp.104–115, 2001.
doi: 10.1145/360204.360213.

[14] B.Blanchet, “An Efficient Cryptographic Protocol Verifer Based on
Prolog Rules,” In 14th IEEE Computer Security Foundations Work-
shop, pp.82–96, 2001. doi: 10.1109/CSFW.2001.930138.

[15] B.Blanchet, “From Secrecy to Authenticity in Security Protocols,”
Static Analysis, Lecture Notes in Computer Science Vol.2477, pp.342–
359, 2002. doi: 10.1007/3-540-45789-5_25.

[16] E.Uzun, K.Karvonen, and N.Asokan, “Usability Analysis of Secure
Pairing Methods,” Financial Cryptography and Data Security, Lecture
Notes in Computer Science Vol.4886, pp.307–324, 2007. doi: 10.1007/
978-3-540-77366-5_29.

