
Accelerating the Numerical Computation of Positive Roots of
Polynomials using Improved Bounds

Kinji Kimura1, Takuto Akiyama2, Hiroyuki Ishigami3, Masami Takata4, and Yoshimasa Nakamura5
1,2,3,5Graduate School of Informatics, Kyoto University,
Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, JAPAN

4Academic Group of Information and Computer Sciences, Nara Women’s University,
Kita-Uoya-Nishi-Machi, Nara 630-8506, JAPAN

1kkimur@amp.i.kyoto-u.ac.jp, 2akiyama@amp.i.kyoto-u.ac.jp, 3hishigami@amp.i.kyoto-u.ac.jp,
4takata@ics.nara-wu.ac.jp, 5ynaka@i.kyoto-u.ac.jp

Abstract— The continued fraction method for isolating the
positive roots of a univariate polynomial equation is based
on Vincent’s theorem, which computes all of the real roots
of polynomial equations. In this paper, we propose two new
lower bounds which accelerate the fraction method. The
two proposed bounds are derived from a theorem stated
by Akritas et al., and use different pairing strategies for
the coefficients of the target polynomial equations from the
bounds proposed by Akritas et al. Numerical experiments
show that the proposed lower bounds are more effective than
existing bounds for some special polynomial equations and
random polynomial equations, and are competitive with them
for other special polynomial equations.

Keywords: continued fraction method, Vincent’s theorem, local-
max bound, first-λ bound

1. Introduction
The real roots of univariate polynomial equations are more

useful than the imaginary roots for practical applications in
various engineering fields. Thus, this paper focuses on the
computation of all real roots of polynomial equations. For
polynomial equations without multiple roots, we can isolate
each root into a specific interval. The accuracy of the isolated
real roots can be easily enhanced using the bisection method.

The continued fraction (CF) method for isolating the
positive roots of univariate polynomial equations is based on
Vincent’s theorem [2], [11]. This method isolates each pos-
itive root using Descartes’ rule of signs [3], which focuses
on the coefficients of the polynomial equations, and can
be accelerated by an origin shift. Thus, several coefficients
of a polynomial equation are transformed into nonzero
coefficients, even in the case of sparse polynomial equations
that have many zero coefficients. The Krawczyk method [8],
which is based on numerical verification, was developed
to isolate the positive roots of polynomial equations which
have many zero coefficients. In this paper, we focus on the
CF method for isolating the positive roots of polynomial
equations which have many nonzero coefficients.

To accelerate the CF method, the choice of the origin
shift is important. For the shift value, we should use a lower
bound of the smallest positive root of the target polynomial.
In other words, we must compute this lower bound to
accelerate the CF method. We can obtain the lower bound of
positive roots of a polynomial equation from the upper bound
of the replaced polynomial equation corresponding to the
original equation. The Cauchy bound [9] and the Kioustelidis
bound [7] are well-known upper bounds of the positive roots
of polynomial equations, but these bounds are known to
produce overestimates in some cases. Akritas et al. have
given a generalized theorem including the Cauchy bound and
the Kioustelidis bound [1]. Using pairing strategies derived
from the generalized theorem, they proposed new upper
bounds called the first-λ bound, the local-max bound, and
the local-max quadratic bound.

In [10], a lower bound generated by Newton’s method
is proposed. In this paper, we propose two lower bounds
that are more effective than that based on Newton’s method:
the “local-max2” bound and the “tail-pairing first-λ” bound.
These are derived from the local-max bound and the first-λ
bound, respectively, and use a different pairing strategy from
the original bound. The local-max2 bound is always better
than or equal to the local-max bound. The tail-pairing first-λ
bound is expected to be more suitable for the CF method
than the first-λ bound.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the CF method based on Vincent’s theorem,
and Section 3 introduces the bounds proposed by Akritas
et al. Section 4 proposes the new lower bounds, before
Section 5 reports the results of performance evaluations of
the proposed lower bounds. We end with a summary of our
conclusions in Section 6.

2. Continued fraction method
In this paper, we discuss the computation of positive roots

x ∈ R that satisfy the following polynomial equation:

f(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0, (1)



where ai ∈ Z and an 6= 0. Note that we need not consider
the case x = 0 as one of the roots of f(x) = 0, since an = 0
is satisfied if any real root is equal to 0.

In addition, all the polynomial equations have rational
coefficients and multiple roots in the interval [u, v], (−∞, v],
(u,∞], or (−∞,∞) (u, v ∈ R), and can be transformed into
Eq. (1) in x ∈ (0,∞) using certain operations. For details,
see [10].

2.1 Continued fraction method
The CF method aims to compute the positive roots of

a polynomial equation f(x) = 0. It is based on Vincent’s
theorem [2], [11], and isolates the real roots in (0,∞) using
Theorem 1, known as Descartes’ rule of signs [3].

Theorem 1 (Descartes’ rule of signs): For a polynomial
equation

f(x) = a0x
n + · · ·+ an−1x+ an = 0, x ∈ R, ai ∈ R,

let W be the number of “changes of sign” in the list of
coefficients {a0, a1, . . . , an}, except for ai = 0, and let
N be the number of positive roots in (0,∞). Under these
definitions, the following relation holds:

N =W − 2h,

where h is a non-negative integer.

Using Theorem 1, the number of positive roots of the poly-
nomial equation f(x) = 0 is determined as the following
conditional branch:

• Case where W = 0: f(x) = 0 does not have any
positive roots in the interval x ∈ (0,∞).

• Case where W = 1: f(x) = 0 has only one positive
root in the interval x ∈ (0,∞).

• Case where W ≥ 2: the number of positive roots of
f(x) = 0 cannot be determined.

If W = 1, the isolated interval should be set to (0, u_b],
where u_b denotes the upper bound of the positive roots of
f(x) = 0. Computation methods for the upper bound of the
positive roots of f(x) = 0 are described in Section 3.

In the case that W ≥ 2, the interval (0,∞) should first be
divided into two intervals. Then, Descartes’ rule of signs can
be applied to each interval. In the CF method, the interval
(0,∞) is divided in (0, 1) and (1,∞). This division is
performed by the replacement x→ x+1 and x→ 1/(x+1).
Using the replacement x → x + 1, the interval (0,∞) of
the replaced polynomial equation corresponds to the interval
(1,∞) of the original polynomial equation. Similarly, using
the replacement x → 1/(x + 1), the interval (0,∞) of the
replaced polynomial equation corresponds to the interval
(0, 1) of the original polynomial equation. The intervals
(1,∞) and (0, 1) do not include the case x = 1. To solve for
this case, we must check that a constant term of the replaced

Table 1: Synthetic division for g5(x).
a0 a1 a2 a3

a0 a0 + a1 a0 + a1 + a2

a0 a0 + a1 a0 + a1 + a2 a0 + a1 + a2 + a3
a0 2a0 + a1

a0 2a0 + a1 3a0 + 2a1 + a2
a0

a0 3a0 + a1

polynomial equation vanishes after either replacement. In
other words, if an = 0 in the replaced polynomial equation,
then x = 1 is a root of the original polynomial equation.

The replacements described above require the coefficients
of the replaced polynomial equation to be calculated. This
calculation can be performed by synthetic division. As an
example, Table 1 shows the calculation of the coefficients
of

g5(x) = a0(x+ 1)3 + a1(x+ 1)2 + a3(x+ 1) + a4. (2)

As can be seen in Table 1, the coefficients of x3, x2, x1, and
x0 in g5(x) are a0, 3a0+a1, 3a0+2a1+a2, and a0+a1+
a2+a3, respectively. Note that the computational complexity
of the synthetic division for obtaining the coefficients of the
replaced polynomial equation for a replacement x→ x+ 1
is O(n2), where n is the highest order of the polynomial
equation.

2.2 Acceleration using a lower bound
The CF method requires many replacement operations

x → x + 1 and x → 1/(x + 1). If the positive roots are
much larger than 1, then the execution time increases, since
we must repeat many replacement operations x → x + 1.
Thus, to decrease the execution time, the lower bound of
the smallest positive root of a polynomial equation should
be used as a shift.

The procedure for computing the lower bound l_b of
f(x) = 0 is as follows:

1) Replace x with 1/x in f(x).
2) Compute u_b, the upper bound of the positive roots

of the replaced polynomial equation.
3) Obtain l_b as l_b = 1/u_b.

However, the replacement x → x + l_b should not always
be adopted, since l_b is not sufficiently large to reduce the
execution time if l_b ≤ 1. Thus, the replacement x→ x+l_b
is only adopted in f(x) if l_b > 1.

3. Computation of the upper bound of
positive roots

The Cauchy rule [9] is a well-known idea for computing
the upper bound of the positive roots of f(x) = 0. The
Kioustelidis bound is related to the Cauchy rule [7]. How-
ever, both of these bounds are known to overestimate the
upper bound in some cases.



To overcome this problem, Akritas et al. derived the
following generalized theorem for computing the upper
bound of the positive roots of f(x) = 0.

Theorem 2 (Akritas, 2006): Let f(x) be a polynomial
with real coefficients, and assume a0 > 0. Let d(f) and
t(f) denote its degree and number of terms, respectively.
In addition, assume that f(x) can be reshaped as follows:

f(x) = q1(x)− q2(x) + · · · − q2m(x) + g6(x), (3)

where the polynomials qi(x), i = 1, . . . , 2m, and g6(x)
have only positive coefficients. Moreover, assume that, for
i = 1, 2, . . . , m, we obtain

q2i−1(x) = c2i−1,1x
e2i−1,1 + · · ·

+ c2i−1,t(q2i−1)x
e2i−1,t(q2i−1)

(4)

and

q2i(x) = b2i,1x
e2i,1 + · · ·+ b2i,t(q2i)x

e2i,t(q2i) (5)

where e2i−1,1 = d(q2i−1) and e2i,1 = d(q2i), and the
exponent of each term in q2i−1(x) is greater than the
exponent of each term in q2i(x). If t(q2i−1) ≥ t(q2i) for
all indices i = 1, 2, · · · ,m, then the upper bound of the
positive roots of f(x) = 0 is defined by

u_b = max
i=1,2,...,m

{(
b2i,1
c2i−1,1

) 1
e2i−1,1−e2i,1

, . . . ,(
b2i,t(q2i)

c2i−1,t(q2i)

) 1
e2i−1,t(q2i)

−e2i,t(q2i)

}
,

(6)

for any permutation of the positive coefficients c2i−1,j , j =
1, 2, · · · , t(q2i−1). Otherwise, for each of the indices i for
which we obtain t(q2i−1) < t(q2i), we break up one of
the coefficients of q2i−1(x) into t(q2i)− t(q2i−1) + 1 parts,
so that t(q2i) = t(q2i−1). We can then apply the formula
defined in Eq. (6).

Note that the ideas underlying both the Cauchy and Kiouste-
lidis bounds are included in this theorem.

The sharpness of the upper bound is dependent on pairing
coefficients from the non-adjacent polynomials q2l−1(x) and
q2i(x) for 1 ≤ l < i.

For example, consider the polynomial

3x3 − 5x2 + 4x+ 7. (7)

In this case, we can create the pair{
3x3,−5x2

}
.

However, for the polynomial

3x3 − 5x2 − 4x+ 7, (8)

we cannot create the trivial pair, since the polynomial has
only one positive coefficient. In this case, since

3x3 =
3

2
x3 +

3

2
x3 = x3 + 2x3,

we can create the pair as{
3

2
x3,−5x2

}
,

{
3

2
x3,−4x

}
or
{
x3,−5x2

}
,
{
2x3,−4x

}
.

Using Theorem 2, Akritas et al. proposed the “local-max”
bound and the “first-λ” bound as follows:

Definition 1 (“local-max”): For a polynomial equation
f(x) = 0 given by Eq. (1), the coefficient −ak of the
term −akxn−k in f(x) = 0 is paired with the coefficient
am/2

t of the term amx
n−m, where am is the largest positive

coefficient with 0 ≤ m < k and t denotes the number of
times the coefficient am has been used.

Definition 2 (“first-λ”): For a polynomial equation f(x)
given by Eq. (3) with λ negative coefficients, we first
consider all cases for which t(q2i) > t(q2i−1) by breaking
up the last coefficient c2i−1,t(q2i) of q2i−1(x) into t(q2i) −
t(q2i−1) + 1 equal parts. We then pair each of the first λ
positive coefficients of f(x), encountered as we move in
non-increasing order of exponents, with the first unmatched
negative coefficient.

Note that the computational complexity of these bounds is
O(n).

Akritas et al. also proposed the “local-max quadratic”
bound as follows:

Definition 3 (“local-max quadratic”): For a polynomial
equation f(x) given by Eq. (1), each negative coefficient
ai < 0 is “paired” with each of the preceding positive
coefficients aj divided by 2tj . That is, each positive co-
efficient aj is “broken up” into unequal parts, as for the
locally maximum coefficient in the local max bound. tj is
initially set to 1, and is incremented each time the positive
coefficient aj is used, and the minimum is taken over all j.
Subsequently, the maximum is taken over all i.

From Definition 3, the local-max quadratic bound is
computed as

u_bLMQ = max
ai<0

min
aj>0:j>i

j−i

√
− ai

aj

2tj

. (9)

Note that the computational complexity of this bound is
O(n2).



4. New upper bounds
In this section, we propose two new upper bounds for

the positive roots of a polynomial equation. The first is the
“local-max2” bound, and the second is the “tail-pairing first-
λ” bound.

4.1 Local-max2 bound
The local-max2 bound is derived from the local-max

bound. To compute the local-max bound, the largest positive
coefficient am is broken up into unequal parts am/2t(t =
1, · · · , s + 1). For the local-max2 bound, we first break
up the largest positive coefficient am into unequal parts
am/2

t(t = 1, · · · , s). Then, since

am −
(am

2
+ · · ·+ am

2s

)
=
am
2s
, (10)

we use am/2s, which is the remaining part of am, as the
last pair. It is obvious that the local-max2 bound is better
than or equal to the local-max bound for all polynomials.

Algorithm 1 describes the implementation of the local-
max2 bound. As for the local-max bound, the complexity of
computing the local-max2 bound is O(n).

For example, consider the polynomial

x3 + 10100x2 − x− 10100. (11)

For the local-max bound, we pair the terms
{

10100

2 x2,−x
}

and
{

10100

22 x2,−10100
}

, and obtain a bound estimate of 2.

For the local-max2 bound, we pair the terms
{

10100

2 x2,−x
}

and
{

10100

2 x2,−10100
}

, and obtain a bound estimate of
√
2.

As a result, the upper bound of the local-max2 bound is
better than that of the local-max bound for the polynomial
(11).

4.2 Tail-pairing first-λ
The tail-pairing first-λ bound is derived from the first-λ

bound. As for the first-λ bound, if there are more negative
than positive coefficients, we first break up the last positive
coefficient into several parts. In addition, we pair positive
coefficients with unpaired tail negative coefficients when
the number of positive coefficients is greater than that of
negative coefficients.

Although it is not always better than or equal to the first-λ
bound, we expect the tail-pairing first-λ bound to be better
for the total number of shifts. The CF method performs the
replacement x→ x+l_b many times. Thus, pairing negative
coefficients of low degree with positive coefficients is an
important task. In the tail-pairing first-λ bound, we pair high-
degree coefficients with low-degree coefficients whenever
possible.

There are two strategies for computing the tail-pairing
first-λ bound. In the first strategy, we initially pair negative
coefficients in the corresponding list, and then pair the tail

Algorithm 1 Implementation of the “local-max2” bound.
cl← {an, an−1, · · · , a1, a0}
if n+ 1 ≤ 1 then

return u_bLM2 = 0
end if
j = n+ 1
negativeIndices = {}
for i = n to 1 step −1 do

if cl(i) < 0 then
negativeIndices = negativeIndices ∪ i

else if cl(i) > cl(j) then
if count(negativeIndices) > 0 then

t = 0
l = count(negativeIndices)
for k = 1 to l − 1 do

t++
tempub = (2t(−cl(negativeIndices(k))

/cl(j)))1/(j−negativeIndices(k))

if tempub > u_bLM2 then
u_bLM2 = tempub

end if
end for
tempub = (2t(−cl(negativeIndices(l))

/cl(j)))1/(j−negativeIndices(l))

if tempub > u_bLM2 then
u_bLM2 = tempub

end if
end if
j = i
negativeIndices = {}

end if
end for
if count(negativeIndices) > 0 then

t = 0
l = count(negativeIndices)
for k = 1 to l − 1 do

t++
tempub = (2t(−cl(negativeIndices(k))

/cl(j)))1/(j−negativeIndices(k))

if tempub > u_bLM2 then
u_bLM2 = tempub

end if
end for
tempub = (2t(−cl(negativeIndices(l)

/cl(j)))1/(j−negativeIndices(l))

if tempub > u_bLM2 then
u_bLM2 = tempub

end if
end if
return u_bLM2



negative coefficients. We call this the “tail-pairing first-λ
type-I bound”. The second strategy pairs the tail negative
coefficients first, and then pairs the negative coefficients in
the corresponding list. We call this the “tail-pairing first-λ
type-II bound”. Algorithm 2 describes the computation of the
tail-pairing first-λ type-I bound. As for the first-λ bound, the
computational complexity of both tail-pairing first-λ bounds
is O(n).

For example, consider the polynomial

x5 + 2x4 − 3x3 + 4x2 − 5x− 1010. (12)

For the first-λ bound, we pair the terms
{
x5,−3x3

}
,{

2x4,−5x
}

, and
{
2x2,−1010

}
, and obtain a bound esti-

mate of
√
1010/2 = 50000

√
2. For the tail-pairing first-λ

type-I bound, we pair the terms
{
x5,−3x3

}
,
{
2x4,−1010

}
,

and
{
4x2,−5x

}
, and find a bound estimate of 4

√
1010/2 =

100 4
√
50. For the tail-pairing first-λ type-II bound, we pair

the terms
{
x5,−1010

}
,
{
2x4,−3x3

}
, and

{
4x2,−5x

}
,

which gives a bound estimate of 5
√
1010 = 100. Thus, the

tail-pairing first-λ bounds are better than the first-λ bound,
and the tail-pairing first-λ type-II bound is better than the
type-I bound for this polynomial.

5. Numerical experiment
In this section, we present numerical results that evaluate

the effect of the proposed bounds.

5.1 Contents of the numerical experiment
To evaluate the effect of the proposed bounds, we imple-

ment the CF method with the following bounds:
• FL+LM: (max(FL,LM))
• LMQ: local-max quadratic bound
• TPFL-I+LM2: (max(TPFL-I,LM2))
• TPFL-II+LM2: (max(TPFL-II,LM2))

Note that FL, LM, TPFL, and LM2 denote the first-λ bound,
local-max bound, tail-pairing first-λ bound, and local-max2
bound, respectively.

As test polynomial equations, the following were used:
• Laguerre: L0(x) = 1, L1(x) = 1− x, and Ln+1(x) =

1
n+1 ((2n+ 1− x)Ln(x)− nLn−1(x))

• Chebyshev-I: T0(x) = 1, T1(x) = x, and Tn+1(x) =
2xTn(x)− Tn−1(x)

• Chebyshev-II: U0(x) = 1, U1(x) = 2x, and Un+1(x) =
2xUn(x)− Un−1(x)

• Wilkinson: Wn(x) =
∏n

i=1(x− i)
• Mignotte: Mn(x) = xn − 2(5x− 1)2

• Randomized polynomial
The randomized polynomials are defined as

f(x) =

r∏
i=0

(x− xi)
s∏

j=0

(x− αj + iβj)(x− αj − iβj),

(13)

Algorithm 2 Implementation of the “tail-pairing first-λ”
bound.
cl← {an, an−1 · · · , a1, a0}
λ← the number of negative elements of cl
if n+ 1 ≤ 1 then

return u_bTPFL = 0
end if
posStartIndex = n+ 1
negTailIndex = 1
while negTailIndex ≤ n+ 1

and cl(negTailIndex) ≥ 0 do
negTailIndex++

end while
while λ > 0 do

while posStartIndex >= 0
and cl(posStartIndex) ≤ 0 do
posStartIndex−−

end while
posEndIndex = posStartIndex+ 1
while posEndIndex >= 0

and cl(posEndIndex) ≥ 0 do
posEndIndex−−

end while
negHeadStartIndex = negHeadEndIndex
negHeadStartIndex = posEndIndex
while negHeadEndIndex >= 0
and negHeadEndIndex ≤ negTailIndex
and cl(negHeadEndIndex) ≤ 0 do
negHeadEndIndex−−

end while
posCount = posEndIndex− posStartIndex
negHeadCount = negHeadEndIndex
−negHeadStartIndex
j = posStartIndex
call Algorithm 3
call Algorithm 4

end while
return u_bTPFL

where xi, αj , βj ∈ R. Note that the parameters xi, αj , and
βj were randomly set in the following range:

−109 ≤ xi, αj , βj ≤ 109. (14)

The parameter s was set to 40, 490, 740, or 990, and r was
set to 20. We then generated 100 test polynomial equations
for each combination of parameters. All polynomials were
preprocessed to have integer coefficients using the method
introduced in [10].

The experiments were performed on an Intel Core i7
3770K CPU with 32 GB of RAM, with GCC 4.6.3 used
as the C compiler. In addition, we used GMP [4], since the
CF method needs multiple-precision arithmetic to compute
the coefficients in the replaced polynomial equations.



Algorithm 3 Subroutine 1 of the “tail-pairing first-λ” bound.
if negHeadCount > 0 then

i = negHeadStartIndex
while negHeadCount > 0 do

if posCount == 1
and negHeadCount > posCount then
k = negHeadCount− posCount+ 1
for v = 1 to k do

tempub = (−cl(i)/(cl(j)/k))1/(j−i)

if tempub > u_bTPFL then
u_bTPFL = tempub

end if
negHeadCount−−
λ−−
i−−
while i ≥ 0 and cl(i) == 0 do

i−−
end while

end for
else

tempub = (−cl(i)/(cl(j))1/(j−i)

if tempub > u_bTPFL then
u_bTPFL = tempub

end if
negHeadCount−−
λ−−
i−−
while i ≥ 0 and cl(i) == 0 do

i−−
end while

end if
posCount−−
if posCount > 0 then

j −−
while cl(j) == 0 do

j −−
end while

end if
end while

end if

5.1.1 log2 optimization

log2 optimization is used in various open-source soft-
ware [5] [6]. Assume that we wish to calculate bounds of
the following form in multiple-precision integer:

(
−b
c

) 1
d−e

, c > 0, b < 0, d > e > 0, (15)

using division and root functions. It takes a considerable
amount of time to calculate the bounds, and the execution
time for each function depends on the bit-length of the

Algorithm 4 Subroutine 2 of the “tail-pairing first-λ” bound.
while posCount > 0

and negHeadEndIndex < negTailIndex do
i = negTailIndex
tempub = (−cl(i)/(cl(j))1/(j−i)

if tempub > u_bTPFL then
u_bTPFL = tempub

end if
posCount−−
λ−−
if λ == 0 then

break
end if
negTailIndex++
while negTailIndex >= 0

and cl(negTailIndex) ≥ 0 do
negTailIndex++

end while
if posCount > 0 then

j −−
while cl(j) == 0 do

j −−
end while

end if
end while

arguments. Here, we can use log2 to find the bounds
1

d− e
(log2(−b)− log2 c) , (16)

and the execution time of log2 for multiple-precision integer
does not depend on the bit-length of the argument. There-
fore, we can avoid division and root functions in multiple-
precision integer by comparing log2 values. The bounds
computed with log2 can be worse than those given by the
division and root functions. However, this method saves a
lot of time in computing the bounds, and is fast in terms of
total execution time.

5.2 Results
Table 2 lists the execution time for special polynomial

equations, and Table 3 lists that for random polynomial
equations. Our proposed bounds are more effective than
FL+LM and LMQ for the Laguerre polynomial and the
Chebyshev polynomial, and are competitive with FL+LM
for the Wilkinson and Mignotte polynomials. The maximum
speed-up for the Laguerre polynomial is about 1.19, and
for the Chebyshev-I and -II polynomials it is about 1.12
and 1.14 times, respectively. TPFL-II+LM2 is more effective
than TPFL-I+LM2 for some special polynomial equations.
We can see this tendency for random polynomial equations:
both TPFL-I+LM2 and TPFL-II+LM2 are more effective
than FL+LM and LMQ. We can also see that TPFL-II+LM2
is more effective than TPFL-I+LM2.



Table 2: Execution time for special polynomials.
Polynomial Degree Time (s)

Class FL
+LM LMQ TPFL-I

+LM2
TPFL-II
+LM2

Laguerre 100 0.01 0.01 0.01 0.01

Laguerre 1000 43.51 48.20 41.77 36.57

Laguerre 1500 221.10 242.69 217.21 189.34

Laguerre 2000 704.95 755.48 683.57 617.01

Chebyshev-I 100 0.01 0.01 0.01 0.01

Chebyshev-I 1000 40.22 41.11 36.30 36.48

Chebyshev-I 1500 206.87 210.86 184.45 185.61

Chebyshev-I 2000 650.85 638.67 590.36 590.36

Chebyshev-II 100 0.01 0.01 0.01 0.01

Chebyshev-II 1000 40.48 40.88 35.74 35.56

Chebyshev-II 1500 203.53 210.73 182.73 182.67

Chebyshev-II 2000 652.94 636.42 599.48 579.28

Wilkinson 100 0.00 0.00 0.00 0.00

Wilkinson 1000 4.53 4.92 4.52 4.54

Wilkinson 1500 22.45 23.82 22.46 22.46

Wilkinson 2000 70.46 73.97 70.59 70.60

Mignotte 100 0.00 0.00 0.00 0.00

Mignotte 1000 0.04 0.04 0.04 0.04

Mignotte 1500 0.12 0.12 0.12 0.12

Mignotte 2000 0.27 0.27 0.27 0.27

Table 3: Execution time for random polynomials.
Parameters Degree Time (s), Avg (Min/Max)

FL+LM LMQ

s = 40
r = 20

100 0.015(0.01/0.02) 0.0188(0.01/0.03)

s = 490
r = 20

1000 29.046(19.15/43.61) 30.161(17.47/49.39)

s = 740
r = 20

1500 135.59(94.78/203.07) 139.06(92.1/211.72)

s = 990
r = 20

2000 415.37(296.62/645.55) 425.47(270.36/835.35)

Parameters Degree Time (s), Avg (Min/Max)

TPFL-I+LM2 TPFL-II+LM2

s = 40
r = 20

100 0.0145(0.01/0.02) 0.0127(0.01/0.02)

s = 490
r = 20

1000 27.325(19.05/38.39) 26.88(17.22/39.38)

s = 740
r = 20

1500 128.07(91.69/179.71) 123.84(86.17/176.16)

s = 990
r = 20

2000 384.11(266.41/617.17) 368.36(271.71/603.31)

6. Conclusions
In this study, we have proposed new lower bounds based

on the local-max bound and the first-λ bound for accelerating
the CF method. The local-max2 bound is sharper than or
equal to the local-max bound. The tail-pairing first-λ bound
is expected to be more suitable for the CF method than the
first-λ bound, because of the need to replace x → x + l_b
many times in the CF method. The numerical results show
that the average execution time of the CF method with
both the local-max2 bound and the tail-pairing first-λ bound
is faster than or nearly equal to that with the local-max
bound, first-λ bound, and local-max quadratic bound for all
polynomial equations.

References
[1] A. Akritas, A. Strzeboński, P. Vigklas, “Implementations of a new

theorem for computing bounds for positive roots of polynomials”,
Computing, 78, pp. 355–367, 2006.

[2] A. Akritas, A. Strzeboński, P. Vigklas, “Improving the performance of
the continued fractions method using new bounds of positive roots”,
Nonlinear Analysis: Modelling and Control, 13, pp. 265–279, 2008.

[3] G. Collins, A. Akritas, “Polynomial real root isolation using Descartes’
rule of signs”, SYMSAC ’76, Proceedings of the Third ACM Sympo-
sium on Symbolic and Algebraic Computation, Yorktown Heights, NY,
USA, ACM, pp. 272–275, 1976.

[4] (2013) The GNU MP Bignum Library. [Online]. Available:
http://gmplib.org/

[5] (2013) Sage. [Online]. Available: http://sagemath.org/
[6] (2013) SymPy. [Online]. Available: http://sympy.org/en/index.html
[7] B. Kioustelidis, “Bounds for positive roots of polynomials”, J. Comput.

Appl. Math., 16(2), pp. 241–244, 1986.
[8] R.E. Moore, “Interval Analysis”, Prentice Hall, Englewood Cliffs, N.J.,

1966.
[9] N. Obreschkoff, “Verteilung und Berechnung der Nullstellen reeller

Polynome”, Berlin: VEB Deutscher Verlag der Wissenschaften 1963.
[10] Masami Takata, Takuto Akiyama, Sho Araki, Kinji Kimura, Yoshi-

masa Nakamura, “Improved Computation of Bounds for Positive Roots
of Polynomials”, In Proceedings of the 2013 International Conference
on Parallel and Distributed Processing Techniques and Applications
(PDPTA’13), Vol.II, pp. 168–174, 2013.

[11] A.J.H. Vincent, “Sur la resolution des équations numériques”, J. Math.
Pures Appl. 1, pp. 341–372, 1836. 2002.


