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Abstract - Graphics Processing Units have been created with 

the objective of accelerating the construction and processing 

of graphic images. In its historical evolution line, concerned 

with the large computational capacity inherent, these devices 

started to be used for general purposes. However, the design 

of the GPUs don´t work well with divergent algorithms, 

mainly conditionals and repetitions. In this work we present a 

strategy for finding the divergence root of the kernels and try 

to deduce alternative solutions, decomposing them into 

concurrent kernels. We developed mechanisms for the user in 

order to easily readapt his code and take advantages of 

architectures that support concurrent kernels. 

Keywords: Divergence; Concurrents Kernels; Warps; 

GPGPU. 

 

1 Introduction 

GPUs (Graphics Processing Units) were designed to 

make to process polygons, and they have a peculiar feature: 

the same sequence of operations to different data. Following 

its historical evolution, current GPUs keep following this 

paradigm in its architectural models. In this style of execution, 

all the hardware involved executes the same instruction, 

before moving on to the next one. In fact the model brings 

benefits by reducing the cost of production and offering an 

optimized memory access. The new architecture Kepler 

GK110, is called by the NVidia “The next generation of 

GPUs” and still uses the same concepts of multiprocessor 

streams [1]. We believe that this architecture remains in 

awhile because, in practice, this restriction is what makes 

technologically feasible to massively parallel architecture. 

Diverging code is defined as the fact that a stream of 

code executed in a parallel environment can take different 

directions in each of its instances. In Single Instruction 

Multiple Thread (SIMT) architecture, occurring divergence, 

all statements that do not follow the same path are forced to 

wait at the point of divergence. It is noteworthy that this is not 

a limitation of the solution, but the hardware architecture. 

In this work we identify strategies that can minimize the 

effects of divergence in execution time of parallel 

applications. The optimization algorithm is currently the main 

and most efficient way to reduce the impact of divergence, 

forcing the implementation to follow a single path. A 

commonly adopted technique consists in separating the code 

into two parts, running a first leg and then the other. This was 

the only way to deal with this problem on GPUs until a little 

time ago. Although it is shown effective, in many cases the 

time dependence of data makes this solution inappropriate. 

With the Fermi GPUs series, Nvidia started implementing 

concurrent kernels. We present a new technique to divide a 

code divergence by using this technology. Preliminary tests 

showed that we can reduce the divergence by creating 

concurrent kernels. 

In this paper we identify the mechanisms used to reduce 

the impact of the difference in execution time of parallel 

algorithms. Furthermore, we propose the use of concurrent 

kernels based on new generations of GPUs, such as Kepler, as 

an alternative in treating the problem. 

The remainder of the paper is organized as follows. 

Section 2 provides background on GPU’s evolution and 

Unified Architecture. Section 3 describes the divergence 

problem. Section 4 presents the optimizations of divergence, 

evaluation methodology and results. Section 5 discusses 

related work, and gives directions for future work. 

2 Unified architecture 

The first video cards created were simple and the severe 

hardware limitations made unimaginable graphics processing 

by them. Following the chronological evolution emerged 

raster, fixed function and programmable devices. These last 

one brought pixels and vertex processors, able to treat, only 

and respectively, pixels and vertices. At that time, there were 

not multi-core CPUs so the GPU was seen as an alternative to 

increase the processing power in specific tasks. Thus, 

researchers from different areas began to "consider" data input 

of mathematical calculations as vertices and pixels, making the 

use of these processors in solving mathematical equations 

possible. For the first time a GPU was used with general-

purpose, giving rise to GPGPU (General Purpose GPU) 



Processors of vertices and pixels did nothing beyond 

their specific tasks, increasing the interest in the computational 

power of devices, as well as the inconvenience of having to 

map all that was wanted in vertices and pixels. In addition, the 

processors were built only to the treat their structures, and an 

application that performed more vertices or pixel would leave 

the other processors idle. 

Nvidia proposed a unified architecture in their cores [2], 

creating a new architecture called CUDA (Compute Unified 

Device Architecture). Some advantages over previous 

architectures CUDA GPUs are: 

• Memory random access: access to any region of memory 

to read and write; 

• Manageable user- Cache: threads can cooperate reading 

and writing data in shared memory and any thread can 

access the shared memory of its block ; 

• Low learning curve: simple extensions of C language, 

without requiring knowledge of graphics or graphics 

APIs. 

Programming models for GPU (as CUDA and OpenCL) 

are designed to allow legacy programs to take advantage of 

new features in a transparent way. In other words, programs 

originally written for a particular architecture are scalable to 

the following architecture. Also, allow the use of 

heterogeneous systems, thus CPUs and GPUs are distinct and 

separate memory devices. Each of them performs the function 

for which they are best prepared. 

CUDA facilitates programming since it allows 

developers to focus on developing their algorithms without the 

need to learn language specific mechanisms. Instead, it 

provides a minimum length of the C / C + + to construct 

parallel applications. 

3 Divergence problem 

During the execution of the code by the GPU, each 

decoded instruction is sent to the scheduler. They remain 

queued until despatch in execution units, often called warps. 

This approach reduces the time for loading and decoding of 

instructions by N execution units, however, it does not require 

instructions to follow the same path. If there would be a piece 

of code in which some instruction keep on processing, they 

execute while the others wait for a different point of 

divergence [3][4]. Thus, a conditional statement can result in 

divergence when it is based on values that are particular to the 

specific thread [5]. 

For example, one if instruction may cause the thread to 

follow different paths, or, similarly, a loop may cause 

divergence whether the conditions are based on the thread's 

own values. 

To demonstrate the impact of the divergence, we must 

consider the following code, similar to what occurs in 

problems of reducing vectors: 
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if (threadIdx.x < 32) 

{ 

    if (threadIdx.x < 16) 

    { 

        if (threadIdx.x < 8) 

            func_a1(); 

        else 

            funca2; 

    } 

    else 

    { 

        func_b(); 

    } 

} 

Listing 1: Divergence problem demonstration. 

We will use the code in Listing 1 to illustrate how the 

divergence can affect the efficiency. Its execution results in 

data that are displayed in Figure 1. 

Figure 1: Sample of how the divergence may have strong 

impact on performance 

The first line of code in Listing 1 eliminates all threads 

of the block except the first 32 threads (first warp), the one we 

will use for our analysis. This does not result in any difference 

within a specific warp. The other warps of the block simply do 

not scale to this session and wait. 

Analyzing only the first warp, we observed that in line 3 

the test threadIdx.x < 16 is done, what breaks the warp 

is carried out exactly in half. In the graph first transition is 

noticed, this operation does not result in actual divergence 

since the CUDA kernels are organized in banks of 16 cores, 

not 32. Thus, the scheduler cyclely sends instructions to two 

or more sets of 16 cores and the paths of true and false 

conditional statement run on cores from different banks. 

In the subsequent step, the threads 16 to 31 call func_b 

function (line 12), however, threads 0 to 15 have another 

condition associated (line 05). Therefore, this time is not 

based on half of the warp, but in a quarter of it. So, we need a 

minimum of 16 threads for scheduling. Thus, the first eight 



threads will proceed to the function func_a1 while the 

remaining eight (8.. 15) await. 

The functions func_b and func_a1 will continue 

their instructions independently and shoot the second half of 

the warps. This is less efficient than the search for a single 

statement, but nevertheless, better than a sequential execution. 

Eventually func_a1 will finish and func_a2 will start the 

threads 0-7. Meanwhile, func_b might also have been 

completed. 

Analyzing the best result different levels of divergence 

are perceived. The first one is great, without divergence. The 

second one differs based on half of the warp but does not 

result in real divergence, since they run in parallel. Dividing 

the first half of warps into two groups, these should run in 

series, as they will expect a stretch to be finished and only 

then the next starts. Once again, dividing the first group in a 

total of four paths they will also result in a serial execution 

case. 

4 Optimization of divergence 

4.1 Naïve Test 

An example of simple demonstration was created in 

order to highlight the importance of separating different 

kernels and create separate concurrent Kernels. Considering 

that the program will receive, as input, a vector of k positions 

filled with N numbers, which alternate between large and 

small values, as shown in Figure 2 below: 

 

i = 0 1 2 3 4 5 ... k-4 k-3 k-2 k-1 k 

N = 5 5000 5 5000 5 5000 5 5000 5 5000 5 5000 

Figure 2: Input of the First Demonstration Kernel. 

 

In the next step, our test program will run on a kernel, 

shown in Listing 2, a repetition by N times (with N being the 

value of the position i of the input vector) and the input vector 

is stored in global memory. 

In our first test, we have a Naïve approach, which reads 

data sequentially. We will have half the cores using a small 

value and the other half using a large value (in the same block) 

and it is hoped that the cores running the repetition with the 

highest number of iterations dictate the overall runtime. 

Next, we used an index thread strategy, forcing a block 

to take the odd and another the even numbers. Our objective is 

to allow two kernels to perform the same function 

concurrently. Thus, we come to the result shown in Listing 3. 

The kernels shown in listing 2 and 3 are equal in 

function, however, we put some "intelligence" in the while 

loop within lines 5 and 15 in Listing 3 in order to force these 

kernels specifically deal with values from the same class (all 

small or all large). Thus, the kernel02a will only treat 

small values of Figure 2 while the kernel02b treats the 

others. 
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__global__ void kernel01(int *a) 

{ 

    int i = a[threadIdx.x]; 

    __shared__ int k; 

    while (i > 0){ 

        i--; 

        k+=i; 

    } 

} 

Listing 2: Initial kernel. 
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__global__ void kernel02a(int *a) 

{ 

    int i = a[threadIdx.x]; 

    __shared__ int k; 

    while (((i % 2 == 0) && i > 0)){ 

        i--; 

        k+=i; 

    } 

} 

 

__global__ void kernel02b(int *a) 

{ 

    int i = a[threadIdx.x]; 

    __shared__ int k; 

    while ((i % 2 != 0) && (i > 0)){ 

        i--; 

        k+=i; 

    } 

} 

Listing 3: Concurrents Kernels. 

The Table 1 summarizes the execution times, and Figure 

3 shows these results graphically comparing them: 

Figura 3: Initial x Concurrents Kernels 

 

  Normal time 

  Concurrent time 



Host Device 
Normal 

Time 
Concurrent 

Time 

K10 Motorhead GeForce GTX 680 0,31466 0,01200 

K10 Motorhead Tesla K10.G1.8GB 0,45114 0,01722 

K10 Motorhead Tesla K10.G1.8GB 0,45142 0,01702 

K20 - Clash Tesla K20c 0,49501 0,01869 

K20 - Clash GeForce GTX 680 0,29312 0,06470 

Orange Lab Pos GeForce GTX 480 0,57942 0,01533 

Orange Lab Pos GeForce GTX 480 0,55824 0,01523 

Table 1: Comparison of execution times in the first kernel 

demonstration 

 

4.2 Sum Reduction 

A reduction algorithm extracts a single value from a 

matrix, calculated by comparing every element of it. The 

reduction may be to sum, to the maximum or minimum values, 

of the components. These algorithms share the same structure. 

A reduction may be performed sequentially stepping through 

each element of the array. When an element is visited, the 

action to be taken depends on the desired reduction. To sum 

reduction, the current value is accumulated [1]. 

Listing 4 shows a CUDA kernel for reduction of sum. 

The input matrix data were placed in main memory, the array 

was divided so that each block CUDA reduce a portion of the 

original matrix. The reduction will be made in device, using 

the shared memory, in other words, there will be a shared 

variant where the partial sums will be saved. Each iteration of 

the line 6 loop is a round of reduction. The syncthreads () 

statement in the for loop ensures the necessary timing for the 

performace of the previous iteration and to prepare the threads 

for the next iteration. Each round of implementation of even 

elements will contain the partial sums of each pair after 

iteration until all sums are performed. 

The kernel of Listing 4 has caused divergence of the 

iteration loop of line 6. In this place only threads with even 

threadIdx.x values perform the sum due to the condition 

imposed on line 9. Such divergence can be reduced with a 

change in the algorithm. 
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__global__ void sumReduceD(const Utype *a, Utype *sum) 

{ 

    __shared__ int partialSum[arraySize]; 

    unsigned int t = threadIdx.x; 

    partialSum[t] = a[t]; 

    for(int stride = 1; stride < blockDim.x; stride *= 2) 

    { 

        __syncthreads(); 

        if(t % (2*stride) == 0) 

        { 

            partialSum[t] += partialSum[t+stride]; 

            sum[0] = partialSum[t]; 

        } 

    } 

} 

Listing 4: Divergent Reduction Sum 
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__global__ void sumReduceN(const Utype *a, Utype *sum) 

{ 

 __shared__ int partialSum[arraySize]; 

 unsigned int t = threadIdx.x; 

 partialSum[t] = a[t]; 

 for(int stride = blockDim.x >> 1; stride > 0; stride >>= 1) 

 { 

  __syncthreads(); 

  if(t < stride) 

  { 

   partialSum[t] += partialSum[t+stride]; 

   sum[0] = partialSum[t]; 

  } 

 } 

} 

Listing 5: Optimized Sum Reduction. 

 



The modified kernel in Listing 5 adds elements that are 

in the middle of a section, rather than adding neighboring 

elements. At the end of the first iteration, the sum is stored in 

the first half of the array. At each iteration of the loop the 

overall operation is divided by 2 by shifting step by one bit to 

the right, an economical way to perform division by 2. Note 

that the kernel in Listing 5 also has an IF (line 9) which 

means that it will still have divergence, however, the amount 

of threads that execute this instruction is minimal compared to 

the previous case. 

To verify the efficiency of concurrence we have unbundled the 

kernel of Listing 5 in two others, each of them responsible for 

performing half the reduction of sum. 
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__global__ void sumReduceC1(const Utype *a, Utype *sum, long offset) 

{ 

    if (threadIdx.x < offset) 

    { 

        __shared__ int partialSum[arraySize]; 

        unsigned int t = threadIdx.x; 

        partialSum[t] = a[t]; 

        for(int stride = blockDim.x>>1; stride > 0; stride >>= 1) 

        { 

            __syncthreads(); 

            if(t < stride) 

            { 

                partialSum[t] += partialSum[t+stride]; 

                sum[0] = partialSum[t]; 

            } 

        } 

    } 

} 

 

__global__ void sumReduceC2(const Utype *a, Utype *sum, long offset) 

{ 

    if (threadIdx.x >= offset) 

    { 

        __shared__ int partialSum[arraySize]; 

        unsigned int t = threadIdx.x; 

        partialSum[t] = a[t]; 

        for(int stride = blockDim.x>>1; stride > 0; stride >>= 1) 

        { 

            __syncthreads(); 

            if(t < stride) 

            { 

                partialSum[t] += partialSum[t+stride]; 

                sum[0] = partialSum[t]; 

            } 

        } 

    } 

} 

Listing 6: Concurrent Sum Reduction 

 

 

Host Device Normal Time Divergent Time Concurrent Time 

K10 Motorhead ID - 0; GeForce GTX 680 0,01210 0,01523 0,01411 

K10 Motorhead ID - 1; Tesla K10.G1.8GB 0,01834 0,02387 0,02256 

K10 Motorhead ID - 2; Tesla K10.G1.8GB 0,01846 0,02390 0,02214 

K20 - Clash ID - 0; Tesla K20c 0,02458 0,04464 0,03117 

K20 - Clash ID - 1; GeForce GTX 680 0,01168 0,01533 0,01440 

Table 2: Comparison of execution times on Sum Reduction Algorithm 

 

 

 



Figure 4: Graph of execution times on Sum Reduction Algorithm  

 

The sumReduceC1 and sumReduceC2 kernels in 

Listing 6 run concurrently, each being responsible for 

elements of the two halves of the array, delimited by the offset 

variant. The Table 2 below shows the times taken in the 

implementation to reduce the sum of an array with 1024 

elements. 

5 Conclusions and Futurework 

Here we present the problem of disparity in kernels, ie, 

the divergence that is the result of the emergence of distinct 

branches of implementation due to conditional or repetitions 

present in algorithms. 

In this paper we propose a new approach to minimize the 

effects of them through the use of concurrent kernels and 

found satisfactory results that justify further study on the topic. 

As future work, we propose algorithms to analyze 

patterns in two suites used for investigation of parallel 

applications. The Rodinia [6] suite is often used to measure 

multi / many core and parallel data applications, covering a 

wide range of parallel communication patterns, among them 

applications of medical imaging, bioinformatics, physical 

simulation, image processing, etc.. The Parboil [7] suite brings 

a suite of applications useful to study the performance of the 

architecture and compilers. 

It is also intended to analyze the Cetus [8] which is a 

source code translator for multicolored infrastructure that 

fosters research in architecture for compiler optimizations with 

automatic parallelization. 

Thus, we seek to list a series of strategies to map 

different types of problems, enabling transform a single kernel 

into n concurrent kernels. We hope to contribute to a set of 

heuristics that migth assist in mapping, preferably in an 

automatic way and with less divergence as possible. 
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