
Design of an In-Memory Database Engine
Using Intel Xeon Phi Coprocessors

Michael Scherger

Department of Computer Science
Texas Christian University

Fort Worth, TX, USA
Email: m.scherger@tcu.edu

Abstract – (PDPTA’14) This research presents the
design and initial implementation of a database engine
using an Intel Xeon Phi co-processor. The many
integrated cores (MIC) of the Xeon Phi make this
hardware accelerator a natural computing platform for
an in-memory database engine or server. The database
tables reside in the memory space of the MIC thus
supporting fast in-memory database applications. This
achieved by developing a coalescing parallel memory
manager to allocate parallel variables in the same
manner that fields are created in a table using a SQL
CREATE TABLE command. The SQL interface was
created using a database driver toolkit that provides an
interface to the Xeon Phi server and client application.
Once the basic framework was established, the algorithms
for SQL select, insert, update, delete, and join were
created to manipulate database information in the
memory of the Xeon Phi.

Keywords: parallel databases, parallel hardware
accelerators, special purpose architectures

1 Introduction
Massively data parallel computers and the SIMD

model of parallel computation can be a natural model of
parallel computation to consider for massively parallel
database servers. Since the cores are extremely close to
the parallel memory, fast parallel memory searching make
it a natural platform for data parallel computing intensive
applications. As described in Potter in [9] and [10], data
parallel models of computation such as the SIMD, ASC,
or SITDAC model conform to the concept of a parallel
database server since the data can logically and physically
partitioned similar to the data organization of a database
table or spreadsheet [2][8][9][10][11] and [12].

This research paper discusses the initial design of
an in-memory database server using a Intel Xeon Phi co-
processors. This research will discuss the design
considerations and challenges for a database server and
SQL engine that interfaces with the memory of a
hardware accelerated data parallel computer. This system
design can promote the use of massively parallel

computers as database servers for use in embedded
database systems, real-time database systems, and fast
parallel associative search engines.

Database management systems (DBMS) provide a
structured mechanism for storing, organizing, and
retrieving data in a way that is consistent with the
database’s format [14]. System software will allow data
storage and access to a database without the user’s
knowledge about the internal data representation either in
persistent storage or in the computer’s memory. A
DBMS usually has but is not limited to the following
components [14]:

• Processors and main memory – the hardware of
the DBMS for data selection and computation

• Secondary storage – disks for data persistence
and offline storage

• Database manager – software for creating and
maintaining databases, tables, fields, and
relations

• Utilities – software for database maintenance,
data integrity and security, and database repair

• Application development tools – software for
database application development integrated into
the DBMS

• Report writers – software modules for
presentations and reports based on tables and
queries from database information

• Design aids – software to assist in the design of
databases, tables, fields, indexes, and
relationships

The organization of this research paper is as

follows. Section 2 will use the tracking and correlation
problem in air traffic control as a motivating example.
Section 3 present an overview of the Intel Xeon Phi co-
processor and system software. Section 4 will present the
hardware and physical design of the database server
including the mapping of table records into the memory
of the parallel computer. Section 5 will discuss the
techniques of sequential and parallel database query
processing. Section 6 will present the system software
design of the parallel SQL engine and the algorithms for

the basic database server operations. Section 7 will
discuss the conclusions and future research.

2 Example Application: ATC Tracking
and Correlation
Consider a real world and real time application of air

traffic control. The following example is an extremely
simplified version of the air-traffic tracking and control
problem, but provides enough detail to illustrate the
system software design for a parallel database server and
SQL interface [11]. Some of the basic tasks of air traffic
control are:

• Tracking and correlation – The radar will generate

reports of flights of returns that must be correlated to
tracks of flights currently in the system.

• Conflict detection – The computer system must then
determine if there are any tracks/flights that will
conflict/collide with a time look ahead of a
predetermined number of minutes or miles.

• Flight plan update – Based on the tracking and
correlation information and combining it with the
conflict detection, the flight plan information will be
updated.

There are many other important tasks in air traffic

control, but this is an example of a real-time processing
problem [6],[7], and [8]. There are also hard deadlines
for computation imposed on the above tasks. They must
be completed prior to the next hard deadline in this real
time system.

The flight plans and tracks from radar can be
stored in a simplified tabular format (flat table) in a
database table similar to illustration in Figure 1.

Figure 1: Sample database to store flight plan
information.

The ATC system software will/may have to perform the
following operations when receiving a new set of track
information.

• Insert a new flight into the table. As aircraft enter the
airspace, they need to be stored into the flight table.
This involves searching for an open/free record in the
table and then copying the flight information into that
newly created record.

• Deleting a flight from the table. As aircraft leave the
airspace, they need to be deleted from the flight table.
This involves searching for the record of the flight to
delete and marking that the record is inactive.

• Selecting a flight from the table. Selection involves
identifying one or more flights for further processing.
The selection must scan the data in the fields for this
table and then return that information back for further
processing.

• Updating the flight information. Updating a flight
begins with a search followed by a copy of new
information into the selected record from the track
information.

Each of these frequent operations (insert, select,

update, delete) requires some type of a parallel memory
search. In the case of insert, the search operation is for an
open record in the table. In the case of the select, update,
and delete operations, the search required is based on the
data stored in the records of the table. This is a contextual
search or associative based search.

The most common method to improve search
performance in a database server is to use index tables.
This is illustrated in the Figure 2.

Figure 2: Flight table illustrating the use of index
tables to improve performance.

An index table stores the record indexes based on some
ordering criteria or sorting functions. In Figure 2, an
index table may store pointers to the indices for the
aircraft sorted by aircraft id. Another index may store
pointers to indices for the aircraft based on altitude.
Finally another index may store pointers to the indices for
the aircraft based on airspeed.

In theory, a database table can have one or more
indices for each field. However, this dramatically reduces
the performance of the insert, update, and delete
operations at the benefit of doing fast searches
[1][3][4][5]. As new records (flights) are entered into the

ASHDGALTLONLATAID ASHDGALTLONLATAID

330907084.1339.54CA2341

………………

30531529082.5340.0AA1223

525015081.5141.24UA722

2752256084.3139.9AA123

450027081.2640.55CO56

330907084.1339.54CA2341

………………

30531529082.5340.0AA1223

525015081.5141.24UA722

2752256084.3139.9AA123

450027081.2640.55CO56

IDX-3IDX-3IDX-2IDX-2IDX-1IDX-1

ASHDGALTLONLATAID ASHDGALTLONLATAID

330907084.1339.54CA2341

………………

30531529082.5340.0AA1223

525015081.5141.24UA722

2752256084.3139.9AA123

450027081.2640.55CO56

330907084.1339.54CA2341

………………

30531529082.5340.0AA1223

525015081.5141.24UA722

2752256084.3139.9AA123

450027081.2640.55CO56

table, the index tables need to be updated and maintain
their sorted order. The constant resorting of each index
table becomes increasingly computational demanding.
The same is true for the delete and update operations
when the flight information changes. The performance
degradation is further amplified when multiple index
tables must change.

3 Overview of the Intel Xeon Phi

The Intel Xeon Phi co-processors have 60 in-order
Intel MIC architecture cores running at 1 GHz. The Intel
MIC architecture is based on the x86 ISA, extended with
64-bit addressing and 512-bit wide SIMD vector
instructions and registers. Each core supports 4 hardware
threads. In addition to the cores, there are multiple on-die
memory controllers and other components.

As shown in Figure 3, each core has a newly
designed Vector Processing Unit (VPU). Each VPU unit
contains 32 512-bit vector registers. To support the new
vector processing model, a new 512-bit SIMD ISA was
introduced. The VPU is a key feature of the Intel MIC
architecture based cores. Fully utilizing the vector unit is
critical the best performance. The Intel MIC architecture
cores do not support other SIMD ISA’s such as MMX,
SSE, or AVX.

Figure 3: Intel Xeon Phi MIC core block diagram.

Each core has a 32KB L1 data cache, a 32KB L1

instruction cache, and a 512KB L2 cache. As shown in
Figure 4, The L2 caches of all cores are interconnected
with each other and the memory controllers via a
bidirectional ring bus, that effectively creates a shared
last-level cache of up to 32 MB. The design of each core
includes a short in-order pipeline. There is no latency in
executing scalar operations and low latency in executing
vector operations. Since the in-order pipeline is short, the
overhead for branch misprediction is low.

Figure 4: Logical MIC core layout and ring
communication bus.

4 Database Engine Hardware Design
and Architecture

There are a few assumptions regarding the design of
the parallel database server [11].

1. The database, tables, and records in the parallel

database server are memory resident. Storage is
completely volatile and there is no persistent storage
in the cells or array memory implemented in this
design. For real-time computation, storing data and
record information in in secondary storage is costly
in terms of access time. Having the data reside in
memory, close to the processing elements is more
conducive for real-time applications.

2. The data parallel memory map is similar to the field

layout planned of a database table. If TABLE_A has
fields F1, F2, F3 created in that order, then the parallel
memory map will have parallel variables F1[$], F2[$],
and F3[$] located in lower to higher parallel memory
addresses.

3. The number of actual processing elements is fixed

during the execution of the parallel database server.
This is not an unrealistic assumption since the Intel
Xeon Phi has a fixed number of cores (or hyper-
thread processors).

4. The amount of memory per processing element is

fixed. Again, the memory in the Intel Xeon Phi
separate “parallel memory space” than the memory of
the host computer. Albeit the parallel memory space
is often smaller than the host memory, for most
database applications, the amount of parallel storage
is adequate.

Since this model is using massively parallel search

and responder processing as a model of data parallelism,

database index tables are no longer required. Each
database field (column) can be searched for the desired
value in constant time. Data parallelism can also support
efficient software for associative searches.

The cores, or processing elements (PE) of the Intel
Xeon Phi will be used to assist in the basic database
operations and searching. This is illustrated in Figure 5.
In this figure, the database table is superimposed on the
memory and processing elements of a SIMD computer.
Two additional fields have been prefixed to the table: a
busy-idle flag to indicate if the PE or record is active and
a responder flag used for search operations. Using this
approach, each individual record is located in the memory
of a PE. Using massive parallel searching, processing
elements can scan their individual memories and set the
responder flag or turn their busy-idle flag on or off.

Figure 5: Flight table superimposed onto the PEs and
memory of a SIMD computer.

 Database tables are dynamic objects; there is
typically no a priori knowledge of the number of table
records. If the number of records in a table exceeds the
number of physical PEs in the system (parallel memory
overflow) the database server will use a cyclical data
placement strategy when inserting new records. This is a
form of virtual parallelism that is maintained by the
parallel database server and not the operating system.
This cyclical placement will manage multiple tables with
multiple folds in an interleaved fashion as determined by
the amount of data in the tables. For example, in Figure
6, Table A utilizes only 4 PEs, while the number of
records in Table B has exceeded the number of PEs
resulting in multiple folds.
 An insert operation for Table A will add a new
record into the area occupied by fold 1 for table A. For
table B, the next insert operation will be in fold 2. If
enough records are added to Table A to exceed the
capacity of fold 1, a new fold will be created in the free
memory space to the right of fold 2 of Table B [11].

Figure 6: Multiple database tables, table folds, and
unused parallel memory.folds, and unused parallel
memory.

By necessity, data memory management

becomes the responsibility of the parallel database server
instead of the parallel compiler or other system software
[11]. A coalescing parallel memory manager (CPMM)
was developed to keep track of table, field and fold
addresses. Figure 7 illustrates some of the administrative
data structures that must be maintained for folded tables.

Figure 7: Data structures for logical database tables,
folds, records, and fields.

The parallel database server will maintain the controlling
data structures to manage the database, tables, folds,
records, and column addresses. These data structures
reside in the sequential memory of the control unit or
front-end computer. Dark shaded regions in this figure
represent active records in the table. Note that there are
two folds for this table and the field list is replicated for
each fold. The table fold is an absolute parallel memory
address while the field address is a relative parallel
memory address. By adding the two memory addresses
together, the physical memory address for a database field

PE

…

PE

PE

PE

PE

PE

…

PE

PE

PE

PE

ASHDGALTLONLATAIDRBusy /
Idle

ASHDGALTLONLATAIDRBusy /
Idle

330907084.1339.54CO2341TT

……………………

F

F

F

F

30531529082.5340.0AA1223FT

525015081.5141.24UA722FT

2752256084.3139.9AA123FT

450027081.2640.55CO56TT

330907084.1339.54CO2341TT

……………………

F

F

F

F

30531529082.5340.0AA1223FT

525015081.5141.24UA722FT

2752256084.3139.9AA123FT

450027081.2640.55CO56TT

Table A1 Table B1 Table B2 Free Parallel MemoryTable A1 Table B1 Table B2 Free Parallel Memory

within a fold can be determined. The parallel memory
manager also created extra hidden table fields used for
basic database operations (described in a later section).
These hidden table fields included several responder bits,
a busy/idle flag, and timestamp fields for record insertion,
selection, and update.

5 Sequential and Parallel Query
Processing

Query processing refers to the range of activities

involved with extracting data from a database. The
activities include translation of queries in high-level
database languages into expressions that can be used at
the physical (storage) level. The fundamental steps a
database server must perform when processing a database
query appear in Figure 8:

Figure 8: Major functional components of database
query processing.

Before query processing can begin, the system

must translate the query into a usable form. A language
such as SQL is appropriate for software application
development, but is not amenable to be the system’s
internal representation of a query. As shown in Figure 3,
the first step the system must take in query processing is
to translate a given query into its internal form. This
translation process is similar to the work performed by the
parser of a compiler. In generating the internal form of
the query, the parser checks the syntax of the user’s query
and verifies that the query names appear in the database.
The system then constructs a parse tree representation of
the query, which it then translates into a relational algebra
expression.

The sequence of steps in query processing is
representative. Not all databases exactly follow these
steps. However, the concepts that have been described
form the basis of query processing in databases.

5.1 Sequential Query Processing Algorithms

There are several sequential query processing algorithms
defined in the literature [14] and [15]. Each algorithm has
a particular use when the query processing evaluation
takes place.

The most relevant query processing algorithm
related to this research is the A1 – Linear Search
algorithm, which is now described. In a linear search, the
system scans each file block and tests all records to see
whether they satisfy the selection condition. An initial
seek is required to access the first block of the file. The
cost of linear search, in terms of number of disk
operations, is one seek plus br block transfers, where br
denotes the number of blocks in the file. Equivalently,
the time cost is tS + br * tT.

Although the A1 – Linear Search algorithm may
be slower on sequential computers than other algorithms
for implementing selection and other query processing
tasks, it is the most natural algorithm in terms of
conversion to a massively parallel equivalent since the
linear search on a parallel variable can be accomplished in
constant time on SIMD (or MASC) computers assuming
the database can be held entirely in memory.

6 System Software Design and
Architecture

Now that the basic parallel memory management

issues have been addressed, the system software design of
the database server is described.
 A client application will use the database driver
manager to interface with the client database driver. The
client database driver communicates with the SQL
Engine. The SQL Engine will call process these
instructions and then call the appropriate parallel database
server, where there will be a corresponding function call
to perform an operation in the memory of the parallel
computer. The parallel database server will then receive
the request from the database driver and control the
databases, tables, records, and columns in the parallel
memory.

6.1 Parallel SQL Insert Algorithm

The task of the parallel SQL insert operation is
to insert new data into a free record located anywhere in
the table in any fold. An example of the SQL INSERT
statement is the following:

INSERT INTO FLIGHTS(AID, LAT, LON, ALT, AS)
VALUES(‘CO128’, 43.39, 83.67, 190, 450)

This insert statement will insert a new record into the
FLIGHTS table (reference the database table in Figure 4)

Query Parser and
Translator

Relational
Algebra

Expression

Optimizer

Execution
Plan

Query
Output

Evaluation
Engine

Data

and assign the respective values to the AID, LAT, LON,
ALT, and AS fields.

For inserting a record into a parallel memory
space, the basic parallel insert algorithm is the following:

Algorithm Par_SQL_Insert(RecordData)

 open_record_found = FALSE

 For each table fold

 Perform associative search on the
 table’s BI field where BI field is
 false (i.e. record is empty – there
 may be multiple records returned)

 if (idle records found)
 select one record;
 BI = TRUE
 open_record_found = TRUE
 break

 // no open record is found
 // in any fold
 if (open_record_found == FALSE)
 create a new fold
 select first record in the new fold
 BI = TRUE
 break

 Copy the data into the parallel memory record
 Return success or failure

Figure 8: Parallel SQL insert algorithm.

 The algorithm Figure 8 begins by searching for
an open or idle record in each of the table folds in turn. If
idle records are found, then PE identification number and
the fold select one record and field addresses are used to
copy the data into the parallel memory record. If no idle
record is found, then the parallel memory manager must
create a new fold. This can be accomplished by
allocating space from the unused space in parallel
memory the same width as previous folds and recording
the new base address in sequential memory. Since a new
fold is created, the parallel memory manager can select
any PE for the insertion; e.g. the first PE (lowest PE id
number) can be used. The basic parallel search can be
done in O(1) time. However, since each table fold may
have to be scanned, the running time is O(#folds) which is
typically small and normally still O(1) since the number
of folds normally constant and not a function of higher
complexity.

6.2 Parallel SQL Delete Algorithm

The task of the parallel SQL delete operation is
to delete records according to some searching or selection
criteria. An example of the SQL DELETE statement is
the following:
DELETE FROM FLIGHTS
WHERE AID = ‘NW 545’ /* delete criteria */

This delete statement will delete all records
where the AID (aircraft ID) is ‘NW 545’. For deleting a
record from the parallel memory space, the parallel delete
algorithm is the following:

Algorithm Parallel_SQL_Delete(DeleteCriteria)
returns Boolean

 For each table fold

 Perform associative search where the Delete
 Criteria is TRUE and set responders
 appropriately

 If (the responder is TRUE)
 Reset the Busy-Idle flag

 If all records in the current fold are idle

CPMM marks the current fold as free

 Return success or failure

Figure 9: Parallel SQL delete algorithm.

The algorithm in Figure 9 begins by looping

through each table fold and having each cell evaluate the
appropriate fields as specified in the delete criteria clause.
For those cells where the delete criteria clause is True, the
responder busy-idle flag is reset. If all the records in a
given fold have their busy-idle flag reset, the coalescing
parallel memory manager (CPMM) marks that fold as
completely unused and returns it to the free pool of
parallel memory. The basic parallel delete can be done in
O(1) time. However, since each table fold will have to be
scanned, the running time is O(#folds).

7 Conclusions and Future Work
This research paper has presented an initial

design of an in-memory database engine utilizing Intel
Xeon Phi co-processors. Also presented was the system
software design and interface for sequential programs and
applications to interface with the server. This was
achieved by designing and developing the set of
algorithms for common database operations that would
support the functionality of a parallel database server.
The SQL operations presented include insert and delete
and execute in O(#folds) steps. The update and selection
operations are similar. The design of a coalescing parallel
memory manager was also developed to manage large
tables and virtual parallelism.

An area of future research explores how the
parallel database handles virtual parallelism. The present
design uses a coalescing parallel memory manager to
control the table folds in the memory of the parallel
computer. This parallel memory manager is a built in
component of the parallel database server because the
Xeon Phi environment assumed that the number of
processing elements was fixed at runtime and could not
change.

Another area of future research could explore
how the tables, records, and fields are physically mapped
to the memory of the parallel computer. Presently, the
parallel memory map as shown in Figures 6 and 7 indicate
that the parallel variables are allocated for all processing
elements in a given fold regardless of the number of
records actually storing information. This leads to a
waste of processing elements for tables with only a few
records.

8 References
[1] Babb, E, “Implementing a Relational Database by

Means of Specialized Hardware”, ACM Transactions
on Database Systems, Vol., 4, No. 1, 1979, pp. 1-29.

[2] Batcher, Kenneth, “The STARAN Series E,

Proceedings of the International Conference on
Parallel Processing, 1977, pp. 140-143.

[3] Berra, P. Bruce, “Some Problems in Associative

Processor Applications to Database Management”,
National Computer Conference and Exposition, Vol.
43, 1974, pp. 1-5.

[4] DeFiore, Casper R, P. Bruce Berra, “A Quantitative

Analysis of the Utilization of Associative Memories
in Data Management”, IEEE Transactions on
Computers, Vol. c-23, No. 2, February, 1974, pp.
121-132.

[5] Hsiao, D., and M. J. Menon, “Design and Analysis of

a Multi-Backend Database System for Performance
Improvement, Functionality Expansion and Growth
(Part 1)”, Technical Report, OSU-CISRC-TR-81-7,
The Ohio State University, Columbus, Ohio, July,
1981.

[6] Jin, Mingxian, Johnnie Baker, and Kenneth Batcher,

"Timings for Associative Operations on the MASC
Model", Proc. of the 15th International Parallel and
Distributed Processing Symposium (Workshop in
Massively Parallel Processing), abstract on page 193,
full text on CDROM, April 2001.

[7] Lockheed Martin Compary - formerly Loral Defense

Systems, ASPRO-VME Parallel/Associative
Computer: Technical Overview, Oct. 1993.

[8] Meilander, Will, Johnnie Baker, and Mingxian Jin,

"Importance of SIMD Computation Reconsidered",
Proc. of the 17th International Parallel and
Distributed Processing Symposium (Workshop on
Massively Parallel Processing), abstract on page 266,
full text on CDROM, April 2003.

[9] Potter, Jerry L., Associative Computing: A
Programming Paradigm for Massively Parallel
Computers, Plennum Press, New York, NY, 1992.

[10] Potter, Jerry, Johnnie Baker, Stephen Scott, Arvind

Bansal, Chokchai Leangsuksun, and Chandra
Asthagiri, “ASC: An Associative Computing
Paradigm”, Computer, Nov. 1994, pp. 19-25.

[11] Scherger, Michael, “An Object Model Framework,

Runtime Environment Support, and Database System
Software for a Multiple Instruction Stream
Associative Model of Parallel Computation”, PhD
Dissertation, Department of Computer Science, Kent
State University, Kent, Ohio 2005.

[12] Michael Scherger, Johnnie Baker, and Jerry Potter,

"Multiple Instruction Stream Control for an
Associative Model of Parallel Computation", Proc. of
the 16th International Parallel and Distributed
Processing Symposium, abstract on page 266, full
text on CDROM, April 2003.

[13] Scherger, Michael, Johnnie Baker, and Jerry Potter,

"An Object Oriented Framework for and Associative
Model of Parallel Computation", Proc. of the 16th
International Parallel and Distributed Processing
Symposium, abstract on page 166, full text on
CDROM, April 2003.

[14] Scherger, Michael, “On the Design of a Massively

Parallel Database Server for In-Memory and Real
Time Database Applications”, Proceedings of the
Int’l Conf. on Parallel and Distributed Processing
Techniques (PDPTA), Las Vegas, June, 2007.

[15] Silberschatz, Abraham, Henry F. Korth, and S.

Sudarshan, Database System Concepts, 4th ed.,
McGraw-Hill, Boston, MA, 2002.

[16] Su, Stanley Y. W., Database Computers: Principles

Architectures and Technologies, McGraw-Hill, New
York, NY, 1988.

[17] Intel Corporation, Intel Xeon Phi Coprocessor

Developer’s Quick Start Guide, Version 1.7, 2013.

[18] Intel Corporation, Intel Xeon Phi Coprocessor

Architecture, 2013.

[19] Intel Corporation, Intel Xeon Phi Coprocessor

System Software Developer’s Guide, 2013.

