
Heuristics for Conversion Process of GPU’s Kernels for

Multiples Kernels with Concurrent Optimization

Divergence

José Ritomar Carneiro Torquato1, Esteban Walter Gonzalez Clua1
1 Institute of Computing, Federal Fluminense University, Niteroi, RJ, Brazil

Abstract - Graphics Processing Units have been created with

the objective of accelerating the construction and processing

of graphic images. In its historical evolution line, concerned

with the large computational capacity inherent, these devices

started to be used for general purposes. However, the design

of the GPUs don´t work well with divergent algorithms,

mainly conditionals and repetitions. In this work we present a

strategy for finding the divergence root of the kernels and try

to deduce alternative solutions, decomposing them into

concurrent kernels. We developed mechanisms for the user in

order to easily readapt his code and take advantages of

architectures that support concurrent kernels.

Keywords: Divergence; Concurrents Kernels; Warps;

GPGPU.

1 Introduction

GPUs (Graphics Processing Units) were designed to

make to process polygons, and they have a peculiar feature:

the same sequence of operations to different data. Following

its historical evolution, current GPUs keep following this

paradigm in its architectural models. In this style of execution,

all the hardware involved executes the same instruction,

before moving on to the next one. In fact the model brings

benefits by reducing the cost of production and offering an

optimized memory access. The new architecture Kepler

GK110, is called by the NVidia “The next generation of

GPUs” and still uses the same concepts of multiprocessor

streams [1]. We believe that this architecture remains in

awhile because, in practice, this restriction is what makes

technologically feasible to massively parallel architecture.

Diverging code is defined as the fact that a stream of

code executed in a parallel environment can take different

directions in each of its instances. In Single Instruction

Multiple Thread (SIMT) architecture, occurring divergence,

all statements that do not follow the same path are forced to

wait at the point of divergence. It is noteworthy that this is not

a limitation of the solution, but the hardware architecture.

In this work we identify strategies that can minimize the

effects of divergence in execution time of parallel

applications. The optimization algorithm is currently the main

and most efficient way to reduce the impact of divergence,

forcing the implementation to follow a single path. A

commonly adopted technique consists in separating the code

into two parts, running a first leg and then the other. This was

the only way to deal with this problem on GPUs until a little

time ago. Although it is shown effective, in many cases the

time dependence of data makes this solution inappropriate.

With the Fermi GPUs series, Nvidia started implementing

concurrent kernels. We present a new technique to divide a

code divergence by using this technology. Preliminary tests

showed that we can reduce the divergence by creating

concurrent kernels.

In this paper we identify the mechanisms used to reduce

the impact of the difference in execution time of parallel

algorithms. Furthermore, we propose the use of concurrent

kernels based on new generations of GPUs, such as Kepler, as

an alternative in treating the problem.

The remainder of the paper is organized as follows.

Section 2 provides background on GPU’s evolution and

Unified Architecture. Section 3 describes the divergence

problem. Section 4 presents the optimizations of divergence,

evaluation methodology and results. Section 5 discusses

related work, and gives directions for future work.

2 Unified architecture

The first video cards created were simple and the severe

hardware limitations made unimaginable graphics processing

by them. Following the chronological evolution emerged

raster, fixed function and programmable devices. These last

one brought pixels and vertex processors, able to treat, only

and respectively, pixels and vertices. At that time, there were

not multi-core CPUs so the GPU was seen as an alternative to

increase the processing power in specific tasks. Thus,

researchers from different areas began to "consider" data input

of mathematical calculations as vertices and pixels, making the

use of these processors in solving mathematical equations

possible. For the first time a GPU was used with general-

purpose, giving rise to GPGPU (General Purpose GPU)

Processors of vertices and pixels did nothing beyond

their specific tasks, increasing the interest in the computational

power of devices, as well as the inconvenience of having to

map all that was wanted in vertices and pixels. In addition, the

processors were built only to the treat their structures, and an

application that performed more vertices or pixel would leave

the other processors idle.

Nvidia proposed a unified architecture in their cores [2],

creating a new architecture called CUDA (Compute Unified

Device Architecture). Some advantages over previous

architectures CUDA GPUs are:

• Memory random access: access to any region of memory

to read and write;

• Manageable user- Cache: threads can cooperate reading

and writing data in shared memory and any thread can

access the shared memory of its block ;

• Low learning curve: simple extensions of C language,

without requiring knowledge of graphics or graphics

APIs.

Programming models for GPU (as CUDA and OpenCL)

are designed to allow legacy programs to take advantage of

new features in a transparent way. In other words, programs

originally written for a particular architecture are scalable to

the following architecture. Also, allow the use of

heterogeneous systems, thus CPUs and GPUs are distinct and

separate memory devices. Each of them performs the function

for which they are best prepared.

CUDA facilitates programming since it allows

developers to focus on developing their algorithms without the

need to learn language specific mechanisms. Instead, it

provides a minimum length of the C / C + + to construct

parallel applications.

3 Divergence problem

During the execution of the code by the GPU, each

decoded instruction is sent to the scheduler. They remain

queued until despatch in execution units, often called warps.

This approach reduces the time for loading and decoding of

instructions by N execution units, however, it does not require

instructions to follow the same path. If there would be a piece

of code in which some instruction keep on processing, they

execute while the others wait for a different point of

divergence [3][4]. Thus, a conditional statement can result in

divergence when it is based on values that are particular to the

specific thread [5].

For example, one if instruction may cause the thread to

follow different paths, or, similarly, a loop may cause

divergence whether the conditions are based on the thread's

own values.

To demonstrate the impact of the divergence, we must

consider the following code, similar to what occurs in

problems of reducing vectors:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

if (threadIdx.x < 32)

{

 if (threadIdx.x < 16)

 {

 if (threadIdx.x < 8)

 func_a1();

 else

 funca2;

 }

 else

 {

 func_b();

 }

}

Listing 1: Divergence problem demonstration.

We will use the code in Listing 1 to illustrate how the

divergence can affect the efficiency. Its execution results in

data that are displayed in Figure 1.

Figure 1: Sample of how the divergence may have strong

impact on performance

The first line of code in Listing 1 eliminates all threads

of the block except the first 32 threads (first warp), the one we

will use for our analysis. This does not result in any difference

within a specific warp. The other warps of the block simply do

not scale to this session and wait.

Analyzing only the first warp, we observed that in line 3

the test threadIdx.x < 16 is done, what breaks the warp

is carried out exactly in half. In the graph first transition is

noticed, this operation does not result in actual divergence

since the CUDA kernels are organized in banks of 16 cores,

not 32. Thus, the scheduler cyclely sends instructions to two

or more sets of 16 cores and the paths of true and false

conditional statement run on cores from different banks.

In the subsequent step, the threads 16 to 31 call func_b

function (line 12), however, threads 0 to 15 have another

condition associated (line 05). Therefore, this time is not

based on half of the warp, but in a quarter of it. So, we need a

minimum of 16 threads for scheduling. Thus, the first eight

threads will proceed to the function func_a1 while the

remaining eight (8.. 15) await.

The functions func_b and func_a1 will continue

their instructions independently and shoot the second half of

the warps. This is less efficient than the search for a single

statement, but nevertheless, better than a sequential execution.

Eventually func_a1 will finish and func_a2 will start the

threads 0-7. Meanwhile, func_b might also have been

completed.

Analyzing the best result different levels of divergence

are perceived. The first one is great, without divergence. The

second one differs based on half of the warp but does not

result in real divergence, since they run in parallel. Dividing

the first half of warps into two groups, these should run in

series, as they will expect a stretch to be finished and only

then the next starts. Once again, dividing the first group in a

total of four paths they will also result in a serial execution

case.

4 Optimization of divergence

4.1 Naïve Test

An example of simple demonstration was created in

order to highlight the importance of separating different

kernels and create separate concurrent Kernels. Considering

that the program will receive, as input, a vector of k positions

filled with N numbers, which alternate between large and

small values, as shown in Figure 2 below:

i = 0 1 2 3 4 5 ... k-4 k-3 k-2 k-1 k

N = 5 5000 5 5000 5 5000 5 5000 5 5000 5 5000

Figure 2: Input of the First Demonstration Kernel.

In the next step, our test program will run on a kernel,

shown in Listing 2, a repetition by N times (with N being the

value of the position i of the input vector) and the input vector

is stored in global memory.

In our first test, we have a Naïve approach, which reads

data sequentially. We will have half the cores using a small

value and the other half using a large value (in the same block)

and it is hoped that the cores running the repetition with the

highest number of iterations dictate the overall runtime.

Next, we used an index thread strategy, forcing a block

to take the odd and another the even numbers. Our objective is

to allow two kernels to perform the same function

concurrently. Thus, we come to the result shown in Listing 3.

The kernels shown in listing 2 and 3 are equal in

function, however, we put some "intelligence" in the while

loop within lines 5 and 15 in Listing 3 in order to force these

kernels specifically deal with values from the same class (all

small or all large). Thus, the kernel02a will only treat

small values of Figure 2 while the kernel02b treats the

others.

01

02

03

04

05

06

07

08

09

__global__ void kernel01(int *a)

{

 int i = a[threadIdx.x];

 __shared__ int k;

 while (i > 0){

 i--;

 k+=i;

 }

}

Listing 2: Initial kernel.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

__global__ void kernel02a(int *a)

{

 int i = a[threadIdx.x];

 __shared__ int k;

 while (((i % 2 == 0) && i > 0)){

 i--;

 k+=i;

 }

}

__global__ void kernel02b(int *a)

{

 int i = a[threadIdx.x];

 __shared__ int k;

 while ((i % 2 != 0) && (i > 0)){

 i--;

 k+=i;

 }

}

Listing 3: Concurrents Kernels.

The Table 1 summarizes the execution times, and Figure

3 shows these results graphically comparing them:

Figura 3: Initial x Concurrents Kernels

 Normal time

 Concurrent time

Host Device
Normal

Time
Concurrent

Time

K10 Motorhead GeForce GTX 680 0,31466 0,01200

K10 Motorhead Tesla K10.G1.8GB 0,45114 0,01722

K10 Motorhead Tesla K10.G1.8GB 0,45142 0,01702

K20 - Clash Tesla K20c 0,49501 0,01869

K20 - Clash GeForce GTX 680 0,29312 0,06470

Orange Lab Pos GeForce GTX 480 0,57942 0,01533

Orange Lab Pos GeForce GTX 480 0,55824 0,01523

Table 1: Comparison of execution times in the first kernel

demonstration

4.2 Sum Reduction

A reduction algorithm extracts a single value from a

matrix, calculated by comparing every element of it. The

reduction may be to sum, to the maximum or minimum values,

of the components. These algorithms share the same structure.

A reduction may be performed sequentially stepping through

each element of the array. When an element is visited, the

action to be taken depends on the desired reduction. To sum

reduction, the current value is accumulated [1].

Listing 4 shows a CUDA kernel for reduction of sum.

The input matrix data were placed in main memory, the array

was divided so that each block CUDA reduce a portion of the

original matrix. The reduction will be made in device, using

the shared memory, in other words, there will be a shared

variant where the partial sums will be saved. Each iteration of

the line 6 loop is a round of reduction. The syncthreads ()

statement in the for loop ensures the necessary timing for the

performace of the previous iteration and to prepare the threads

for the next iteration. Each round of implementation of even

elements will contain the partial sums of each pair after

iteration until all sums are performed.

The kernel of Listing 4 has caused divergence of the

iteration loop of line 6. In this place only threads with even

threadIdx.x values perform the sum due to the condition

imposed on line 9. Such divergence can be reduced with a

change in the algorithm.

01

02

03

04

05

06

07

08

09

10

11

12

17

18

19

__global__ void sumReduceD(const Utype *a, Utype *sum)

{

 __shared__ int partialSum[arraySize];

 unsigned int t = threadIdx.x;

 partialSum[t] = a[t];

 for(int stride = 1; stride < blockDim.x; stride *= 2)

 {

 __syncthreads();

 if(t % (2*stride) == 0)

 {

 partialSum[t] += partialSum[t+stride];

 sum[0] = partialSum[t];

 }

 }

}

Listing 4: Divergent Reduction Sum

01

02

03

04

05

06

07

08

09

10

11

12

17

18

19

__global__ void sumReduceN(const Utype *a, Utype *sum)

{

 __shared__ int partialSum[arraySize];

 unsigned int t = threadIdx.x;

 partialSum[t] = a[t];

 for(int stride = blockDim.x >> 1; stride > 0; stride >>= 1)

 {

 __syncthreads();

 if(t < stride)

 {

 partialSum[t] += partialSum[t+stride];

 sum[0] = partialSum[t];

 }

 }

}

Listing 5: Optimized Sum Reduction.

The modified kernel in Listing 5 adds elements that are

in the middle of a section, rather than adding neighboring

elements. At the end of the first iteration, the sum is stored in

the first half of the array. At each iteration of the loop the

overall operation is divided by 2 by shifting step by one bit to

the right, an economical way to perform division by 2. Note

that the kernel in Listing 5 also has an IF (line 9) which

means that it will still have divergence, however, the amount

of threads that execute this instruction is minimal compared to

the previous case.

To verify the efficiency of concurrence we have unbundled the

kernel of Listing 5 in two others, each of them responsible for

performing half the reduction of sum.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

__global__ void sumReduceC1(const Utype *a, Utype *sum, long offset)

{

 if (threadIdx.x < offset)

 {

 __shared__ int partialSum[arraySize];

 unsigned int t = threadIdx.x;

 partialSum[t] = a[t];

 for(int stride = blockDim.x>>1; stride > 0; stride >>= 1)

 {

 __syncthreads();

 if(t < stride)

 {

 partialSum[t] += partialSum[t+stride];

 sum[0] = partialSum[t];

 }

 }

 }

}

__global__ void sumReduceC2(const Utype *a, Utype *sum, long offset)

{

 if (threadIdx.x >= offset)

 {

 __shared__ int partialSum[arraySize];

 unsigned int t = threadIdx.x;

 partialSum[t] = a[t];

 for(int stride = blockDim.x>>1; stride > 0; stride >>= 1)

 {

 __syncthreads();

 if(t < stride)

 {

 partialSum[t] += partialSum[t+stride];

 sum[0] = partialSum[t];

 }

 }

 }

}

Listing 6: Concurrent Sum Reduction

Host Device Normal Time Divergent Time Concurrent Time

K10 Motorhead ID - 0; GeForce GTX 680 0,01210 0,01523 0,01411

K10 Motorhead ID - 1; Tesla K10.G1.8GB 0,01834 0,02387 0,02256

K10 Motorhead ID - 2; Tesla K10.G1.8GB 0,01846 0,02390 0,02214

K20 - Clash ID - 0; Tesla K20c 0,02458 0,04464 0,03117

K20 - Clash ID - 1; GeForce GTX 680 0,01168 0,01533 0,01440

Table 2: Comparison of execution times on Sum Reduction Algorithm

Figure 4: Graph of execution times on Sum Reduction Algorithm

The sumReduceC1 and sumReduceC2 kernels in

Listing 6 run concurrently, each being responsible for

elements of the two halves of the array, delimited by the offset

variant. The Table 2 below shows the times taken in the

implementation to reduce the sum of an array with 1024

elements.

5 Conclusions and Futurework

Here we present the problem of disparity in kernels, ie,

the divergence that is the result of the emergence of distinct

branches of implementation due to conditional or repetitions

present in algorithms.

In this paper we propose a new approach to minimize the

effects of them through the use of concurrent kernels and

found satisfactory results that justify further study on the topic.

As future work, we propose algorithms to analyze

patterns in two suites used for investigation of parallel

applications. The Rodinia [6] suite is often used to measure

multi / many core and parallel data applications, covering a

wide range of parallel communication patterns, among them

applications of medical imaging, bioinformatics, physical

simulation, image processing, etc.. The Parboil [7] suite brings

a suite of applications useful to study the performance of the

architecture and compilers.

It is also intended to analyze the Cetus [8] which is a

source code translator for multicolored infrastructure that

fosters research in architecture for compiler optimizations with

automatic parallelization.

Thus, we seek to list a series of strategies to map

different types of problems, enabling transform a single kernel

into n concurrent kernels. We hope to contribute to a set of

heuristics that migth assist in mapping, preferably in an

automatic way and with less divergence as possible.

6 References

[1] D. B. Kirk and W. W. Hwu, Programming massively

parallel processors: a hands-on approach. Morgan Kaufmann,

2010.

[2] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,

“NVIDIA Tesla: A unified graphics and computing

architecture,” Micro, IEEE, vol. 28, no. 2, pp. 39–55, 2008.

[3] S. Cook, CUDA Programming: A Developer’s Guide to

Parallel Computing with GPUs. Newnes, 2012.

[4] B. Coutinho, D. Sampaio, F. M. Q. Pereira, and W.

Meira Jr., “Divergence Analysis and Optimizations,” in

Proceedings of the 2011 International Conference on Parallel

Architectures and Compilation Techniques, 2011, pp. 320–

329.

[5] T. D. Han and T. S. Abdelrahman, “Reducing branch

divergence in GPU programs,” in Proceedings of the Fourth

Workshop on General Purpose Processing on Graphics

Processing Units, 2011, pp. 3:1–3:8.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,

S.-H. Lee, and K. Skadron, “Rodinia: A benchmark suite for

 Normal Time

 Divergent Time

 Concurrent Time

heterogeneous computing,” in Workload Characterization,

2009. IISWC 2009. IEEE International Symposium on, 2009,

pp. 44–54.

[7] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W.

Chang, N. Anssari, G. D. Liu, and W. M. W. Hwu, “Parboil:

A revised benchmark suite for scientific and commercial

throughput computing,” Cent. Reliab. High-Performance

Comput., 2012.

[8] H. Bae, D. Mustafa, J.-W. Lee, Aurangzeb, H. Lin, C.

Dave, R. Eigenmann, and S. Midkiff, “The Cetus Source-to-

Source Compiler Infrastructure: Overview and Evaluation,”

Int. J. Parallel Program., vol. 41, no. 6, pp. 753–767, 2013.

