
Compiler-Level Explicit Cache
for a GPGPU Programming Framework

Tomoharu Kamiya1, Takanori Maruyama1, Kazuhiko Ohno1, and Masaki Matsumoto2

1Department of Information Engineering, Mie University, Tsu,Mie, Japan
2Medical Engineering Institute, Inc., Tsu, Mie, Japan

Abstract— GPU is widely used for high-performance com-
puting. However, standard programming framework such as
CUDA and OpenCL requires low-level specifications, thus
programming is difficult and the performance is not portable.
Therefore, we are developing a new framework named MESI-
CUDA. Providing virtual shared variables accessible from
both CPU and GPU, MESI-CUDA hides complex memory
architecture and eliminates low-level API function calls.
However, the performance of current implementation is not
sufficient because of the large memory access latency. There-
fore, we propose a code-optimization scheme that utilizes
fast on-chip shared memories as a compiler-level explicit
cache of the off-chip device memory. The compiler estimates
access count/range of arrays using static analysis. For
mostly reused variables, code is modified to make copy on
the shared memory and access the copy, using small shared
memories efficiently. As the result of evaluation, our scheme
achieved 13%–192% speedup in two of three programs.

Keywords: GPGPU, CUDA, parallel programming, compiler,
optimization

1. Introduction
The performance of Graphics Processing Unit (GPU)

has been improved rapidly [1]. Therefore, recent GPUs
are used as generic high-performance computing resources.
Such GPU usage is called General Purpose computation on
Graphics Processing Unit (GPGPU) [2]. However, current de
facto GPGPU programming frameworks such as CUDA [3]
and OpenCL [4] are still difficult to use. They provide APIs
for low-level specifications such as memory allocation and
data transfer. Although they enable the user to hand-optimize
the performance of the program, it requires deep knowledge
of GPU architecture. Furthermore, such optimization may
not be portable to the different GPU models.

Therefore, we are developing a new framework named
MESI-CUDA [5], [6] for easier GPGPU programming.
MESI-CUDA is a CUDA variation which hides low-level
GPU features. It provides virtual shared variables which can
be accessed from both CPU and GPU. Explicit memory
management or data transfer are not needed. The user can
write MESI-CUDA program without low-level specifications
expecting automatic optimization by the compiler.

However, current optimization is not sufficient. One rea-
son is that current implementation uses only off-chip de-
vice memory. Fast on-chip GPU memories called shared
memories are not used. Thus we propose an optimization
scheme that automatically utilize the shared memories as
compiler-managed caches of the device memory. Based on
the result of static analysis, our scheme determines variables
to cache so that device memory accesses are minimized.
Then copying/writing back code is inserted and the code
accessing the variables is modified. Thus the target program
is optimized to use shared memories as explicit caches.

This paper is organized as follows: Section 2 gives a brief
introduction of GPU/CUDA/MESI-CUDA and points out the
current issue. In Section 3 we discuss the related works.
Section 4 details the proposed scheme and Section 5 shows
the evaluation results. In Section 6, we state the conclusion.

2. Background
2.1 GPU Architecture

GPU is a collection of streaming multiprocessors (SM),
which have certain number of CUDA cores. Although
CUDA cores are simpler than typical CPU cores, a GPU has
hundreds or thousands of CUDA cores. Thus the potential
performance of a GPU is much higher than a CPU.

Fig. 1 shows a typical architecture of a GPU card installed
on a PC. Similarly as the CPU cores share the main memory
(called host memoryin CUDA programming), all CUDA
cores share a large off-chipdevice memory. Furthermore,
each SM has a small on-chip memory calledshared memory,
which is shared by all CUDA cores in the SM. We do
not discuss other memories, such as constant and texture
memories, because the proposed scheme does not use them.

NVIDIA GPU architecture have been evolved in each
generations Tesla/Fermi/Kepler changing specifications and
introducing new features. Different models often have differ-
ent specifications even if they belong to the same generation.

2.2 CUDA
CUDA (Compute Unified Device Architecture) [3], [7],

[8] is a GPGPU programming framework using extended
C/C++ or Fortran. Fig. 2 shows a (non-optimized) matrix
multiplication program using CUDA. The additional code
required for parallel programming is shown in bold font.



device memory

shared
memory

shared
memory

...

host memory
PCIe

SM SMCPU 
cores

GPU

CUDA 
cores

CPU

Figure 1: GPU Architecture

1 #define N 1024
2 #define BX 128
3 #define S (N*N*sizeof(int))
4 int ha[N][N], hb[N][N], hc[N][N];
5 __global__

void transpose(int a[][N], int b[][N], int c[][N]){
6 int k;
7 int row = blockDim.y*blockIdx.y+threadIdx.y;
8 int col = blockDim.x*blockIdx.x+threadIdx.x;
9 c[row][col] = 0;

10 for(k = 0 ; k < N ; k++){
11 c[row][col] += a[row][k] * b[k][col];
12 }
13 }
14 void init_array(int d[N][N]){. . .}
15 void output_array(int d[N][N]){. . .}
16 int main(int argc, char *argv[]){
17 int *da, *db, *dc;
18 dim3 dimGrid(N/BX, N);
19 cudaMalloc(&da, S);
20 cudaMalloc(&db, S);
21 cudaMalloc(&dc, S);
22 init_array(ha);
23 init_array(hb);
24 cudaMemcpy(da, (int*)ha, S, cudaMemcpyHostToDevice);
25 cudaMemcpy(db, (int*)hb, S, cudaMemcpyHostToDevice);
26 transpose<<<dimGrid, BX>>>

((int(*)[N]))da,(int(*)[N]))db,(int(*)[N]))dc);
27 cudaMemcpy((int*)hc, dc, S, cudaMemcpyDeviceToHost);
28 output_array(hc);
29 cudaFree(da);
30 cudaFree(db);
31 cudaFree(dc);
32 }

Figure 2: CUDA Matrix Multiplication

In CUDA, CPU and GPU are calledhost and device,
respectively. Functions, declared with the__device__
or __global__ qualifier, are calledkernel functionsand
executed on the device (Fig. 2l. 5–13). The other functions
(called host functionsin this paper) are executed on the
host (l. 14–32). To start computation on the GPU, any host
function invokes a__global__ kernel function (called
kernel invocation) specifying the number of threads (l. 26).
Then, the created GPU threads execute the kernel function.
In this paper, we simply call GPU threads asthreads.

CUDA usesgrids andblocksfor controlling thread map-
ping to data and physical resources. A block is a group of
threads executed on the same SM, and a grid is a group of
blocks of the same size. A kernel invocation creates a grid
with the specified grid/block sizes, which are the numbers
of total blocks and threads per block, respectively.

Table 1: CUDA Built-in variables
gridDim.x, gridDim.y, gridDim.z grid size (# of blocks)
blockIdx.x, blockIdx.y, blockIdx.z block index (in the grid)
blockDim.x, blockDim.y, blockDim.z block size (# of threads)
threadIdx.x, threadIdx.y, threadIdx.z thread index (in the block)

The grid/block sizes can be specified as integer values
or 3D vectors using a built-in typedim3. Fig. 2 program
creates a grid ofN/BX×N blocks and each block consists
of BX threads (Fig. 2l. 18, 26). The grid/block sizes are not
limited by the numbers of SMs and CUDA cores; blocks and
threads are automatically mapped to the physical resources.

Grid/block sizes and block/thread indices can be obtained
using built-in variables shown in Table 1. Using the variables
in the index expressions of arrays, each thread can make
the same computation on the different array element. In the
kernel functiontranspose() of Fig. 2 program,row and
col are computed using block/thread indices so each thread
computes different element of the arrayc (l. 7–12).

The host/device memories are only accessible from
CPU/CUDA cores, respectively. To share data between CPU
and GPU, memory allocations on both memories and data
transfers between them are required. In CUDA program-
ming, the user must explicitly describe such low-level behav-
iors calling API functions: memory allocation/deallocation
calling cudaMalloc()/cudaFree() (l. 19–21, 29–31)
and data transfer callingcudaMemcpy() (l. 24–25, 27).

2.3 CUDA Optimization Techniques
In CUDA programming, hand-optimization considering

the architecture-level features of the target GPU often largely
contributes achieving high-performance.

2.3.1 Controlling Concurrency/Parallelism

Because each SM executes awarp of 32 threads in a
SIMD manner, the thread block size should be an integral
multiple of the warp size 32. It is better to have multiple
warps in a block because the execution can be switched to
hide the latency when the active warp is stalled on memory
accesses. The number of blocks also should be large enough
so that concurrent blocks run on each SM.

2.3.2 Optimizing Memory Usage

The parallel device memory accesses in a warp are coa-
lesced if the requested data are in the same L2 cache line
of 128 bytes, but otherwise they are serialized. Thus, the
threads in a warp are better to access the neighboring data
on the memory at the same time. [8].

Another memory-usage optimization is allocating fre-
quently used data on the shared memories. Because their
access latency is much smaller, they can be used as caches
of the device memory. Although CUDA enables shared
memories to be configured as L1 caches, the performance is



often not sufficient. Their size of 48KB1 is too small and
cached data tend to be not reused when threads are scanning
large arrays. Thus explicit caching on the application layer
is used as an optimization.

A local variable of a kernel function can be allocated on
the shared memory using__shared__ qualifier. However,
explicit copy from/to the device memory is needed in the
function because direct copying between the host and shared
memories is not possible. Such variable is shared among all
threads in the block, thus explicit synchronization calling
__syncthreads() may be needed.

2.3.3 Reducing Data Transfer Overhead

The data transfer between host/device memories can be
another bottleneck of performance. Avoiding fine-grained
transfers or overlapping transfers/kernel executions using
asynchronous transfer functions improves the performance.

2.4 MESI-CUDA
CUDA programming API is based on the complex GPU

architecture. Although such low-level API enables hand-
tuning considering hardware specifications, it is difficultand
may not be efficient on other GPU models. Therefore we
are developing an easier GPGPU programming framework
MESI-CUDA[5], [6], hiding low-level features from the user.

In MESI-CUDA, basic parallelization scheme is same as
CUDA: writing host/kernel functions for CPU/CUDA cores
and invoking the latter from the former. We do not hide
this explicit parallelization because the characteristics of
CUDA cores are quite different from the CPU cores. For
example, CUDA cores can run fine-grained threads with
small overhead, but branch divergent code is inefficient. It
would be unpractical to ignore such differences in high-
performance computing using GPU.

On the other hand, we adopted a virtual shared memory
model that all CPU/CUDA core share a single global mem-
ory (Fig. 3). Actually, only global variables defined with
__global__ qualifier are shared. To avoid confusing with
the CUDA variables defined with__shared__ qualifier,
we call our shared variables asvirtual shared variablesor
VS variables. This design is due to the following reasons:

1) GPU has no hardware/OS support to implement
generic virtual shared memory. Virtual-sharing of the
specified variables can be implemented at compiler-
level, using static analysis and inserting appropriate
data transfer code between host/device memories.

2) Because the cores are heterogeneous, the roles of
host/device are clear. Many working variables are ac-
cessed only on either of the host/device. Thus explicit
sharing of minimum variables is safe and also efficient.

Generally, shared memory based parallel programming
requires synchronization and mutual exclusion. However,

1User-available size is currently 48KB of physical 64KB memory.

...

virtual&global shared memory

CPU 
cores

GPU

CUDA 
cores

CPU

Figure 3: MESI-CUDA Programming Model

1 #define N 1024
2 #define BX 128
3 __global__int ga[N][N], gb[N][N], gc[N][N];
4 __global__
void transpose(int a[][N], int b[][N], int c[][N]){

5 int k;
6 int row = blockDim.y*blockIdx.y+threadIdx.y;
7 int col = blockDim.x*blockIdx.x+threadIdx.x;
8 c[row][col] = 0;
9 for(k = 0 ; k < N ; k++){

10 c[row][col] += a[row][k] * b[k][col];
11 }
12 }
13 void init_array(int d[N][N]){. . .}
14 void output_array(int d[N][N]){. . .}
15 int main(){
16 init_array(ga);
17 init_array(gb);
18 transpose<<<dimGrid, BX>>>

((int(*)[N]))ga,(int(*)[N]))gb,(int(*)[N]))gc);
19 output_array(gc);
20 }

Figure 4: MESI-CUDA Matrix Multiplication

data access races are usually avoided in GPU programming
because of the poor synchronization mechanism. Thus we
adopt implicit synchronization that the shared values are
made logically consistent on each kernel invocation.

Without low-level description of memory management
and data transfer2, the user can concentrate on device-
independent parallel algorithm. For example, the matrix
multiplication program in Fig. 2 can be simplified using
MESI-CUDA as shown in Fig. 4. The additional code
required for parallel programming in MESI-CUDA is shown
in bold font. The arrays for 2D matrices are defined as
VS variables and can be accessed from both host/kernel
functions (Fig. 4l. 3) 3. We support variable-length array
and dynamic allocation of VS variables [6], but in this paper
we only discuss VS variables of static sizes.

The MESI-CUDA compiler is a translator to CUDA and
generates low-level code for memory management and data
transfer. Our research goal is to automatically apply the

2To make MESI-CUDA upper-compatible to CUDA, we did not remove
low-level API functions. If the optimization of MESI-CUDA compiler is
not sufficient, the user can hand-optimize like CUDA.

3If the input/output variables of multiplication is fixed toga, gb, andgc,
they can be directly accessed in kernel functions and passing as function
arguments is not needed.



optimizations described in Section 2.3 and achieve high
performance like hand-optimized CUDA programs.

3. Related Works
The latest CUDA 6 [7] and Kepler GPUs implemented

Unified Memory, which enables to allocatemanaged memory
by either statically defining a variable with__managed__
qualifier or dynamically callingcudaMallocManaged().
Such memory can be accessed from both CPU and GPU.

The features are almost same with MESI-CUDA’s VS
variables; only user-specified data is logically shared and
they are automatically copied between host/device mem-
ories. The large difference is that VS variables are im-
plemented in compiler-level, while the managed memory
is implemented in hardware/driver-level. Our advantage is
that compile-time optimization is possible using static anal-
ysis. For example, asynchronous data copying code can
be inserted where the data transfer and kernel executions
are overlapped. Another example is the synchronizations
between host and device. MESI-CUDA automatically inserts
synchronization code to maximize their parallel execution,
while CUDA 6 requires explicit synchronization calling
cudaDeviceSynchronize() or setting a environment
variableCUDA_LAUNCH_BLOCKING as 1 to automatically
synchronize for every kernel invocation.

The main purpose of Unified Memory is easier GPGPU
programming and hand-optimization using conventional
low-level API is encouraged for high-performance. The goal
of MESI-CUDA is to hide optimization under the compiler.
However, generating code using new CUDA features may
help to utilize hardware/driver supports for such features.

OpenACC [9] or OpenMP-to-CUDA translation [10], [11]
are another GPGPU approach without low-level specifi-
cations. In these programming frameworks, a sequential
program with some parallelizing directives is compiled into a
parallel program executable on GPU. They have advantages
on usability; abstract directives are easier than low-level API
functions, sequential programs can be parallelized easily, and
the program is portable to different GPU models or other
heterogeneous multi-cores. However, their performance de-
pends to the compiler optimization, which is usually worse
compared with hand-optimized CUDA code [12]. As men-
tioned in Section 2.4, we consider explicit and heterogeneous
parallel programming is necessary for high-performance.

For various input languages, schemes for automatic gen-
eration and optimization of CUDA low-level code are de-
veloped. CUDA-Lite [13] automatically generates memory
access code from user specified annotations, optimizing
accesses using shared memories. Yang, et al. [14] optimize
memory accesses in CUDA kernel functions using shared
memories for coalescing accesses to the device memory.
Although our scheme is similar to these approaches, we
do not assume additional annotations by the user and it

is supposed to be a part of global optimization including
mapping and scheduling in future.

4. Proposed Scheme
Current implementation of MESI-CUDA allocates area

for virtual shared (VS) variables on host/device memories.
Therefore, every access to the VS variables on GPU is
a access to the device memory. By caching VS variables
on shared memories, the memory access latency is largely
reduced and the performance will be improved. Therefore,
we propose a new scheme that the compiler automatically
makes the optimization of explicit caching mentioned in
Section 2.3.2.

For simplicity, we discuss the case that a kernel function
f is invoked by the following statement, whereSg, Sb are
integer values:

f<<<Sg, Sb>>>(. . .);

The values ofGridDim.x andBlockDim.x will be Sg,
Sb, respectively. Iff calls other device functions, the anal-
ysis and code generation are extent to cover such functions.
We also denote the size of available shared memory per
block asC. On current GPU models,C=48KB but it may be
changed in the future models. Furthermore, using a smaller
value asC suppresses the shared memory usage per block,
which can increase concurrent blocks per SM.

4.1 Caching Strategy
The scope of variables defined with__shared__ qual-

ifier is within the defined kernel functionf . Thus the
caching candidates are the variables which are on the device
memory and accessed inf . Assuming that enough registers
are available for local variables inf , VS variables and
dereferences of pointer arguments will be the device memory
accesses. We denote the list of caching candidate asV and
include all such variables inV as the initial value.

Because each access latency is reduced for the cached
variables, caching is more effective if the number of ac-
cessing the variable is larger. However, copying from/to the
device memory causes another overhead which increases
according to the variable size.

If the variable is an array, not all elements may be
accessed in a block. So caching the set of accessed array
elements is enough. However, static analysis may not obtain
strict set of accessed elements. Furthermore, generating
efficient access code is difficult for irregular access patterns.
Therefore, we make static analysis to obtain the range of
accesses on each dimension of the array. Instead of caching
the whole array, the subarray of the obtained range is cached.
For multi-dimensional arrays, the obtained range may not
be a single continuous area on the device memory. In such
cases, the required areas are packed into a continuous area
on the shared memory, forming the subarray.



Our scheme gives higher priority of caching if a candidate
variable has higher access count per byte. We first make
static analysis to obtain the access counts, select variables to
be cached, and finally generate code to cache the variables.

4.2 Static Analysis
We make static analysis on each kernel function and

obtain access count of each variable inV . We also obtain
required bytes for caching each variable. Here we expect
that kernel functions satisfy the following assumptions:

1) All loop iteration numbers are fixed and known at
compile time.

2) All array index expressions are first degree poly-
nomials on all loop and built-in index variables
(threadIdx.x, blockIdx.x, etc.). For example,
a[i*N+j] or a[threadIdx.x/N+i] are accept-
able buta[i*j] or a[threadIdx.x/i] are not.

3) Kernel functions may have conditional statements, but
the branch probability is regard as 1/2; the access
counts ofif/else blocks are averaged and the access
ranges are merged.

While most practical sequential programs will not sat-
isfy these assumptions, many CUDA programs will satisfy.
To prevent inefficient branch divergence, usingif/while
statements is tend to be avoided. Index expressions are
commonly simple and linear because data elements should
be divided equally to the threads preventing access races
and balancing the load statically. Even if the assumptions
are not satisfied for some candidate variables, we can just
remove such variables from the candidate listV and apply
our scheme to other variables.

Considering the assumption 1, 3, the access count of a
candidate variablev, denoted asaccess(v), is obtained as
the sum of each access count of the variable occurrences.
An access count of a variable occurrence is a product of
loop iterations which include the occurrence. Considering
the assumption 2, the access range of array elements is
obtained by computing the index expression value with the
minimum/maximum values of loop variables.

Suppose that a candidate variablev is a m-dimensional
array and accessed in a kernel functionf . The access range
of v in the threadtp,q (q = 0, . . . , Sb − 1) belonging to a
block bp (p = 0, . . . , Sg − 1) is obtained as follows.

We denote occurrences ofv in f as v1, . . . , vk and s-th
index expression ofvr as es(v

r). We compute the values
of es(v

r) on every combination of minimum/maximum
values of loop variables. Considering the assumption 2,
minimum/maximum of the computed values are the min-
imum/maximum values ofes(v

r), denoted asmin(es(v
r))

and max(es(v
r)) 4. We denote the range of an index ex-

pression value asRs(es(v
r)) = [min(es(v

r)), max(es(v
r))].

4It may not be true if the modulo operator% is used because the operation
is not monotonic. We simply regard the minimum/maximum value of the
term e%M in the expressions as 0 andM − 1, respectively.

Set target variable setVc empty
Sort candidate listV in the descending order ofaccess(v)
while (V is not empty){

Select first variablevt in V and removevt from V

if (byte(R(vt, bp) ≤ C){
Vc ← Vc ∪ {vt}
C ← C − byte(R(vt, bp))

}
}

Figure 5: Algorithm Obtaining Variables to Cache

The access range ofvr is a m-dimensional range denoted
as follows5:

R(vr) = R1(e1(v
r)) × . . . Rm(em(vr))

The access range ofv in the threadtp,q and in the block
bp is obtained as follows:

R(v, tp,q) =

k⋃

r=1

R(vr, tp,q)

R(v, bp) =

Sb−1⋃

q=0

R(v, tp,q)

We define the union of two rangesR′ ∪ R′′ as a minimum
range includingR′ andR′′.

The required size (number of array elements) and memory
bytes for cachingv are computed as follows:

size(Rs(v, bp)) = emax(v, bp, s) − emin(v, bp, s) + 1

size(R(v, bp)) = size(R1(v, bp)) × . . . size(Rm(v, bp))

byte(R(v, bp)) = size(R(v, bp)) × sizeof(type of v)

where

R(v, bp) = R1(v, bp) × . . . Rm(v, bp)

Rs(v, bp) = [emin(v, bp, s),emax(v, bp, s)]

and emin(v, bp, s), emax(v, bp, s) are respectively mini-
mum/maximum value ofes(v

r) for all q, r.

4.3 Optimization
Fig. 5 shows the algorithm of obtaining a set of variables

to cache:Vc. The average access count per byte of a variable
vt is denoted asaccess(vt), which is computed as follows:

access(vt) = access(vt)/byte(R(vt, bp))

4.4 Code Generation
For each caching targetvt ∈ Vc, we apply the following

code generation/modification in the kernel functionf .

5This definition of range assumes that possible values of each index
expression is continuous and the expressions are independent each other.
The range is redundant in the cases of non-unit stride accesspatterns or
dependent expressions likea[i][i]. Introducing more accurate range is
the future work.



__shared__ type _s_vt[Sm(vt)]. . .[S1(vt)];
int _ix1, . . ., _ixm;
for (_ixm = 0 ; _ixm < Sm(vt) ; _ixm++){

.

.

.
for (_ix2 = 0 ; _ix2 < S2(vt) ; _ix2++){
for (_ix1 = 0 ; _ix1 < S1(vt) ; _ix1 += T ){

_s_vt[_ixm]. . .[_ix1]
= vt[_ixm+Om(vt)]. . .[_ix1+O1(vt)];

}}. . .}
__syncthreads();

Figure 6: Caching code for a variablevt

4.4.1 Caching Variables

First, we insert the definition of a variable_s_vt with
__shared__ qualifier. if vt is an array, the size of thes-
th dimension issize(Rs(v, bp)). Next, we insert code for
copying the initial values from the device memory and
writing back the final values to the device memory to the
head and tail off , respectively.

The pseudo code defining_s_vt and copying the initial
values is shown in Fig. 6. For simplicity, we assume that
the size of the first dimensionS1(vt) is an integral multiple
of the number of copying threadsT = blockDim.x. We
also use the following notations in Fig. 6.

Ss(vt) = size(Rs(vt, bp))

S(vt) = size(R(vt, bp))

Os(vt) = emin(v, bp, s)

Note that Ss(vt) and S(vt) are constant butOs(vt) will
be not. In most cases, it includes block indices such as
blockIdx.x thus different on each block.

To copy the initial cache values, each array element ofvt

within the caching range is assigned to the corresponding
element of_s_vt. Because the elements consecutive on
the first dimension are consecutive in the device memory,
coalesced accesses are expected on the parallel assignment
of such elements. If later accesses in the block are not
consecutive, they will cause non-coalesced device accesses
without our cache. Using our scheme, the array is cached
using coalesced accesses then shared memories are accessed
later. Therefore, the access latency will be largely reduced.
After copying, __syncthreads() must be called to
ensure copying is completed before starting computations
on them. If vt is write-only in f , code for copying and
synchronization is omitted.

The write-back code will be reverse copy of Fig. 6. The
code can be omitted ifvt is read-only inf . Synchronization
is not needed after the write-back, because the threads end
immediately after that.

4.4.2 Accessing Cache

Each occurrence ofvt in f is replaced with_s_vt. If vt is
an array and only its subset is cached, the index expressions

4 __global__
void transpose(int a[][N], int b[][N], int c[][N]){

5 int k, _ix1;
6 int row = blockDim.y*blockIdx.y+threadIdx.y;
7 int col = blockDim.x*blockIdx.x+threadIdx.x;

* __shared__int _s_a[1][N];

* __shared__int _s_c[BX];

* for (_ix1 = threadIdx.x ; _ix1 < N ; _ix1 += BX){

* _s_a[0][_ix1] = a[row][_ix1];

* }

* __syncthreads();
8 _s_c[threadIdx.x] = 0;
9 for(k = 0 ; k < N ; k++){
10 _s_c[threadIdx.x] += _s_a[0][k] * b[k][col];
11 }
* c[row][col] = _s_c[threadIdx.x];
12 }

Figure 7: Optimized Kernel Function of Fig. 4 Program

Table 2: Evaluated Programs
name description
matmul matrix multiplication shown in Fig. 4
dif single dimension diffusion equation solver using difference method
ep EP (Embarrassingly Parallel) in NAS Parallel Benchmarks [15]

must be modified as follows:

vt[em] . . .[e1] → _s_vt[em-Om(vt)] . . .[e1-O1(vt)]

Fig. 7 is the result of applying our scheme to kernel
functiontranspose() in Fig. 4. Modifications are shown
in bold font.

5. Evaluation
To evaluate our scheme, we compared the execution time

of MESI-CUDA programs shown in Table 2, applying/not
applying the proposed optimization. The result is shown in
Table 3. The columns ‘normal’ and ‘opt’ are the execution
time of programs applying and not applying our optimiza-
tion, respectively. The column ‘speedup’ is the inverse of
the execution time ratio of ‘opt’ to ‘normal’.

Our optimization achieved speedup on all GPU models for
matmul anddif. As shown in Fig. 7, matricesA and C
of C = A×B are cached inmatmul and achieved 13% to
192% speedup whenSb is optimized to be the best. Indif,
the required size for caching is onlySb × 4 bytes and each
array elements are shared between adjacent threads. Large
block size is possible without reducing concurrent blocks.

As for the result ofep, our optimization achieved 23% to
98% speedup on C2050. WhenSb = 32, it also slightly
improved performance on other GPU models. However,
the optimization caused slowdown for Kepler GPUs for
larger Sb. Applied to ep, our optimization caches small
arrays for random-accessed histogram but the main array for
storing random numbers is too large to be cached. Therefore
the contribution of reducing access latency is limited. In
addition, largeSb reduces concurrent blocks because the
required size of the histogram isSb × 80 bytes.



Table 3: Execution Time and Speedup using Proposed Scheme
Data Size Block Size Tesla C2050 (Fermi) GeForce GTX 680 (Kepler) GeForce Titan (Kepler) Tesla K20 (Kepler)

Sb normal(s) opt(s) speedup normal(s) opt(s) speedup normal(s) opt(s) speedup normal(s) opt(s) speedup
matmul

32 0.162 0.046 3.56 0.091 0.049 1.86 0.065 0.032 2.04 0.082 0.040 2.03
64 0.089 0.026 3.47 0.051 0.026 1.95 0.036 0.018 2.00 0.046 0.022 2.12

10242 128 0.055 0.029 1.93 0.034 0.029 1.16 0.024 0.015 1.58 0.033 0.019 1.80
256 0.045 0.038 1.18 0.034 0.030 1.13 0.024 0.015 1.62 0.033 0.018 1.89
512 0.045 0.036 1.26 0.034 0.024 1.42 0.024 0.015 1.62 0.034 0.011 3.18

dif
32 6.12 4.13 1.48 4.03 2.47 1.63 2.85 1.66 1.72 4.15 2.39 1.73
64 3.37 2.20 1.53 2.25 1.35 1.66 1.64 0.97 1.69 2.34 1.35 1.73

256K 128 2.17 1.35 1.60 1.71 0.91 1.88 1.26 0.75 1.68 1.72 1.00 1.73
256 1.90 1.26 1.50 1.75 0.96 1.82 1.34 0.78 1.73 1.81 1.04 1.75
512 2.06 1.43 1.45 1.88 1.09 1.73 1.45 0.87 1.66 1.96 1.14 1.71
32 12.21 8.20 1.49 7.97 4.86 1.64 5.60 3.24 1.73 8.23 4.70 1.75
64 6.70 4.37 1.53 4.41 2.63 1.68 3.17 1.84 1.72 4.62 2.64 1.75

512K 128 4.27 2.66 1.61 3.35 1.75 1.92 2.38 1.38 1.72 3.42 1.95 1.75
256 3.74 2.48 1.50 3.42 1.86 1.84 2.51 1.44 1.74 3.60 2.04 1.77
512 4.05 2.81 1.44 3.70 2.10 1.76 2.72 1.61 1.69 3.90 2.27 1.71

ep
32 1.60 1.25 1.29 2.04 1.88 1.09 1.36 1.30 1.05 1.17 0.99 1.18
64 1.05 0.83 1.27 1.84 1.84 1.00 1.29 1.27 1.02 0.74 0.90 0.82

class B 128 1.65 0.83 1.98 1.81 1.92 0.94 1.30 1.30 1.00 0.94 0.99 0.95
256 1.30 0.84 1.55 1.80 1.95 0.92 1.29 1.30 1.00 0.92 0.99 0.93
512 1.03 0.83 1.23 1.79 1.90 0.95 1.33 1.32 1.01 0.93 1.01 0.92

6. Conclusion

Although GPGPU is widely used for high-performance
computing, major programming frameworks like CUDA are
difficult and the performance is not portable. Therefore, we
are developing an easier programming framework MESI-
CUDA. However, access latency of virtual shared variables
is large, thus we proposed an automatic optimization scheme
using on-chip shared memories as explicit cache.

To select variables of higher reused rate as the caching
targets, we make static analysis to obtain the average access
counts and accessed range in a block for each variable. The
target variables are determined at compile time and code for
explicit caching is automatically generated. Therefore, no
support in hardware/driver-level is required and the dynamic
overhead of cache management does not occur.

As the result of evaluations, our scheme achieved 13% to
192% speedup formatmul/dif programs but slowdown
for ep program running on Kepler GPUs. Using shared
memories reduces concurrent blocks on a SM thus the trade-
off should be considered for applying our optimization.

As a future work, the result of current range analysis may
be redundant and should be improved. Recognizing non-
unit stride access patterns and packing required elements
on caching will save the capacity of shared memories.
Another issue is that our scheme tries to utilize the shared
memories under the restriction of user-specified grids and
blocks. The optimization may be far from the best. For
example, specifying large block size may increase the access
range of arrays and prevent their caching due to the lack of
capacity. Another example is that the threads of common
accessing range are distributed into different blocks, which
prevents to share the cache value. Our next challenge is to
develop optimization scheme of threads/data mapping which

automatically controls block size and improve efficiency of
data accesses and caching.

Acknowledgment
This work was supported by JSPS KAKENHI Grant

Number 24500060.

References
[1] J. D. Owenset al., “A survey of general-purpose computation on

graphics hardware,”Computer Graphics Forum, vol. 26, no. 1, pp.
80–113, 2007.

[2] “Gpgpu.org,” http://www.gpgpu.org/.
[3] “CUDA Zone,” http://developer.nvidia.com/category/zone/cuda-zone.
[4] “OpenCL,” http://www.khronos.org/opencl/.
[5] K. Ohno, D. Michiura, M. Matsumoto, T. Sasaki, and T. Kondo, “A

GPGPU programming framework based on a shared-memory model,”
Parallel and Distributed Computing and Networks, vol. 3, pp. 1–14,
2013.

[6] K. Ohno, M. Matsumoto, T. Kamiya, and T. Maruyama, “Supporting
dynamic data structures in a shared-memory based GPGPU program-
ming framework,” inProc. 24th IASTED Intl. Conf. on Parallel and
Distributed Computing and Systems, 2012, pp. 122–131.

[7] NVIDIA CUDA C Programming Guide, 6th ed., NVIDIA Corporation,
February 2014.

[8] CUDA C Best Practices Guide, NVIDIA Corporation, January 2012.
[9] “OpenACC Home,” http://www.openacc-standard.org/.

[10] S. Lee, S. Min, and R. Eigenmann, “OpenMP to GPGPU: a compiler
framework for automatic translation and optimization,”SIGPLAN
Not., vol. 44, pp. 101–110, 2009.

[11] “OpenMP,” http://openmp.org/.
[12] T. Hoshino, N. Maruyama, S. Matsuoka, and R. Takaki, “CUDA vs

OpenACC: Performance case studies with kernel benchmarks anda
memory-bound CFD application.” inCCGRID. IEEE Computer
Society, 2013, pp. 136–143.

[13] S. Ueng, M. Lathara, S. S. Baghsorkhi, and W. W. Hwu, “CUDA-
Lite: Reducing GPU programming complexity,” inLanguages and
Compilers for Parallel Computing, 2008, pp. 1–15.

[14] Y. Yang, P. Xiang, J. Kong, and H. Zhou, “A GPGPU compiler for
memory optimization and parallelism management,”SIGPLAN Not.,
vol. 45, pp. 86–97, 2010.

[15] “NAS parallel benchmarks,” https://www.nas.nasa.gov/publications/npb.html.


