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Abstract— The security community already has seen some
examples of actual attacks against real SCADA installations,
like the Stuxnet case in 2010 [3]. MODBUS is one of the
most used communication protocols in industrial control
systems. Even though the protocol itself is known to lack
basic security features; there is not much detail available
about real world cases where MODBUS has been used
as an attack vector. Covert channels have been mentioned
several times as part of the security vulnerabilities of SCADA
systems [1], [2] and [4]. This research targets the MODBUS
protocol characteristics to introduce a covert channel. This
covert channel allows information leakage from one device
called covert Master to another one called covert Slave. The
covert Master is supposed to be on the internal LAN, while
the covert Slave is expected to be on a separate subnet. The
Slaves subnet could be based on either Ethernet and TCP/IP
or a serial BUS (RS485) using a media converter to reach
the LAN.
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1. Introduction
To appreciate the importance of the MODBUS communi-

cation protocol and the impact that a MODBUS covert chan-
nel could have, it is necessary to briefly describe SCADA
Systems. SCADA stands for Supervisory Control and Data
Acquisition. These systems usually control critical infras-
tructure for economy stability, such as power generation and
distribution. MODBUS was created in 1979 by Modicon
(now Schneider) and has been used since then as one of the
main communication protocols for SCADA installations [1].
MODBUS is so important in first place because it is used to
control and monitor critical infrastructure that is everywhere.

Being a layer 7 protocol, MODBUS was initially used
on RS485 serial networks. However, it is now common to
see MODBUS working over Ethernet networks with TCP/IP
or in a combination of both. These recent configurations
that integrate MODBUS on the LAN networks and internet
have also opened the possibility of attacking the SCADA
systems in similar ways that information systems are. This
covert channel can use the MODBUS infrastructure in place
to leak information from the LAN network, which is a
valuable ability to have when approaching a target with
valuable data. SCADA devices often are physically located
outside of the protected building and gated environments.
For example, an electrical power meter connected to the
MODBUS network would be located on a remote sub-station

or even a residencial area. This makes it a candidate for data
exfiltration and infiltration.

Although some SCADA firewall solutions exist [5], the
common approach is to block non valid or malformed
MODBUS traffic as well as write transactions. This covert
channel uses valid and read-only transactions to operate
which makes it harder to detect or stop. Also, there are very
low chances of having a SCADA system using such type
of security implementation since those are still considered a
new field compared with the time SCADA systems have
been in use. MODBUS has been chosen for this covert
channel research because of its importance and common
use in SCADA systems as well as the lack of security
in its design. SCADA security is still considered, as are
covert channels, a novel subject that usually is not taken into
account when implementing information security controls.

2. Related work
While the MODBUS protocol has been used for decades

and SCADA systems are everywhere; it is not common to see
MODBUS being used for purposes other than the monitoring
and control of SCADA equipment. Some published papers
and books have raised the flag indicating that SCADA
systems need more attention from the information security
community because of their importance [2] and [3].

A good example is the Stuxnet case, mentioned by Kim-
Kwang [3] as a recent and high profile attack committed
against SCADA systems. Other publications [4] also talk
about the SCADA Security issue and how it has changed
over the years. Originally, the security community was more
worried about physical threats affecting the SCADA systems
like sabotage; however, now the concern is also about a new
wave of electronic and information based threats affecting
them.

Knapp [1] even mentions that the MODBUS protocol
lacks some basic security features such as authentication
and encryption and says that SCADA Intrusion preven-
tion systems (IPS) could monitor malicious activities using
MODBUS signatures [1]. He also proposes that MODBUS
sessions could be validated to ensure that MODBUS has
not been "hijacked" and used for covert communication [1].
However, there is no evidence of an actual implementation
of a MODBUS covert channel.

The SANS Institute (SysAdmin, Audit, Networking, and
Security Institute) issued a document called “Using SNORT
for intrusion detection in MODBUS TCP/IP communica-
tions“ describing a method of intrusion detection (IDS)



by developing rules for SNORT [8]. The objective of that
document is to provide useful information about how to
implement IDS systems for MODBUS by using open source
technologies, instead of expensive and limited ones that are
commercially available.

avtheir email addresses (unless they really want to.)

3. MODBUS Protocol and Data struc-
ture

The MODBUS protocol is well defined in the official
documents [6] and [7] issued by the MODBUS Organi-
zation. This paper only exposes the protocol information
that is closely related to the covert channel intended to be
implemented.

MODBUS was originally created to work on serial net-
works like RS485 (figure 1) and that is why some terminol-
ogy is different from what it is used in modern Ethernet and
TCP/IP based networks (figure 2). In a MODBUS network
there are always two types of devices: several field Slaves
(called Servers in MODBUS TCP/IP) and a single Master
(or several Clients as called in MODBUS TCP/IP). Only
one Master can exist in a MODBUS RS485 serial network.
Slaves generate errors if they receive requests from more
than one master. This is obviously different in TCP/IP based
networks where several clients can coexist as long as they
are synchronized to avoid sending simultaneous requests.
Client(s) and servers are usually in different subnets, the
client being a computer using TCP/IP with SCADA software
and the servers being field devices wired within a serial BUS
(RS485) network and using a media converter to reach the
LAN (figure 3). No matter what lower layer topology is in
use, the protocol data structure changes minimally and it is
relatively simple when compared with HTTP or other layer
7 protocols. We use Client for the Master device and Server
for each Slave. Three different MODBUS networks layouts
are shown below.

Fig. 1: Legacy MODBUS RTU working on a Serial BUS
network (RS485).
One Master → Many Slaves.

The MODBUS servers are the field devices capable
of measuring and/or controlling the environment by using
inputs and outputs. The inputs can be digital (Discrete
Inputs) and analog (Input Registers). Servers measure the

Fig. 2: New MODBUS TCP working on a TCP/IP network
(used by this covert channel).
One / many TCP Clients → Many TCP Servers

Fig. 3: Mixed MODBUS network (using media converters
from RS485 to TCP/IP).
One / many TCP Clients → Converter → Many serial Slaves

environment variables by using these inputs and store their
updated values in local memory tables (Table 1). The client
can later request a server for the actual value of its inputs.
The outputs can be also digital (Coils) and analog (Holding
Registers). Coils are used to open or close a digital switch
while holding registers are used to vary an analog output
value within a range. The client can request a server to
change the value of these outputs in the local memory tables
(Table 1), thus controlling the environment. Not all servers
have all types of inputs, outputs and functions since this is
a vendor-specific decision.

Servers organize the data in four primary tables allocated
for Discrete Inputs, Coils (digital outputs), Input Registers
(analog inputs) and Holding Registers (analog outputs) [6].
Table 1 shows some details about each one of these primary
tables [6]. The old version of the MODBUS protocol allows
9,999 data objects in each one of the four primary tables
while the new versions of MODBUS allow 65,536 data
objects. The proposed covert channel uses object numbers
between 0 and 9,999 so it can be implemented in MODBUS
networks using both schemas.

The MODBUS client device on the other hand only
requests data from the servers and stores it in long term
memory for future processing. Servers always wait for a
client’s request and never initiate a conversation because the



Primary
Tables

Object
Size

Object
access

Comments

Discrete
Inputs

Single bit Read-
Only

This data can be provided
by an I/O system.

Coils Single bit Read-
Write

This data can be alterable
by an application program.

Input
Registers

16-bit
word

Read-
Only

This data can be provided
by an I/O system.

Holding
Registers

16-bit
word

Read-
Write

This data can be alterable
by an application program.

Table 1: Primary Tables in a MODBUS Server device.

protocol is based on requests and responses.
The MODBUS Application Data Unit (ADU) contains a

simple Protocol Data Unit (PDU) and some additional fields
introduced by the network topology in use [6] as illustrated
in the figure 4:

Fig. 4: MODBUS Application Data Unit (ADU)

The messages MODBUS client and servers use to com-
municate to each other contain a function code of 1 byte
long and a data field of variable size. The function code
specified in the client request specifies the action (read or
write) and the type of object (digital or analog). The data
field contains what object(s) will be affected by the function
[6]. A complete list of Function codes and their meaning is
available on the protocol standard document [6].

4. A Covert channel taking advantage of
function codes

The MODBUS protocol uses two principal elements to
establish communication between client and servers that are
also used in this covert channel: Tables and Function Codes.
The four primary tables (discrete inputs, coils, input registers
and holding registers) are the four different sets of variables
that can exist in a server device (see table 1). For each one of
these types of variables, also called objects, there are up to
9,999 in the older MODBUS versions and 65,535 in newer
MODBUS versions.

The second important element in the protocol is the set
of function codes available that indicate what action is to
be taken by both, the client and the server. The client uses
different function codes to specify if it is going to read a
discrete input, to write a coil, to read an input register, to
write holding register, etc. The servers use function codes
to indicate if they are sending a response with the value
of a discrete input or a holding register, throwing an error
exception code, etc. [6]. There are up to 127 function codes
(1 byte value) divided in three groups: Public (1 to 64), User-
defined and Reserved. Public function codes are guaranteed

to be unique, publicly documented and widely used by the
majority of devices [6].

5. Implementation
The covert channel proposed in this paper operates by

using the read-only public function codes from 1 to 4 and the
object numbers from 0 to 9,999 of MODBUS servers. The
covert channel exists between a covert client and a covert
server both connected to a TCP/IP network and using MOD-
BUS TCP (figure 5); however, the channel is designed so it
can also work with MODBUS RTU in a serial bus network
(RS485). Both devices, client and server are separate hosts
with a software-based MODBUS implementation. For the
purpose of this work, the Python library pymodbus will be
used [9]. This software library allows the instantiation of
MODBUS servers and clients at will by using two different
Python scripts. A script called sender resides on the client
device while another script called receiver resides on the
server device.

Fig. 5: Covert devices: They can be software based (pymod-
bus) and work in a RS485 or TCP/IP network

To establish the covert channel, a covert client sends a
request asking to read a covert server’s object (coil, discrete
input, holding register or input register). Then, the covert
server receives the request, verifying the function code and
the object number that is requested. This object number is
mapped to a pre-defined ASCII character. This pre-defined
“covert” value is the value that the client was intending to
send to the server.

To circumvent SCADA firewalls that might be in place,
the covert client always uses a read-only function code like
01 to read coils, 02 to read discrete inputs, 03 to read holding
registers or 04 to read input registers. The covert client also
specifies the number of the object it wants to read (0 to
9,999), which is in fact the ASCII value it wants to transmit.

An example of a normal MODBUS transaction with two
steps (Response and Request) is explained below:

1 - The Client sends a Request to the Server asking to
read the object 110 (0x6E):



Function
Code

Input Register number
(8 bits long)

04 110 (0x6E)

2 - The Server receives the Request and sends back a
Response with the value of the object number 110. If the
value is “30”, the Response will look like this:

Function
Code

Input Register
number

Input Register value
(16 bits long)

04 110 (0x6E) 30 (0x001E)

When the covert channel is implemented, the server
executes a third step without changing the Request/Response
schema. In the example, what the covert channel requires is
to have the server interpreting the requested object number
110 (0x6E) as an ASCII character, which is the character
“n”. The covert server also answers the request with the
value of the register 110 to make this look like a legitimate
MODBUS request/response message. However, the actual
value stored in the object 110 is irrelevant to the covert
channel. Every time the client is requesting to read the
server’s Input Register number 110 (0x6E), in fact, the covert
client is sending the ASCII character “n” to the covert server
(see section 8, alphabet in use).

This behavior is illustrated with the figure 6. The first
and second steps represent a normal MODBUS transaction,
while the third step on the right represents the covert
behavior.

Fig. 6: First and second steps represent the normal behavior
of a MODBUS transaction while the third step is the covert
channel implemented

6. Challenges
The covert channel proposed in this paper is implemented

by changing the way the server interprets the MODBUS
PDU without changing the protocol structure. The covert
channel consists of a series of MODBUS messages that are
interpreted by the covert client and server. The messages
are valid MODBUS client requests and server responses.
Although SCADA systems are usually not taken into account
when implementing security controls on the data networks
[1]; there are solutions available to secure MODBUS instal-
lations.

Such controls represent a challenge for the covert channel
and have been taken into account as an obstacle to overcome.
As an example, it is important to consider that a SCADA
installation could have a Tofino Firewall [5], SNORT IDS
[8] or similar solutions implemented. These security so-
lutions can look into the MODBUS PDU and block or
alert of dangerous or abnormal messages. However, their
common approach is to validate that the MODBUS requests
and responses are well structured and valid, blocking the
write requests as well as the malformed packets and non-
MODBUS traffic. This covert channel has taken into account
that some security measures might be in place and uses
read-only and well-formed MODBUS requests that would
be considered normal traffic.

7. Drawbacks
If an IDS solution is in place and filters all the commands

sent to the SCADA network, this covert channel might
have problems to send and receive all or some of the
characters in the alphabet. However, for the SCADA system
to work, whatever solution that is in place must allow
the SCADA devices to communicate using the commands,
device addresses and register numbers that are valid for that
installation. Since the covert channel is aimed to use the
same valid commands, addresses and register numbers, the
covert channel should work properly.

8. Alphabet in use
The actual implementation of this covert channel uses the

following alphabet structure:

Object_Number_X = ASCII_Character_X

How to use this alphabet is explained in more detail in the
section 5 (implementation). This alphabet consists in a pure
conversion from the object number to the ASCII character
number. When the cover client sends a request, the covert
server verifies the object number specified in the request
and interprets what ASCII character corresponds to it. For
example, the object number 110 (0x6E) maps to the ASCII
character âĂŸâĂŹn“. This direct mapping keeps the test
alphabet simple while supporting all the ASCII characters.
However, this is not necessary and it is possible to have a



different alphabet by using a substitution table to obfuscate
the characters that are being sent. In that case, the object
number 110 (0x6E) can be mapped to any other ASCII
character. This model needs at least 256 objects in the
covert server to be able to receive all the ASCII characters,
including the non-printable and extended ones. The section
10 (future work) explores other schemas for the alphabet.

9. Covert Channel Classification
9.1 Type

The covert channel described in this paper is considered as
a behavioral covert channel. This is because the covert data
is not contained as a payload within the MODBUS Request
itself, but it is extracted depending on how the Request is
interpreted. The covert server extracts the covert data when
it interprets the requested object number. The covert server
takes the number of the requested object and looks for the
ASCII character associated with that number. Depending on
which object is requested, the covert server interprets the
ASCII character that was sent.

9.2 Throughput
The throughput of this covert channel will depend on the

characteristics of the targeted installation. Some SCADA
installations only work with RS485 serial devices, which
reduce the available bandwidth considerably. However, if
256 objects are used, a minimum of one byte can be
transmitted per Request/Response transaction. It is normal
to have one transaction every one or two minutes in the
older installations that only use RS485 serial devices.

To support all the ASCII characters (one byte per trans-
action), the covert channel needs to be implemented in a
MODBUS network where it is normal to have 256 different
objects in the servers. In the future work section, a hex-
adecimal alphabet is considered, which would require only
16 different objects to work while it cuts the throughput in
half.

It is important to understand that the receiver Python
script, located on the server device and explained on the
implementation section, allows the attacker to emulate up to
65,535 objects in the server. That number of objects can be
used to create a bigger alphabet, which will allow transfer-
ring more data. However, this will increase the chances of
being discovered, as explained in the detection section.

9.3 Robustness
Even though the majority of SCADA systems are usually

not protected with security controls on the network level;
there are commercial and open source solutions available
to secure MODBUS networks. The MODBUS security
solutions available can look into the PDU and block or
alert of dangerous or abnormal transactions. This covert
channel was designed considering these solutions as an

obstacle to overcome. All the covert messages are legitimate
Request/Response transactions that must be accepted by the
security controls in place, if any, to allow the MODBUS
devices to work, making the covert channel considerably
robust.

9.4 Detection
To avoid detection, the attacker must know the normal

behavior of the targeted network. Especially, it is critical
to know how many objects are available in the servers of
the network and use a similar number of objects in the
covert server, which is emulated with pymodbus in the prove
of concept. After taking care of this aspect, the critical
point is to hide the sender and receiver scripts installed
in the compromised devices. At this point, at least one
client and one server are required, but in the future work
section, another approach is considered to avoid using a
compromised server, which will reduce the chances to be
discovered.

Even though only 256 objects are required, the MODBUS
original standard indicates that the servers could have up to
9,999 objects for each one of the four tables. If a server
device with these characteristics is used, it is possible to
send up to 9,999*4 = 39996 different values, but chances
are the covert channel is found easily because those object
numbers are not usually in use. The same happens if this
is implemented in a modern MODBUS network, using a
server device with 65,535 different objects per table. The
cover client will be able to send up to 65,535*4 = 262140
different values but the communication can be suspicious.

9.5 Prevention
Measures that can be implemented to prevent this convert

channel are related to how well the SCADA network con-
figuration is documented and audited over time. If security
controls like Tofino firewall or Snort IDS are implemented,
they have to be configured to allow not only valid MODBUS
objects, but only the object numbers that are used in that
particular network. If the MODBUS network uses at least
256 objects in one sever device, then, that is enough to
implement the covert channel. If the Hexadecimal alphabet is
used as described in the future fork section, only 16 objects
are enough. The physical security is extremely important,
since the MODBUS network usually include devices in-
stalled in remote and unattended locations where contractors
have access.

10. Future Work
A future implementation of this covert channel would use

a slightly different alphabet that links an ASCII character
with a combination of a Sever ID and an Object Number,
thus, resulting in this structure:

“Sever_ID_Y + Object_No_X = ASCII_Char_Z”



In this new approach, the covert server is listening to
all the requests sent by the covert client, including the
ones sent to other severs in the network. Then, the covert
sever interprets the ASCII character that the covert client is
sending by combining the sever ID and the object number
contained in the request. The advantage here is that the
alphabet is “distributed”, augmenting the stealth level. The
256 ASCII characters can be interpreted by using several
severs IDs and the object of those severs instead of using
256 objects of one single server.

A future alphabet based on 16 characters would reduce the
amount of objects needed from 256 (to send all the ASCII
Characters individually) to only 16 (to send values from 0x0
to 0xF). The actual ASCII characters would be “assembled”
by using two 4-bits values.

Another future implementation of this covert channel
would work with serial devices (RS485) only instead of
TCP/IP based systems, since an important number of MOD-
BUS installations run over serial BUS networks. This can be
done using the same Python library (pymodbus) used for this
covert channel.

Since a MODBUS server can’t initiate a communication
(it just responds to requests), the two-way communication
could be implemented by having a timing mechanism. For
this to work; the covert client has to send a request to the
covert server with a special pre-defined character (like 0x05,
the Enquiry Character in ASCII). This character is used for
asking if new data is available and ready to be sent from
the covert server. If the covert server has data to send or
not, it will respond with another pre-defined pair of special
characters indicating so. The covert client will then keep
requiring the next character from the server until it receives
the last one indicating there is no more data (0x04 or End
of Transmission character for example).

An interesting experiment would be implementing this
covert channel as well as an IDS solution based on Snort
as described by Díaz [8]. The experiment would consist in
determining if it is possible to detect the covert channel with
the filters proposed [8]. It would be useful to establish if the
covert channel can overcome this security control and how it
can be improved to leave a smaller footprint if necessary. The
results could demonstrate how deep the SNORT rules have
to look into the packets in order to detect the covert channel.
The hypothesis is that the IDS rules should not interfere with
the valid MODBUS device addresses and object numbers.
If the rules interrupt the traffic, trying to block the covert
channel, they will also make the SCADA system unusable.
This is because the covert channel uses only valid device
addresses and registry numbers to operate.
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