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Abstract— The Glide protein-ligand docking algorithm of-
ten fails to find the correct binding mode. This is because
the search process can easily fall into local minima when the
search target area is widely distributed across the protein’s
surface and the search grid is relatively large. In this
research, we propose a novel method that improves the
search efficiency in such cases by dividing a single, large
search grid into multiple small search grids. In addition, we
propose a method to minimize the number of small grids
by converting the problem into a set cover problem. We
present experimental results to compare the performance of
the proposed approach with that of the standard protocol
under two different settings.
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1. Introduction
The technique of protein-ligand docking aims to predict

the binding mode of a protein and a small chemical com-
pound (ligand) from their three-dimensional structures. This
approach is now used in many fields, such as drug discovery
and molecular biology [1] [2]. To date, various research
groups from both commercial and academic organizations
have developed protein-ligand docking software, such as
AutoDock [3], GOLD [4], FlexX [5], and Glide[6]. In par-
ticular, Glide has demonstrated good accuracy using various
benchmarks, and is recognized as one of the best docking
software applications [7] [8] [9]. However, even Glide does
not always return the correct binding mode. Therefore, an
improvement in the accuracy of protein-ligand docking is
highly desirable and would have a significant positive impact
in various fields. The low prediction accuracies given by
protein-ligand docking software are often caused by two sub-
stantial problems. One is the estimation of the binding free
energy, and the other is the problem of searching the whole
conformational space. The former problem is caused by
the coarse model resolution and simplified potential energy
function, which are intended to reduce the computational
cost. The latter problem is a result of the huge number of
conformations to be searched. In particular, this problem
becomes more serious if the binding site of a target protein

is unknown. This is because only a narrow region need be
searched if the binding site is well known; if this is not the
case, the entire protein surface must be searched. Thus, the
conformational space search requires more computational
resources, and this can become a serious problem.

To tackle this, several software packages, such as Pock-
etFinder [10] and SiteMap [11], have been developed to
predict the ligand binding sites. In the standard Glide dock-
ing protocol, multiple binding sites are predicted from the
tertiary structure of a protein using SiteMap, and then a
search grid is set to cover these predicted binding sites.
Finally, only the region within the grid is searched in the
Glide docking simulation process. However, even using this
protocol, Glide sometimes fails to find the correct binding
mode. The search easily falls into local minima if the
predicted binding sites are widely distributed across the
protein’s surface and a large search grid is used. The search
algorithm of Glide tends to intensively search narrow regions
near positions that score highly in the initial search stage,
and overlook good conformations far from such regions.
Therefore, the search accuracy of Glide often becomes lower
if a large number of binding sites are predicted over a
widespread area.

In this study, we propose a method to improve the search
efficiency of protein-ligand docking when many binding
sites are predicted and the search grid is large. To avoid
the problem of local minima, we use multiple small search
grids instead of one large grid. Additionally, to minimize the
number of small search grids, we translate this arrangement
into a set cover problem, and successfully reduce the number
of grids.

2. The Glide conformation search algo-
rithm

The Glide search algorithm [6] is a four-part process
that determines the conformation with the lowest binding
free energy. In the first stage, the algorithm uses simple
criteria to determine candidate positions on the protein that
are likely to bind with a ligand. In the second stage, the
algorithm arranges ligands at these points, and calculates
their binding score using a rough score function. In the third



Figure 1: (A) A grid in the Glide standard protocol (B) Grids
generated by the proposed method

stage, to minimize the binding free energy, the algorithm
optimizes the structure of the ligand by dihedral angle
rotation and rigid body transformation. In the final stage,
the algorithm selects the best score conformation using a
precise score function named GlideScore [6]. In particular,
the second stage consists of two different processes. The
first is the calculation of a GreedyScore, and the other is a
refinement process. In the GreedyScore calculation process,
ligands are arranged at the positions selected in the first
stage, and the top 5000 conformations are selected according
to their ChemScore [12]. In the refinement process, these
5000 conformations are refined by moving the center of the
compound within ± 1Å and the top 400 conformations are
finally selected.

The number of selected conformations is a fixed param-
eter, regardless of the size of a search grid. As a result,
the algorithm often fails to find the correct conformation
when the search target area is widely distributed over the
protein surface and a large search grid is used. Of course,
the parameter can be changed manually. However, the range
is limited by the interface, and it is difficult to determine an
appropriate value empirically.

3. The proposed method
Using the default Glide protein-ligand docking, the con-

formational search sometimes fails because of insufficient
sampling. To solve this problem, we propose a method to
improve the search efficiency by dividing a large search
grid into multiple small search grids (Figure 1). For a
search grid of optimal size, the Glide conformation search
algorithm works well, even with the default settings, and
we can generally obtain accurate conformations. Thus, in
our proposed method, a large search grid is divided into
multiple small grids, and then a conformational search is
performed for each small grid. Finally, the output of all
conformational searches is collated, and the final prediction
results are selected according to the GlideScore.

Our proposed method has the clear disadvantage that the
computational cost increases in proportion to the number of
search grids, meaning that the cost of our method is larger

Figure 2: Algorithm of the proposed method

than that of a standard protocol. To reduce this harmful
influence, we also propose a grid arrangement method to
minimize the number of search grids. We convert this grid
arrangement problem into a set cover problem [13]. In the
set cover problem, given a table set U made of n elements,
a subset group of U expressed as S={S1,S2, ... ,Sl}, and a
cost function c : S → Q+ (Q+ is a set of positive rational
numbers), we must identify the subset of S covering all
elements of U with the lowest cost. In our optimal grid
arrangement problem, we use the site-points obtained by
SiteMap as the table set, and the site-points included on
a grid whose center is one of the elements of the table set is
the subset group. The cost is the number of elements of the
table set included in each grid. In this way, we can convert
the grid arrangement problem into a set cover problem. We
use an approximate algorithm to solve this, because the set
cover problem is known to be NP-hard [14]. The algorithm
consists of seven steps: (i) Input the site-points obtained by
SiteMap and (ii) prepare the empty set C. Next, (iii) select
the highest-cost grid G and (iv) add the center of grid G
to C. After that, (v) remove all of the site-points included
in grid G, and (vi) repeat (iii)–(v) until S is empty. Finally,
(vii) use the site-points in C as the centers of grids in the
dispersion setting. Figure 2 shows the pseudo-code of this
algorithm. The computational complexity is O(n3), where n
is the number of elements in the table set.

Figure 3 shows the behavior of the algorithm on a two-
dimensional space. Both white and black dots represent site-
points, and are elements of the table set. The black dots
are selected as the center of a search grid by the proposed
method, and squares represent each search grid. All of the
dots are included in the union of these grids. In particular,
the algorithm minimizes the number of grids. In this case,
the algorithm successfully covers 30 dots with only 11 grids.

We implemented the proposed method by altering the
XGlide.py python script in the Glide cross docking [15].



Figure 3: Example 2D grid arrangement given by the pro-
posed method

4. Evaluation experiment
In this experiment, we confirm that the proposed method

has better search efficiency than the Glide standard protocol
under its default settings. We use the docking score and
computation time to evaluate the search efficiency. We also
compare the efficiency of the proposed method to that of
the Glide standard protocol under the “heavier” setting,
which makes the conformation search more onerous but
more accurate. This is because a direct comparison of the
proposed method and standard protocol with default settings
is difficult, as the proposed method has a greater inherent
computational complexity.

4.1 Dataset
We used a protein-ligand complex dataset called

CCDC/Astex [16]. Because of limitations in computational
power and the number of Glide software licenses, we
randomly selected the following 20 proteins that did not
cause errors in the docking process: 1A4G, 1AJ7, 1B9V,
1DBB, 1EJN, 1FAX, 1FKG, 1HDC, 1IBG, 1MMQ, 1QBR,
1RNE, 1TPH, 1XKB, 2DBL, 2H4N, 2TMN, 2TPI, 3ERD,
7CPA (complex structures 1GPY, 1RT2, and 4CTS were
selected at first, but these were replaced by 1EJN, 1FAX,
and 2TMN because of such errors). Before applying the
docking calculation, the protein-ligand complexes were di-
vided into a protein and a ligand using the Maestro software
(Schrodinger, Inc.). The protein structure was optimized
by the “Protein Preparation Wizard” within Maestro. This
process includes five functions: “Remove cofactors”, “Pre-
process”, “Optimize”, “Remove waters”, and “Minimize”.

The potential ligand conformations were generated by the
“LigPrep” and “Epik” functions of Maestro.

4.2 Protocol to generate conformation search
grids

The conformation search area for the docking simulations
is determined based on the results of SiteMap. The SiteMap
software predicts potential binding sites based on the pro-
tein’s structural characteristics. In this experiment, we used
SiteMap’s default parameters and settings, except for the
number of max reports, which was changed from 5 to 10
because the default value is too small for larger proteins.

Search grids were generated by the “Glide Grid Genera-
tion” function of Maestro. In the standard protocol, a search
grid is located on the centroid of the site-points obtained
by SiteMap. The edge size of the INNERBOX (the center
of a ligand is restricted to this box through the docking
process) is given by the ligand diameter, and the edge size
of the OUTERBOX (all atoms of a ligand are restricted to
this box) is set to the INNERBOX edge size + 16Å. In
the proposed method, search grids are arranged at each of
the selected site-points by our grid arrangement algorithm.
The edge size of the INNERBOX and OUTERBOX are
fixed to 10Å and 26Å, respectively. Therefore, the search
grids generated by the proposed method are different from
those in the Glide standard protocol. However, both methods
satisfy the condition that all site-points given by SiteMap are
included in any grid.

4.3 Protein-ligand docking using Glide

The docking results are highly dependent on the initial
pose of the ligand. Thus, before the docking simulation,
a sufficient number of initial ligand conformations were
generated using “LigPrep” with its default settings. The
protein-ligand dockings were performed using the “Ligand
Docking” Glide function with default settings. Glide has
two prediction modes, standard precision (SP) and extended
precision (XP). Compared with SP mode, XP is slower but
more accurate. In consideration of the computational cost,
we used SP to predict the binding mode in this experiment.

As mentioned above, a direct comparison of the efficiency
of the proposed method with that of the standard protocol
under the default settings is difficult. Thus, we used the
“heavier” setting in the standard protocol to enable a reason-
able comparison. It is possible to improve the conformation
search by increasing the number of searches, although this
entails a heavier calculation. Under the heavier setting, the
standard protocol forms one grid, as for the default setting.
Therefore, we implemented the standard protocol with this
heavier setting, and increased the number of conformation
searches to that of the proposed method.



Table 1: Performance comparison of three methods

Standard (default) Proposed Standard (heavier)

PDB
Score

[kcal/mol]
RMSD

[Å]
time
[sec]

Score
[kcal/mol]

RMSD
[Å]

time
[sec]

Score
[kcal/mol]

RMSD
[Å]

time
[sec]

1A4G -7.34 23.9 5783 -8.08 23.5 9527 -7.34 23.6 25426
1AJ7 -7.33 1.8 1413 -8.02 2.3 2856 -7.71 2.2 1734
1B9V -6.16 22.9 721 -7.15 23.6 1626 -5.43 23.7 997
1DBB -8.74 0.5 1244 -9.13 0.5 2671 -8.73 0.5 1418
1EJN -6.77 12.3 502 -8.84 1.0 712 -7.60 1.1 632
1FAX -8.47 8.7 727 -8.78 11.1 1117 -9.16 4.4 1521
1FKG -7.76 1.6 128 -6.81 5.1 120 -7.76 1.6 130
1HDC -8.07 6.1 956 -7.96 6.1 2443 -8.05 6.1 1550
1IBG -8.66 2.3 6705 -8.84 1.2 15601 -8.66 2.3 27230
1MMQ -8.15 9.5 185 -7.58 9.7 310 -8.24 1.5 233
1QBR -8.39 10.5 1108 -8.39 11.6 1427 -11.23 1.8 1278
1RNE -13.64 1.5 43850 -15.57 0.6 75126 -13.64 1.5 68986
1TPH -6.48 1.1 315 -6.26 1.2 460 -6.48 1.1 363
1XKB -7.78 9.0 923 -11.52 2.1 1621 -11.51 2.0 1528
2DBL -8.67 1.1 2082 -9.02 1.1 4682 -8.67 1.1 5865
2H4N -5.02 6.3 526 -5.32 15.7 728 -5.03 6.3 809
2TMN -5.23 2.6 469 -5.66 3.1 636 -5.97 4.2 664
2YPI -8.16 0.8 513 -7.90 3.7 1083 -7.99 1.0 632
3ERD -9.87 0.5 541 -9.95 0.6 804 -9.87 0.5 630
7CPA -8.21 4.5 953 -9.21 4.5 1698 -8.71 4.2 1691
Average -7.95 6.4 3482 -8.50 6.4 6262 -8.39 4.5 7166

4.4 Results of the evaluation experiment
Table 4.4 shows the docking scores, root mean square

deviation (RMSD), and execution time for the proposed
method and standard protocol with the default and heav-
ier settings. The docking score is essentially the same as
GlideScore, but is compensated by Epik state penalties [19].
Conformation searches are performed using GlideScore in
the docking process, but the final output of Glide is a docking
score. Therefore, we used the docking score as an evaluation
metric in this experiment. This score represents the binding
energy between a protein and a ligand, and so smaller values
are better. The “Score” column shows the value of the
lowest docking score. We also show the RMSD of all atoms
superposed by a protein between the conformation of the
crystal structure and the conformation of the complex with
the best docking score. RMSD is often used to evaluate the
accuracy of dockings. However, we did not use RMSD to
measure the conformational search performance, because in
many cases a better docking score has a larger RMSD. This
is because the RMSD is highly dependent on the scoring
function as well as the search performance. Therefore, we
only used the docking score to evaluate the conformation
search performance in this work.

From the results in Table 4.4, we can see that the proposed
method exhibits the best search performance of the three

methods considered. In addition, the docking score of the
proposed method is better than that of the standard protocol
with default settings for 15/20 complexes, and outperforms
the standard protocol with the heavier setting in 13/20 cases.

The execution time of each method is shown in the “Time”
column. This includes the time required by the proposed
method to determine the optimal grid arrangement, as this
is trivial compared with the overall execution time. From
Table 4.4, we can see that the execution time of the proposed
method is approximately twice that of the standard protocol
with default settings. However, the proposed method is
approximately 15% faster than the standard protocol with
the heavier setting.

5. Discussion
5.1 Statistical significance of the improvement

The proposed method gives the best average docking
score, and beats the docking score of the standard protocol
with default settings in 75% of cases. Thus, we believe that
the search performance of the proposed method is consider-
ably better than that of standard protocols. To confirm this,
we conducted a statistical test to check whether the differ-
ence is significant. Assuming non-parametric distributions,
we applied a two-sample paired Wilcoxon signed rank test



[20] to the docking scores. This is a non-parametric statis-
tical hypothesis test to assess the significance of differences
between two related samples. We used the “wilcox.test”
function of R 3.0.0 with the “pair” option.

First, we compared the standard protocol with default
settings with the proposed method. The p-value of the test
was 0.02, and the difference in performance was found to
be statistically significant at the 0.05 level. Thus, the pro-
posed method has significantly better conformational search
performance, although its computational cost is greater.

We also compared the results from the standard protocol
with the heavier setting with those given by the proposed
method. The p-value of this test was 0.41, indicating that
there is no significant difference in performance at the
0.05 level. Thus, from this experiment, it is impossible
to conclude that the search performance of the proposed
method is better than that of the standard protocol with
the heavier setting. However, the proposed method is faster,
and thus more efficient, than the standard protocol with the
heavier setting.

5.2 The effect of optimal grid arrangement
Our grid arrangement algorithm is designed to minimize

the number of search grids. In this experiment, arranging a
grid for every site-point obtained by SiteMap would require
an average of 4893.6 grids. However, using our optimal grid
arrangement algorithm, this number decreased to only 14.2.
Because the computational cost increases in proportion to
the number of search grids, our grid arrangement method
reduces the cost by a factor of approximately 350.

Of course, it is possible to employ other grid arrange-
ment methods. To show the advantage of our method, we
implemented another simple grid arrangement method that
divides the large grid into small uniform grids at even
intervals. Figure 4 shows an example arrangement given by
this division method. In the figure, the white dots are site-
points obtained by SiteMap, and the small crosses denote the
centers of each search grid. We removed all grids that did
not include any site-points. The union of the grids generated
by the algorithm can also include all dots. We applied this
arrangement method to the dataset used in the experiment.
This algorithm generated an average of 22.7 search grids,
which is more than in the proposed method. These results
indicate that our proposed method can effectively decrease
the number of search grids, and thus the computational cost.

6. Conclusion
In this study, we aimed to improve the conformation

search of protein-ligand docking by avoiding local minima in
large search areas. Thus, we proposed a method to improve
the search efficiency by dividing one large search gird
into multiple small search grids. In addition, we developed
a technique that minimizes the number of such grids by
converting the problem into a set cover problem. The results

Figure 4: Example 2D grid arrangement given by the simple
division method

of an evaluation experiment show that the proposed method
improves the docking score relative to the standard protocol.
Unfortunately, however, statistical tests did not show a clear
improvement over the standard protocol with the heavier
setting. The computational cost of the proposed method
was lower than that of the standard protocol with the
heavier setting, which indicates that our method has better
search efficiency than the standard protocol. In this research,
the standard protocol with the heavier setting predicts the
binding mode of a crystal structure better than the proposed
method. We think this is due to the inaccuracy of the
docking score. Thus, in future work, we will investigate the
relationship between the docking score and the RMSD, and
refine the score function to improve conformational searches.
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