Compiler-Level Explicit Cache
for a GPGPU Programming Framework

Tomoharu Kamiya!, Takanori Maruyama', Kazuhiko Ohno!, and Masaki Matsumoto?
I'Department of Information Engineering, Mie University, T8die, Japan
2Medical Engineering Institute, Inc., Tsu, Mie, Japan

Abstract— GPU is widely used for high-performance com- However, current optimization is not sufficient. One rea-
puting. However, standard programming framework such ason is that current implementation uses only off-chip de-
CUDA and OpenCL requires low-level specifications, thussice memory. Fast on-chip GPU memories called shared
programming is difficult and the performance is not portable memories are not used. Thus we propose an optimization
Therefore, we are developing a new framework named MESEcheme that automatically utilize the shared memories as
CUDA. Providing virtual shared variables accessible fromcompiler-managed caches of the device memory. Based on
both CPU and GPU, MESI-CUDA hides complex memonthe result of static analysis, our scheme determines \agab
architecture and eliminates low-level API function calls.to cache so that device memory accesses are minimized.
However, the performance of current implementation is nofThen copying/writing back code is inserted and the code
sufficient because of the large memory access latency. -Theraccessing the variables is modified. Thus the target program
fore, we propose a code-optimization scheme that utilizes optimized to use shared memories as explicit caches.
fast on-chip shared memories as a compiler-level explicit This paper is organized as follows: Section 2 gives a brief
cache of the off-chip device memory. The compiler estimatastroduction of GPU/CUDA/MESI-CUDA and points out the
access count/range of arrays using static analysis. Forcurrent issue. In Section 3 we discuss the related works.
mostly reused variables, code is modified to make copy o8ection 4 details the proposed scheme and Section 5 shows
the shared memory and access the copy, using small sharélte evaluation results. In Section 6, we state the conaiusio
memories efficiently. As the result of evaluation, our seghem

achieved 13%-192% speedup in two of three programs. 2. Background

Keywords: GPGPU, CUDA, parallel programming, compiler, 2.1 GPU Architecture

optimization GPU is a collection of streaming multiprocessors (SM),
which have certain number of CUDA cores. Although
1. Introduction CUDA cores are simpler than typical CPU cores, a GPU has

hundreds or thousands of CUDA cores. Thus the potential

The performance of Graphics Processing Unit (GPU)performance of a GPU is much higher than a CPU.
has been improved rapidly [1]. Therefore, recent GPUs Fig. 1 shows a typical architecture of a GPU card installed
are used as generic high-performance computing resource®) a PC. Similarly as the CPU cores share the main memory
Such GPU usage is called General Purpose computation ¢ealled host memoryin CUDA programming), all CUDA
Graphics Processing Unit (GPGPU) [2]. However, current deores share a large off-chigevice memoryFurthermore,
facto GPGPU programming frameworks such as CUDA [3]each SM has a small on-chip memory caltired memory
and OpenCL [4] are still difficult to use. They provide APIs which is shared by all CUDA cores in the SM. We do
for low-level specifications such as memory allocation andhot discuss other memories, such as constant and texture
data transfer. Although they enable the user to hand-optéimi memories, because the proposed scheme does not use them.
the performance of the program, it requires deep knowledge NVIDIA GPU architecture have been evolved in each
of GPU architecture. Furthermore, such optimization mayenerations Tesla/Fermi/Kepler changing specificatior a
not be portable to the different GPU models. introducing new features. Different models often haveediff

Therefore, we are developing a new framework name@nt specifications even if they belong to the same generation
MESI-CUDA [5], [6] for easier GPGPU programming.
MESI-CUDA is a CUDA variation which hides low-level 2.2 CUDA
GPU features. It provides virtual shared variables whialh ca CUDA (Compute Unified Device Architecture) [3], [7],
be accessed from both CPU and GPU. Explicit memory8] is a GPGPU programming framework using extended
management or data transfer are not needed. The user c@fC++ or Fortran. Fig. 2 shows a (non-optimized) matrix
write MESI-CUDA program without low-level specifications multiplication program using CUDA. The additional code
expecting automatic optimization by the compiler. required for parallel programming is shown in bold font.

CPU
D CPU
cores
CUDA
cores

PCle - |
host memory|—| device memory |

Figure 1: GPU Architecture

Table 1: CUDA Built-in variables

gridDimx,gridDimy,gridDmz grid size (# of blocks)

bl ockl dx. x, bl ockl dx. y, bl ockl dx. z block index (in the grid)

bl ockDi m x, bl ockDi m y, bl ockDi m z block size (# of threads)

t hreadl dx. x, t hr eadl dx. y, t hreadl dx. z thread index (in the block)

The grid/block sizes can be specified as integer values
or 3D vectors using a built-in typdi n8. Fig. 2 program
creates a grid oV BXxN blocks and each block consists
of BX threads (Fig. Z. 18, 26). The grid/block sizes are not
limited by the numbers of SMs and CUDA cores; blocks and
threads are automatically mapped to the physical resources

1 #def! ne N 1024

2 ﬁgef! ne BX 128 . Grid/block sizes and block/thread indices can be obtained
efine S (NxNxsizeof (int)) . Gy - . . . R

4int halNI[N], hb[NI[N], hc[NI[N; using built-in variables shown in Table 1. Using the vargabl

5 __global __ . . -

Void transpose(int a[][N. int b{][N. int c[I[N){ in the index expressions of arrays, each thread can make

int k; the same computation on the different array element. In the
int row = bl ockDi m y*bl ockl dx. y+t hr eadl dx. y; H H
int col = bl ockDi m xebl ookl dx. x+t hr ead! dx. x. kernel functiont ranspose() of Fig. 2_pr(_)gramr owand
c[row[col] = O; col are computed using block/thread indices so each thread
for(k =0 ; k < N; k++){

c[row[col] += a[rowj[k] * b[k][col];

void init_array(int dINJ[N){...}
void output_array(int diNJ[N){...}
int main(int argc, char *argv[]){
int xda, *db, =dc;
din8 dinGid(NBX, N);
cudaMal | oc(&da, 9S);
cudaMal | oc(&db, S);
cudaMal | oc(&dc, S);
init_array(ha);
init_array(hb);
cudaMencpy(da, (int*)ha, S
cudaMencpy(db, (int*)hb, S
transpose<<<di nGid, BX>>>
((int(*)[N))da, (int(*)[N))db, (int(+)[N))dc);
cudaMencpy((i nt*)hc, dc, S, cudaMentpyDevi ceToHost);
out put _array(hc);

cudaMentpyHost ToDevi ce) ;
cudaMentpyHost ToDevi ce) ;

computes different element of the array(i. 7-12).

The host/device memories are only accessible from
CPU/CUDA cores, respectively. To share data between CPU
and GPU, memory allocations on both memories and data
transfers between them are required. In CUDA program-
ming, the user must explicitly describe such low-level beha
iors calling API functions: memory allocation/deallocati
calling cudaMal | oc() /cudaFree() (I. 19-21, 29-31)
and data transfer callingudaMencpy() (I. 24-25, 27).

2.3 CUDA Optimization Techniques

In CUDA programming, hand-optimization considering
the architecture-level features of the target GPU ofteyeligr

29 cudaFr ee(da); : f A inh-
30 cudaFree(db). contributes achieving high-performance.
31 cudaFr ee(dc);

Figure 2: CUDA Matrix Multiplication

In CUDA, CPU and GPU are calletiost and device
respectively. Functions, declared with the devi ce_

2.3.1 Controlling Concurrency/Parallelism

Because each SM executeswarp of 32 threads in a
SIMD manner, the thread block size should be an integral
multiple of the warp size 32. It is better to have multiple
warps in a block because the execution can be switched to
hide the latency when the active warp is stalled on memory
accesses. The number of blocks also should be large enough

or __gl obal __ qualifier, are calleckernel functionsand
executed on the device (Fig.l25-13). The other functions
(called host functionsin this paper) are executed on the
host (. 14-32). To start computation on the GPU, any hos
function invokes a__gl obal __ kernel function (called The parallel device memory accesses in a warp are coa-
kernel invocatiol specifying the number of threads @6). lesced if the requested data are in the same L2 cache line
Then, the created GPU threads execute the kernel functionf 128 bytes, but otherwise they are serialized. Thus, the
In this paper, we simply call GPU threads thseads threads in a warp are better to access the neighboring data
CUDA usesgrids and blocksfor controlling thread map- on the memory at the same time. [8].

ping to data and physical resources. A block is a group of Another memory-usage optimization is allocating fre-
threads executed on the same SM, and a grid is a group gfiently used data on the shared memories. Because their
blocks of the same size. A kernel invocation creates a gridccess latency is much smaller, they can be used as caches
with the specified grid/block sizes, which are the number®f the device memory. Although CUDA enables shared
of total blocks and threads per block, respectively. memories to be configured as L1 caches, the performance is

so that concurrent blocks run on each SM.

l2.3.2 Optimizing Memory Usage

often not sufficient. Their size of 48KB is too small and CPU GPU

cached data tend to be not reused when threads are scanning O A —
large arrays. Thus explicit caching on the application flaye 1] cupa | BO000 0000
is used as an optimization. cores | 9958 . BEELR
A local variable of a kernel function can be allocated on
the shared memory using shar ed__ qualifier. However,
explicit copy from/to the device memory is needed in the |
function because direct copying between the host and shared virtual&global shared memory |
memories is not possible. Such variable is shared among all
threads in the block, thus explicit synchronization callin Figure 3: MESI-CUDA Programming Model

__synct hreads() may be needed.

2.3.3 Reducing Data Transfer Overhead) e ine 192
The data transfer between host/device memories can hej —9j 9p%—' " 92NN GbININ . oclNTN:
another bottleneck of performance. Avoiding fine-grained void transpose(int a[][N, int b[][N, int c[][N){

transfers or overlapping transfers/kernel executionsigusi int ok

’ : int row = bl ockDi m y*bl ockl dx. y+t hr eadl dx. y;
asynchronous transfer functions improves the performance int col = blockDi mx*bl ockl dx. x+t hr eadl dx. x;
c[rowj[col] = 0;

5

6

7

8
2.4 MESI-CUDA 10 clrou(col) i= airow (k] + b[kl[col];
CUDA programming API is based on the complex GPU ié } }
architecture. Although such low-level API enables hand{13 void init_array(int d[N[[N){...}
tuning considering hardware specifications, it is diffi@ntl |1 /o ‘mermcri oo AN
may not be efficient on other GPU models. Therefore wg16 init_array(ga);
are developing an easier GPGPU programming frameworkis 11 ansaosercod, ncrid. Bxos>
MESI-CUDA[5], [6], hiding low-level features from the user. ((int(*)[N))ga, (int(*)[N))gb, (int(*)[N))gc);
In MESI-CUDA, basic parallelization scheme is same as 50 ; " put_array(ge):
CUDA: writing host/kernel functions for CPU/CUDA cores .] .
and invoking the latter from the former. We do not hide Figure 4: MESI-CUDA Matrix Multiplication
this explicit parallelization because the charactergstid

CUDA cores are quite different from the CPU cores. For

example, CUDA cores can run fine-grained threads withyaia access races are usually avoided in GPU programming
small overhead, but branch divergent code is inefficient. Ijacquse of the poor synchronization mechanism. Thus we
would be unpractical to ignore such differences in high-yqopt implicit synchronization that the shared values are
performance computing using GPU.) made logically consistent on each kernel invocation.
On the other hand, we adopted a virtual shared memory w6yt jow-level description of memory management
model that all CPU/CUDA core share a single global memy 4 gata transfe?, the user can concentrate on device-
ory (Fig. 3). Actuz_;\I_Iy, only global varlabl_es dEf'n?d W'_th independent parallel algorithm. For example, the matrix
__global __ qualifier are shared. To avoid confusing with , isiplication program in Fig. 2 can be simplified using
the CUDA variables defined with_shared__ qualifier, \iesi.cUDA as shown in Fig. 4. The additional code
we call our shared variables afitual shared variableor o ,jired for parallel programming in MESI-CUDA is shown
VS variables This design is due to the following reasons: ;, poid font. The arrays for 2D matrices are defined as
1) GPU has no hardware/OS support to implemeny/s variables and can be accessed from both host/kernel
generic virtual shared memory. Virtual-sharing of thefunctions (Fig. 4. 3) 3. We support variable-length array
specified variables can be implemented at compilerand dynamic allocation of VS variables [6], but in this paper
level, using static analysis and inserting appropriateve only discuss VS variables of static sizes.
data transfer code between host/device memories. The MESI-CUDA compiler is a translator to CUDA and

2) Because the cores are heterogeneous, the roles génerates low-level code for memory management and data

host/device are clear. Many working variables are actransfer. Our research goal is to automatically apply the
cessed only on either of the host/device. Thus explicit
sharing of minimum variables is safe and also efficient. *To make MESI-CUDA upper-compatible to CUDA, we did not remove

._low-level API functions. If the optimization of MESI-CUDA copiler is
Generally, shared memory based parallel programmingo; sficient, the user can hand-optimize like CUDA.

requires synchronization and mutual exclusion. However, 3if the input/output variables of multiplication is fixed ¢m, gb, andgc,
they can be directly accessed in kernel functions and pgssnfunction
lUser-available size is currently 48KB of physical 64KB memory arguments is not needed.

optimizations described in Section 2.3 and achieve higls supposed to be a part of global optimization including
performance like hand-optimized CUDA programs. mapping and scheduling in future.

3. Related Works 4. Proposed Scheme

The latest CUDA 6 [7] and Kepler GPUs implemented Current implementation of MESI-CUDA allocates area

Unified Memorywhich enables to allocateanaged memory for virtual shared (VS) variables on host/_device memories_,.
by either statically defining a variable with managed__ Therefore, every access to the VS variables on GPU is

qualifier or dynamically callingudaMal | ocManaged(). @& &ccess to the dpvice memory. By caching VS _/ariables
Such memory can be accessed from both CPU and GPU.O" shared memories, the memory access latency is largely

The features are almost same with MESI-CUDAs vs'educed and the performance will be improved. Therefore,
variables; only user-specified data is logically shared an{/€ Propose a new scheme that the compiler automatically

they are automatically copied between host/device menfl@kes the optimization of explicit caching mentioned in

ories. The large difference is that VS variables are im_Section 2.3.2.

plemented in compiler-level, while the managed memory _Fo_r simplicity, we discus_s the case that a kernel function
is implemented in hardware/driver-level. Our advantage id 'S invoked by the following statement, whefg, .5, are
that compile-time optimization is possible using statialan Nteger values:
ysis. For example, asynchronous data copying code can f<<<S,, Sp>>>(...);
be inserted where the data transfer and kernel executions - . _
are overlapped. Another example is the synchronizationghe values ofGri dbi m x andBl ockDi m x will be S,
between host and device. MESI-CUDA automatically inserts’s, fespectively. Iff calls other device functions, the anal-
synchronization code to maximize their parallel execytionYSis and code generation are extent to cover such functions.
while CUDA 6 requires explicit synchronization calling e also denote the size of available shared memory per
cudaDevi ceSynchr oni ze() or setting a environment block asC'. On current GPU modelg;=48KB but it may be
variable CUDA_LAUNCH_BLOCKI NG as 1 to automatically c¢hanged in the future models. Furthermore, using a smaller
synchronize for every kernel invocation. valge asC' suppresses the shared memory usage per block,
The main purpose of Unified Memory is easier GPGPUWhich can increase concurrent blocks per SM.
programming and hand-optimization using conventional .
low-level API is encouraged for high-performance. The goaﬂ'l Caching Strategy
of MESI-CUDA is to hide optimization under the compiler. The scope of variables defined with shar ed__ qual-
However, generating code using new CUDA features majyfier is within the defined kernel functiorf. Thus the
help to utilize hardware/driver supports for such features caching candidates are the variables which are on the device
OpenACC [9] or OpenMP-to-CUDA translation [10], [11] memory and accessed jh Assuming that enough registers
are another GPGPU approach without low-level specifiare available for local variables iff, VS variables and
cations. In these programming frameworks, a sequentialereferences of pointer arguments will be the device memory
program with some parallelizing directives is compilesdbiat accesses. We denote the list of caching candidafé aad
parallel program executable on GPU. They have advantagésclude all such variables iy as the initial value.
on usability; abstract directives are easier than low}éwd Because each access latency is reduced for the cached
functions, sequential programs can be parallelized easily variables, caching is more effective if the number of ac-
the program is portable to different GPU models or othercessing the variable is larger. However, copying from/® th
heterogeneous multi-cores. However, their performanee delevice memory causes another overhead which increases
pends to the compiler optimization, which is usually worseaccording to the variable size.
compared with hand-optimized CUDA code [12]. As men- If the variable is an array, not all elements may be
tioned in Section 2.4, we consider explicit and heterogaseo accessed in a block. So caching the set of accessed array
parallel programming is necessary for high-performance. elements is enough. However, static analysis may not obtain
For various input languages, schemes for automatic gerstrict set of accessed elements. Furthermore, generating
eration and optimization of CUDA low-level code are de-efficient access code is difficult for irregular access paste
veloped. CUDA-Lite [13] automatically generates memoryTherefore, we make static analysis to obtain the range of
access code from user specified annotations, optimizingccesses on each dimension of the array. Instead of caching
accesses using shared memories. Yang, et al. [14] optimizbe whole array, the subarray of the obtained range is cached
memory accesses in CUDA kernel functions using share&or multi-dimensional arrays, the obtained range may not
memories for coalescing accesses to the device memorye a single continuous area on the device memory. In such
Although our scheme is similar to these approaches, weases, the required areas are packed into a continuous area
do not assume additional annotations by the user and @n the shared memory, forming the subarray.

' ; P A H P i Set target variable sev,. empty
Our scheme gives higher priority of caching if a candidate Sort candidate Iist” in the descending order @icceséy)

variable has higher access count per byte. We first make while (V is not enpty){

static analysis to obtain the access counts, select vasiabl ff'e(cé;'tr;tlg’gf'ag'e;t;” CV) {a”d removev; from V/
. . ts =

be cached, and finally generate code to cache the variables. Ve — Vo U {01}

C « C — byte(R(vt, b))

4.2 Static Analysis }

}
We make static analysis on each kernel function and
obtain access count of each variablelin We also obtain
required bytes for caching each variable. Here we expect
that kernel functions satisfy the following assumptions:
1) All loop iteration numbers are fixed and known at The access range of is a m-dimensional range denoted
compile time. as follows>:
2) All array index expressions are first degree poly- . - ,
nomials on all loop and built-in index variables R(@") = Ri(er(v')) x ... Bm(em(v"))
(t hreadl dx. x, bl ockl dx. x, etc.). For example, The access range ofin the thread, , and in the block
a[i=N+j] ora[threadl dx. x/ N+i] are accept- b, is obtained as follows:
able buta[i *j] ora[threadl dx.x/i] are not.
3) Kernel functions may have conditional statements, but

Figure 5: Algorithm Obtaining Variables to Cache

C~=

the branch probability is regard as 1/2; the access R(v,tpq) = R(v", tp,q)
counts ofi f /el se blocks are averaged and the access ’S’i .
ranges are merged.

9 9 R(Uv bp) = R(Uv t;UJI)

While most practical sequential programs will not sat-
isfy these assumptions, many CUDA programs will satisfy.)) o
To prevent inefficient branch divergence, usingwhi | e We define the union of two rangg#’ U k" as a minimum
statements is tend to be avoided. Index expressions af@nge includingk’ and R".
commonly simple and linear because data elements should The required size (number of array elements) and memory
be divided equally to the threads preventing access rac&¥tes for caching are computed as follows:
and balanc_ing the load statically. Even i_f the assumptiqn§izqu(U’bp)) — emaxv,b,,s) — eminv, by, s) + 1
are not satisfied for some candidate variables, we can just, . .
remove such variables from the candidate Visand apply ~ SZ&E(0.bp)) = Siz&R1(v,by)) x ... Siz€ R (v, by))
our scheme to other variables. byt R(v,b,)) = siz&R(v,by)) x si zeof (type of v)

Considering the assumption 1, 3, the access count of Rhere
candidate variable), denoted asaccesév), is obtained as
the sum of each access count of the variable occurrences. R(v,b,) = Ri(v,b,) X ...Rp(v,b,)

An access count pf a variable occurrence is a pro_ducF of R.(v,b,) = [emin(v,b,,s), emaxu, by, s)]

loop iterations which include the occurrence. Considering

the assumption 2, the access range of array elements aod emin(v, by, s), emaxv,b,,s) are respectively mini-
obtained by computing the index expression value with thenum/maximum value oé,(v") for all g, r.
minimum/maximum values of loop variables. ..

Suppose that a candidate variablgs a m-dimensional 43 Optimization
array and accessed in a kernel functjfinThe access range Fig. 5 shows the algorithm of obtaining a set of variables
of v in the threadt, , (¢ = 0,...,5, — 1) belonging to a to cachel,. The average access count per byte of a variable

q=0

block b, (p =0,...,5, — 1) is obtained as follows. v is denoted a@cceséy,), which is computed as follows:
We denote occurrences ofin f asv',...,v* and s-th
index expression of” ase,(v"). We compute the values acces¢uy) = accestuy)/byte(R(vt, by))

of es(v") on every combination of minimum/maximum
values of loop variables. Considering the assumption 24.4 Code Generation
minimum/maximum of the computed values are the min-
imum/maximum values oés(v"), denoted asnin(e;(v"))

and maxe,(v")) 4. We denote the range of an index ex-

pression value a®;(es(v")) = [min(es(v™)), maxes(v"))]. 5This definition of range assumes that possible values of eadéxi
expression is continuous and the expressions are indeperdeh other.
41t may not be true if the modulo operatiiis used because the operation The range is redundant in the cases of non-unit stride aquatsms or
is not monotonic. We simply regard the minimum/maximum value of thedependent expressions likg i] [i] . Introducing more accurate range is
term e%\V/ in the expressions as 0 add — 1, respectively. the future work.

For each caching target € V., we apply the following
code generation/modification in the kernel functipn

__shared__ type _s_vi[S (ve)] ... [S1(ve)]; 4 _ global __
int _ix1, ... _ixm; void transpose(int a[][N, int b[J[N, int c[][N){
for (_ixm =0 ; _ixm < S, (ve); _ixmt++){ 5 int k, _ixZ1;
6 int row = bl ockDi m y*bl ockl dx. y+t hreadl dx.y;
: 7 int col = bl ockD m x*bl ockl dx. x+t hr eadl dx. x;
for (_Lix2 =0 ; _ix2 < Sa(ve); _ix2++){ * __shared__int _s_a[1][N];
for (_ix1 =0 ; _ixl < Si(ve); _ixl += T){ * __shared__int _s_c[BX];
s _we[_ixm]...[_ix1] * for (_ix1l = threadldx.x ; _ix1 < N; _ixl += BX){
= [_i Xm+Om (ve)] .. [_i X1+O01 (ve)] ; * _s_a[0][_ix1] = a[row][_ix1];
e *
__syncthreads(); * __synct hreads();
8 _s_c[threadldx.x] = 0;
; . ; H 9 for(k =0 ; k < N; k++){
Figure 6: Caching code for a variable 10 " clthreadidx. x] 4= s a[0][k] * b[K][col]:
11
* c[row][col] = _s_c[threadl dx.x];
12 }
4.4.1 Caching Variables Figure 7: Optimized Kernel Function of Fig. 4 Program
First, we insert the definition of a variables_v; with
__shared__ qualifier. if v; is an array, the size of the
th dimension issiz§ Rs(v,b,)). Next, we insert code for Table 2: Evaluated Programs
copying the initial values from the device memory and namel deSC_riptioT_ S
i - . mat mu matrix mu tlplcatlon shown In Fig.
ertlng back the final values to the device memory to the di f single dimension diffusion equation solver using difference method
head and tail off, respectively. ep EP (Embarrassingly Parallel) in NAS Parallel Benchmarks [15]

The pseudo code definings_v; and copying the initial
values is shown in Fig. 6. For simplicity, we assume that
the size of the first dimensio§ (v;) is an integral multiple must be modified as follows:
of the number of copying threads = bl ockDi m x. We

also use the following notations in Fig. 6. vlem] ...[ei] = _s_wilem-Om(v)] ... [e Or(ve)]
Sy(v;) = sizeRy(ve,by)) Fig. 7 is the result of applying our scheme to kernel
T functiont r anspose() in Fig. 4. Modifications are shown

S(ve) = siz€R(vg,bp))
Os(ve) = emin(w,by,s)

Note that5,(v;) and S(v;) are constant buo, (v,) will 9. Evaluation

be not. In most cases, it includes block indices such as T4 evaluate our scheme, we compared the execution time
bl ockl dx. x thus different on each block. of MESI-CUDA programs shown in Table 2, applying/not

To copy the initial cache values, each array element,of 5n51ving the proposed optimization. The result is shown in
within the caching range is assigned to the corresp_ondingame 3. The columns ‘normal’ and ‘opt’ are the execution
element of_s_v;. Because the elements consecutive Onfyjme of programs applying and not applying our optimiza-
the first dimension are consecutive in the device Memoryion, respectively. The column ‘speedup’ is the inverse of
coalesced accesses are expected on the parallel assignmgt execution time ratio of ‘opt’ to ‘normal’.

of such elements. If later accesses in the block are not o gptimization achieved speedup on all GPU models for
consecutive, they will cause non-coalesced device ac€essgqt mul anddi f. As shown in Fig. 7, matrices and C
without our cache. Using our scheme, the array is cachegi » — 4 « B are cached imat mul and achieved 13% to
using coalesced accesses then shared memories are accessgf, speedup whesi, is optimized to be the best. ki f ,
later. Thergfore, the access latency will be largely reduce o required size for caching is onl, x 4 bytes and each
After copying, __syncthreads() must be called 10 5.5y elements are shared between adjacent threads. Large
ensure copying is completed before starting computationgiock size is possible without reducing concurrent blocks.
on them._ If?_’t IS erte_z-only in f, code for copying and As for the result okep, our optimization achieved 23% to
synchronl'zanon IS Om'“e‘?'-) 98% speedup on C2050. Whefy, = 32, it also slightly

The write-back code will be reverse copy of Fig. 6. Theimproved performance on other GPU models. However,
code can be omitted if; is read-only inf. Synchronization 4 optimization caused slowdown for Kepler GPUs for
?s not r_1eeded after the write-back, because the threads ei}ﬂger S,. Applied to ep, our optimization caches small
immediately after that. arrays for random-accessed histogram but the main array for
storing random numbers is too large to be cached. Therefore
the contribution of reducing access latency is limited. In

Each occurrence af; in f is replaced with s_v;. If v; is addition, largeS, reduces concurrent blocks because the
an array and only its subset is cached, the index expressionsquired size of the histogram & x 80 bytes.

in bold font.

4.4.2 Accessing Cache

Table 3: Execution Time and Speedup using Proposed Scheme

Data Size | Block Size Tesla C2050 (Fermi) GeForce GTX 680 (Kepler) GeForce Titan (Kepler) Tesla K20 (Kepler) ’L
Sh normal(s) opt(s) speedu&) normal(s) opt(s) speedu&; normal(s) opt(s) speedu&) normal(s) opt(s) speedu
mat nul

32 0.162 0.046 3.56 0.091 0.049 1.86 0.065 0.032 2.04 0.082 0.040 2.03

64 0.089 0.026 3.47 0.051 0.026 1.95 0.036 0.018 2.00 0.046 0.022 2.12

10242 128 0.055 0.029 1.93 0.034 0.029 1.16 0.024 0.015 1.58 0.033 0.019 1.80
256 0.045 0.038 1.18 0.034 0.030 1.13 0.024 0.015 1.62 0.033 0.018 1.89

512 0.045 0.036 1.26 0.034 0.024 1.42 0.024 0.015 1.62 0.034 0.011 3.18

di f

32 6.12 4.13 1.48 4.03 2.47 1.63 2.85 1.66 1.72 4.15 2.39 1.73

64 3.37 2.20 1.53 2.25 1.35 1.66 1.64 0.97 1.69 2.34 1.35 1.73

256K 128 2.17 1.35 1.60 1.71 0.91 1.88 1.26 0.75 1.68 1.72 1.00 1.73
256 1.90 1.26 1.50 1.75 0.96 1.82 1.34 0.78 1.73 1.81 1.04 1.75

512 2.06 1.43 1.45 1.88 1.09 1.73 1.45 0.87 1.66 1.96 1.14 1.71

32 12.21 8.20 1.49 7.97 4.86 1.64 5.60 3.24 1.73 8.23 4.70 1.75

64 6.70 4.37 1.53 4.41 2.63 1.68 3.17 1.84 1.72 4.62 2.64 1.75

512K 128 4.27 2.66 1.61 3.35 1.75 1.92 2.38 1.38 1.72 3.42 1.95 1.75
256 3.74 2.48 1.50 3.42 1.86 1.84 251 1.44 1.74 3.60 2.04 1.77

512 4.05 2.81 1.44 3.70 2.10 1.76 2.72 1.61 1.69 3.90 2.27 1.71

ep

32 1.60 1.25 1.29 2.04 1.88 1.09 1.36 1.30 1.05 1.17 0.99 1.18

64 1.05 0.83 1.27 1.84 1.84 1.00 1.29 1.27 1.02 0.74 0.90 0.82

class B 128 1.65 0.83 1.98 1.81 1.92 0.94 1.30 1.30 1.00 0.94 0.99 0.95
256 1.30 0.84 1.55 1.80 1.95 0.92 1.29 1.30 1.00 0.92 0.99 0.93

512 1.03 0.83 1.23 1.79 1.90 0.95 1.33 1.32 1.01 0.93 1.01 0.92

6. Conclusion automatically controls block size and improve efficiency of

o , data accesses and caching.
Although GPGPU is widely used for high-performance

computing, major programming frameworks like CUDA areACkn0W|edgment

difficult and the performance is not portable. Therefore, we This work was supported by JSPS KAKENHI Grant

are developing an easier programming framework MESI-
CUDA. However, access latency of virtual shared variableé\l umber 24500060.

is large, thus we proposed an automatic optimization SChe"F{eferences

using on-chip shared memories as explicit cache. _
To select variables of higher reused rate as the cachindg! - D. Owenset al, "A survey of general-purpose computation on
. . . graphics hardware,Computer Graphics Forumvol. 26, no. 1, pp.
targets, we make static analysis to obtain the averagesicces gp-113, 2007.
counts and accessed range in a block for each variable. ThE] “Gpgpu.org,” http://www.gpgpu.org/.

target variables are determined at compile time and code fo 3] ::CUDA Zene,” _http://developer.nvidia.com/categorytxa/cuda—zone.
4] “OpenCL,” http://www.khronos.org/opencl/.

explicit caching is automatically generated. Therefore, n [s] k. ohno, D. Michiura, M. Matsumoto, T. Sasaki, and T. Konda
support in hardware/driver-level is required and the dyicam GPGPU programming framework based on a shared-memory model,”

overhead of cache management does not occur Parallel and Distributed Computing and Networksl. 3, pp. 1-14,
’ 2013.

As the result of evaluations, our scheme achieved 13% tgs] K. Ohno, M. Matsumoto, T. Kamiya, and T. Maruyama, “Suppugti

192% speedup format mul /di f programs but slowdown dynamic data structures in a shared-memory based GPGPU program-
ming framework,” inProc. 24th IASTED Intl. Conf. on Parallel and

for ep _program running on Kepler GPUs. Using shared Distributed Computing and Systen012, pp. 122-131.
memories reduces concurrent blocks on a SM thus the trade7] NvIDIA CUDA C Programming Guidesth ed., NVIDIA Corporation,

off should be considered for applying our optimization. February 2014. _ _
. [8] CUDA C Best Practices Guigd@VIDIA Corporation, January 2012.
As a future work, the result of current range analysis may|q] “openACC Home,” http://www.openacc-standard.org/.

be redundant and should be improved. Recognizing noriio] S.Lee, S. Min, and R. Eigenmann, “OpenMP to GPGPU: a canpil

unit stride access patterns and packing required elements Kj";‘)’t“e\y(‘;?f'fmf” aultgimf'lco ”zao”oss')at'o“ and optimizatior§IGPLAN

on caching will save the capacity of shared memoriesy) “openmp; F\t?;):}/openmp.brg/. '

Another issue is that our scheme tries to utilize the shared2] T. Hoshino, N. Maruyama, S. Matsuoka, and R. Takaki, “GUZs

memories under the restriction of user-specified grids and ©OPenACC: Performance case studies with kernel benchmarks and

blocks. Th timizati be far f the best. F memory-bound CFD application.” i€CGRID |IEEE Computer
ocks. The optimization may be far from the best. For gociety, 2013, pp. 136-143.

example, specifying large block size may increase the accefl3] S. Ueng, M. Lathara, S. S. Baghsorkhi, and W. W. Hwu, “GUD

range of arrays and prevent their caching due to the lack of Lite: Reducing GPU programming complexity,” inanguages and

9 . y P . 9 Compilers for Parallel Computing2008, pp. 1-15.

capacity. Another exar_npl_e 1S thf'it the_ threads of COMMOR 41 v. Yang, P. Xiang, J. Kong, and H. Zhou, “A GPGPU compiler f

accessing range are distributed into different blocksctvhi memory optimization and parallelism managemeStGPLAN Not.

prevents to share the cache value. Our next challenge is ﬁ) vol. 45, pp. 86-97, 2010.

- . . . [I5] “NAS parallel benchmarks,” https://www.nas.nasa/gablications/npb.html.
develop optimization scheme of threads/data mapping whic] P P gob P

