
Fourier Transform as a Feature Extraction Method for Malware
Classification

Stanislav Ponomarev, Nathan Wallace, and Travis Atkison
Louisiana Tech University Ruston, LA, 71270

{spo013, nsw004, atkison}@latech.edu

Abstract— Research efforts to develop malicious applica-
tion detection algorithms have been a priority ever since
the discovery of the first “viruses”. In this research effort
Fourier transform is used to extract features from binary
files. Each byte in these files is treated as a value of a discrete
function. Discrete Fourier Transform then transforms binary
files into frequency domain. Each frequency is the used as
a feature for malware classification. These features are then
reduced by random projection algorithm to create a set of
low-dimensional features that are used to classify whether
the application is malicious or not. A 99.6% accuracy
was reached by Random Forest classifier, while processing
various worms, trojan horses, viruses, and backdoors.

Keywords: Computer security, Virus issues

1. Introduction
Any Turing-complete machine can run malicious code

that is designed to “harm or subvert a system’s intended
functionality”. Applications utilizing such code are known
as “malware” [1], [2]. Turing-complete machines include
a vast set of devices - from personal computers and cell
phones, to machinery automation and utility distribution
controllers. According to CTIA - The Wireless Association,
at the end of 2012, there were 326.4 million cell phone
subscribers in the US alone [3]. Add in personal computers,
laptops, and tablets and the list of possible malware carriers
greatly expands. All of these devices now communicate
over a network, which means they can be infected by
malicious code without any user interaction. Non-networked
devices can also be compromised by such code through user
interaction - connecting it to computer, inserting a flash drive
that contains infected files, or transferring data in any other
means.

There have been many studies of detection and protection
against malicious applications initiated by both industry and
university labs [4]–[7]. Many classes of malicious applica-
tions have been defined. The most common ones include
“viruses” - “a program that can ’infect’ other programs by
modifying them to include a possibly evolved copy of itself”
[6], “worms” - “a program that self-propagates across a
network exploiting security or policy flaws in widely-used
services” [8], and “Trojan horse” - a term derived from

Greek mythology describing a software that masks itself as
having useful features for the user [9].

Cohen was the one of the first researchers to study the
defense against malicious software [6]. He also recognized
the risks of a widespread “infection”, which was much
harder in the time his publication was written due to low
network connection count of the computers in that time
period. Currently, many types of anti-virus software exist.
They utilize static and dynamic analysis, neither of which
are perfect [5], [10].

Static analysis refers to a set of algorithms that can
determine whether a code is benign or malicious by looking
at its signatures [5]. These algorithms typically compare
the signatures of the scanned files with a database of
known malicious code signatures. If the signatures match,
the file is marked as malicious. This approach results in
two major problems. Only malicious code that has already
been “captured” and proven to be malicious will be in the
database. Which means “zero day viruses” (viruses that were
just discovered) have had a potential to stay hidden on users’
machines for years or until the security experts find a copy
of such a virus.

Dynamic analysis typically runs an executable inside a
virtual environment to determine whether it is malicious
or not [10]. However, dynamic analysis can be obfuscated
by certain conditional statements such as malicious code
execution only on a certain date. Furthermore, it is possible
to determine if a program is running inside the virtual
environment and to write code that can escape virtual
environment into the host system [11].

According to the Symantec 2013 Internet Threat Report
[12], one in 291 emails sent in the year of 2012 contained a
malicious application. One of the primary reasons for such
an abundance of malware are “attack kits” - a set of tools
that allow almost anyone with some computer knowledge
to create or modify new viruses almost instantly. Attack
kits allow the class of malware writers to grow past the
people with computer penetration knowledge, and include
the average users, who might try writing viruses for various
reasons from unintentional to active attacks. Combining
such tools with simple execution obfuscation techniques
allows attackers to create a new strand of a virus by simply
morphing the old one. Christodorescu refers to it as a “game
between malicious code writers and researchers working on



malicious code detection” [5].
In this article, the principles of static analysis and data

mining are used in this ongoing research effort to create a
set of trained classifiers that are more robust in detecting
malicious applications than signature based detection meth-
ods commonly used in modern anti-virus applications. By
doing so, it is possible not only to detect malicious software
that has already been known, but a malicious software that
has been obfuscated by various methods.

Atkison was first to suggest the use of random projec-
tion in combination with n-gram analysis and data mining
algorithms to classify computer applications [13]. Durand
then further analyzed different parameters of n-gram analysis
and the target feature count of random projection algorithm
in combination with several common classifiers [14]. He
determined that the 4-gram analysis, using 1500 features as a
target feature count, and Support Vector Machines classifier
have the highest accuracy of classification. This research
extends the use of these algorithms to create a code that can
be efficiently run on common computers. Fourier transform
is evaluated as a possible replacement for n-gram analysis.

2. Background
The problem of malicious application detection is very

popular, well-studied, and has gathered a significant body
of research [2], [8], [9], [13]. All research ventures can
be categorized as either static analysis or dynamic anal-
ysis. Static analysis refers to the process of determining
whether an application is malicious without actually running
the program in question. Dynamic analysis describes the
process of determining whether a program is malicious by
monitoring the behavior of a suspect program by executing
it, usually within a virtual environment. Neither one of these
approaches is a complete solution in itself, but each has a
part to play in producing better malware detection systems.

2.1 n-gram Analysis
When dealing with information retrieval or data mining,

the features extracted from the data set play a pivotal role
in the success of the prediction process. The information
retrieval technique of n-gram analysis has proven to be
a valuable tool for feature extraction in several research
efforts which focus on the detection and/or classification
of malicious applications [2], [4], [15]–[17]. An n-gram is
any substring of length n [18]. Since n-grams overlap, they
do not just capture statistics about sub-strings of length n,
but also implicitly capture frequencies of longer sub-strings
[19]. However, due to the high dimensionality of n-gram
feature sets, the gathered data is a subject to the “curse
of dimensionality” [20]. Many of these research efforts use
some form of dimensionality reduction to curb these large
feature sets in order to mitigate the effects. For this particular
experiment, n-gram of size 4 is used, as it is shown to yield
higher classification accuracy as shown in [21].

2.2 Fourier Transform
As a possible replacement for the n-gram analysis tech-

nique, Fourier transforms can be used to provide the in-
formation about frequency of byte patterns in malicious
applications. Fourier transform is commonly used in digital
signal processing to transform the signal from time domain
to frequency domain by following the equation 1, where
f(x) is the incoming signal, and f̂(σ) is the signal in
frequency domain.

f̂(σ) =

∫ ∞
−∞

f(x)e−2πixσdx (1)

A descrete Fourier Transform can also be applied to a
sequence of N complex numbers as defined in equation 2.
Here, xn is the value of the signal at a discrete time offset n,
and Xk is the complex number that represents the amplitude
and phase of a sinusoidal component in xn at a frequency
k/N . Since the analyzed frequency range depends only on
the size of analysed data, N , a comparison of different length
signals can can be achieved by padding shorter signal with
zeros, and maintaining the same sample size, N for both
signals.

Xk =

N−1∑
n=0

xn · e
−i2πkn
N , k ∈ Z (2)

2.3 Random Projection
The feature selection technique known as random pro-

jection has been recently applied to the field of malware
detection [14]. Random projection is a feature extraction
technique which embeds a high dimensional feature set into
a “low-dimensional subspace using a random matrix whose
columns have unit length” [22], thus creating a completely
new set of features. Random projection feature extraction
technique was first introduced to the realm of malicious
application detection in [23]. Similarly to Kolter, in [14],
a vector space model was used with n-gram analysis to
produce weighted feature vectors from binary executables
[7]. Every dimension of these vectors represented a unique
n-gram which could be extracted from the corresponding
executable. Generated feature vectors were then used as
input to random projection algorithms in order to produce
feature vectors of a reduced dimension. Random projection
used Achlioptas’ matrix multiplication with a random matrix
of values of 0, +1, or -1 following a probability distribution
of 2/3, 1/6 and 1/6 respectively to reduce the feature vectors
[24]. Previous findings have shown the use of random
projection to reduce the feature set to 1500 features to result
in higher accuracy [21].

2.4 Classification algorithms
Nine classification algorithms were chosen for this re-

search: Naïve Bayes, SVM, Simple Logistic, Bagging, Ridor,



Decision Stump, J48, LMT, and Random Forest. Previous
research results used some of these methods to classify mali-
cious applications [21]. A new set of bagging type classifiers
was chosen because they perform well with training sets
containing large noise [25].

2.4.1 Naïve Bayes

Naïve Bayes classifier assumes that all the features are in-
dependent of each other and follows a Bayesian probablistic
model:

p(C|F0, F1, ..., Fn) =
p(C) · p(F0, F1, ..., Fn|C)

p(F0, F1, ..., Fn)

where C is the class of dataset, F0, ..., Fn is a set of
features, and p() is a probability function.

2.4.2 SVM

Support Vector Machines constructs a hyperplane in a
multidimensional space that maximizes the separation of
classes. This hyperplane can then be used to classify new
features. SVM also supports non-linear classification, where
a hyper-surface is constructed that allows for better classifi-
cation of statistical outliers.

2.4.3 Simple Logistic

Simple Logistic classifier utilizes a binary logistic regres-
sion to describe an outcome in only two possible classes.
It takes a set of features and applies regression analysis to
create a classification parameters.

2.4.4 Bagging

Given a training set, bagging algorithms derive m new
sets by sampling from the original set. New datasets are the
fitted individually. The final result of bagging-type classifier
is then the average of m fits.

2.4.5 Ridor

Ripple Down Rules Learner utilizes a decision-tree like
structure to compile a set of rules that either result in a
classification of data, or passing of the parameters to another
decision tree. The first rule is generated based on the dataset,
then the rules are iteratively modified to account for all the
exceptions of the original tree.

2.4.6 Decision Stump

Decision stump is a decision tree which contains only
one node - the root node. Root node’s leafs are the classes
when the root node’s condition is met or not. The condition
is based on union of numerical conditions which compare
features in the original dataset.

2.4.7 J48
J48 is Java’s implementation of C4.5 algorithm. J48 builds

a decision tree by finding features in the dataset that split the
dataset evenly into separate clases. Branches of the decision
tree are then used to further improve the classification
results.

2.4.8 LMT
Logistic Model Tree is a classifier that combines logistic

regression analysis and a decision tree classification. Con-
ditions of Logistic Model Tree are based on the logistic
regression similar to Simple Logistics classifier. But instead
of computing regression for the whole dataset, it is first
split using C4.5 algorithm, which creates a tree structure
for decisions.

2.4.9 Random Forest
Random Forest classification is an ensemble learning type

classifier that builds multiple decision trees. The classifica-
tion of data is then passed to all the trees, and the output
class is the mode class from all the decision trees.

3. Methodology
While developing experiments for the previous research

effort [21], n-gram presence matrix was noted to require a
significant amount of memory. To analyse a corpus of 15,000
files, a 240GB matrix had to be used. To overcome a large
memory footprint requirement, Fourier Transform method
was chosen as a frequency analysis tool.

Unlike n-gram analysis, Fourier transform does not re-
quire a built a set of all the n-grams, nor the creation of
sparse matrices. which means a large decrease in RAM
usage of the software. Fourier transform also simplifies the
comparison of the features in files of different length - same
frequencies are reported for different lengths of data.

To transform binary data from offset space to frequency
space, a discrete Fourier Transform (equation 2) was used.
A sequence size, N , was determined to be N = 2p such
that 2p−1 < max(fileSize) < 2p. As having sequence size
equal to the powers of 2 decreases the processing required.
Every file was then appended with zeroes to reach a file size
of N . Values of each byte in an executable were used as xn,
where n specified an offset of the byte from the beginning
of file.

4. Experiment
This research effort targets the accuracy aspects of n-gram

analysis, random projection, and Fourier transfer methods.
The data set described in the next section was first processed
by Fourier analysis or n-gram analysis on an xServe G-
5 cluster (PPC970FX cpu, 2GB RAM per node), then the
extracted features were reduced by random projection and
the result was uploaded to a test machine running on Intel



Core i7-3770K, 16 GB RAM, 1TB HDD that ran machine
learning algorithms to classify the data.

Methodology of the previous research effort [21] was
used to generate a control result. The dataset of malicious
and benign executables described below was combined into
a single corpus. Using 4-gram analysis of the dataset,
random projection was applied to create a 1500 feature
embedding. This new low-dimensional dataset was analyzed
using the SVM classifier in Waikato Environment for Knowl-
edge Analysis (WEKA). This classifier was then used to
determine whether a given application was malicious or
benign. [17]. 10-fold cross validation was used by the trained
classifier to determine average classifier accuracy.

After the control data generated, the algorithm was mod-
ified to use Fourier transform instead of 4-gram analysis.
The rest of the algorithm remained untouched. The results
of the Fourier transform were randomly projected to 1500
features and WEKA was used to train the classifiers. By
treating the content of binary executables as a raw waveform,
this research was able to transform the data from byte
offset to byte pattern frequency, which allowed for an easy
comparison of features in files of various sizes.

4.1 Data set
The data set for this experiment consisted of 5124 win-

dows executables in a PE format, with .exe extension.
4270 executables in the data set were malicious applications
that break into 854 different Viruses, Backdoors, Trojan
Horses, Worms, as well as 854 different instances of Zeus
Trojan binary. These executables were obtained from vari-
ous web-sites online, such as http://www.trojanfrance.com,
http://vx.netlux.org, and http://zeustracker.abuse.ch. Previous
research efforts used some of the same malicious applica-
tions [21].

854 of the executables in this data set were benign.
They were obtained by installing an instance of Windows
operating systems as well as Office environments in the
virtual machine with a disconnected network adapter. The
host computer was behind a NAT firewall, as well as the
firewall of Louisiana Tech University. As executables were
extracted from virtual machines, their MD5 sums were also
recorded to make sure they did not get infected during the
transfer process. All the executables and their MD5 sums
were compressed in an archive, and copied to the research
server. Once on the research server, the files were extracted
into a dataset folder, given a read only access, and verified
versus their MD5 checksums.

5. Results
The figures (Fig. 1 - 10) show classifier accuracies based

on the amount of features generated by processing the data
with Fourier transform, and random projection. Malicious
files were separated into worms, trojans, viruses, and back-
doors sections. Zeus trojan section was separately created

Fig. 1: Backdoors 10-fold classification

Fig. 2: Backdoors Training Model classification

Fig. 3: Trojans 10-fold classification

Fig. 4: Trojans Training Model classification



Fig. 5: Viruses 10-fold classification

Fig. 6: Viruses Training Model classification

Fig. 7: Worms 10-fold classification

Fig. 8: Worms Training Model classification

Fig. 9: Zeus Trojan 10-fold classification

Fig. 10: Zeus Trojan Training Model classification

Fig. 11: Classification accuracy using n-gram analysis

from each individual instance of Zeus Trojan horse. The
accuracy of each classifier was graphed in relation to the
amount of features generated by the random projection
feature reduction technique.

Random forest classifier was able to acheive more then
99% accuracy with every type of malicious application
while evaluating the training model. During cross validation,
bagging and LMT classifiers performed the best with a set of
Zeus trojan horse malware, reaching 85% accuracy. Bagging
also reached the highest accuracy while cross validating
backdoor classification, reaching 74%. J48 reached the high-
est accuracy 80% while classifying viruses, and 75% while
classifying trojans and worms.

6. Conclusions
Random projection has been proven to work well in

reducing the amount of features in a dataset for malicious



application detection. In conjunction with Fourier transform,
these algorithms allow for an accurate classification of
malicious applications in various categories, without relying
on specific signatures.

An added benefit of using Fourier transform instead of
n-gram analysis is much lower memory footprint, and an
ability to process new files without restructuring the feature
set. N-gram analysis has to use large sparse matrices to gen-
erate features, which can take gigabytes to store. Processing
files with Fourier transform and random projection for use
with machine learning classifiers allows security researchers
to detect zero day malicious applications before they have
time to damage any critical infrastructure.

7. Acknowledgments
This material is based upon work supported by the U.S.

Air Force, Air Force Research Laboratory under Award No.
FA9550-10-1-0289.

References
[1] A. Hodges, “Alan turing and the turing machine,” in The Universal

Turing Machine A Half-Century Survey. Springer, 1995, pp. 3–14.
[2] G. McGraw and G. Morrisett, “Attacking malicious code: A report

to the infosec research council,” Software, IEEE, vol. 17, no. 5, pp.
33–41, 2000.

[3] C.-T. W. Association et al., “Wireless quick facts,” 2013.
[4] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan, “Detection

of new malicious code using n-grams signatures.” in PST, 2004, pp.
193–196.

[5] M. Christodorescu and S. Jha, “Static analysis of executables to detect
malicious patterns,” DTIC Document, Tech. Rep., 2006.

[6] F. Cohen, “Computer viruses: theory and experiments,” Computers &
security, vol. 6, no. 1, pp. 22–35, 1987.

[7] J. Z. Kolter and M. A. Maloof, “Learning to detect and classify
malicious executables in the wild,” The Journal of Machine Learning
Research, vol. 7, pp. 2721–2744, 2006.

[8] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham, “A taxonomy
of computer worms,” in Proceedings of the 2003 ACM workshop on
Rapid malcode. ACM, 2003, pp. 11–18.

[9] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi,
“A taxonomy of computer program security flaws,” ACM Computing
Surveys (CSUR), vol. 26, no. 3, pp. 211–254, 1994.

[10] B. Le Charlier, A. Mounji, M. Swimmer, and V. T. Center, “Dy-
namic detection and classification of computer viruses using general
behaviour patterns,” in International Virus Bulletin Conference, 1995,
pp. 1–22.

[11] P. Ferrie, “Attacks on more virtual machine emulators,” Symantec
Technology Exchange, 2007.

[12] Symantec, “Symantec internet security threat report,” 2013.
[13] T. Atkison, “Aiding prediction algorithms in detecting high-

dimensional malicious applications using a randomized projection
technique,” in Proceedings of the 48th Annual Southeast Regional
Conference. ACM, 2010, p. 80.

[14] J. Durand and T. Atkison, “Using randomized projection techniques
to aid in detecting high-dimensional malicious applications,” in Pro-
ceedings of the 49th Annual Southeast Regional Conference. ACM,
2011, pp. 166–172.

[15] O. Henchiri and N. Japkowicz, “A feature selection and evalua-
tion scheme for computer virus detection,” in Data Mining, 2006.
ICDM’06. Sixth International Conference on. IEEE, 2006, pp. 891–
895.

[16] I. Santos, Y. K. Penya, J. Devesa, and P. G. Bringas, “N-grams-based
file signatures for malware detection.” in ICEIS (2), 2009, pp. 317–
320.

[17] I. H. Witten and E. Frank, Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2005.

[18] R. Baeza-Yates, B. Ribeiro-Neto et al., Modern information retrieval.
ACM press New York, 1999, vol. 463.

[19] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan, “N-gram-
based detection of new malicious code,” in Computer Software and
Applications Conference, 2004. COMPSAC 2004. Proceedings of the
28th Annual International, vol. 2. IEEE, 2004, pp. 41–42.

[20] R. Bellman, Adaptive control processes: a guided tour. Princeton
university press Princeton, 1961, vol. 4.

[21] S. Ponomarev, J. Durand, N. Wallace, and T. Atkison, “Evaluation of
random projection for malware classification,” in Software Security
and Reliability-Companion (SERE-C), 2013 IEEE 7th International
Conference on. IEEE, 2013, pp. 68–73.

[22] N. Goel, G. Bebis, and A. Nefian, “Face recognition experiments with
random projection,” in Defense and Security. International Society
for Optics and Photonics, 2005, pp. 426–437.

[23] T. Atkison, “Applying randomized projection to aid prediction algo-
rithms in detecting high-dimensional rogue applications,” in Proceed-
ings of the 47th Annual Southeast Regional Conference. ACM, 2009,
p. 23.

[24] D. Achlioptas, “Database-friendly random projections,” in Proceed-
ings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. ACM, 2001, pp. 274–281.

[25] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to
statistical learning. Springer, 2013.


