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Abstract – (PDPTA’14) This research presents the 
design and initial implementation of a database engine 
using an Intel Xeon Phi co-processor.  The many 
integrated cores (MIC) of the Xeon Phi make this 
hardware accelerator a natural computing platform for 
an in-memory database engine or server.  The database 
tables reside in the memory space of the MIC thus 
supporting fast in-memory database applications.  This 
achieved by developing a coalescing parallel memory 
manager to allocate parallel variables in the same 
manner that fields are created in a table using a SQL 
CREATE TABLE command.  The SQL interface was 
created using a database driver toolkit that provides an 
interface to the Xeon Phi server and client application.  
Once the basic framework was established, the algorithms 
for SQL select, insert, update, delete, and join were 
created to manipulate database information in the 
memory of the Xeon Phi. 
 
Keywords: parallel databases, parallel hardware 
accelerators, special purpose architectures  
 

1 Introduction 
Massively data parallel computers and the SIMD 

model of parallel computation can be a natural model of 
parallel computation to consider for massively parallel 
database servers.  Since the cores are extremely close to 
the parallel memory, fast parallel memory searching make 
it a natural platform for data parallel computing intensive 
applications.  As described in Potter in [9] and [10], data 
parallel models of computation such as the SIMD, ASC, 
or SITDAC model conform to the concept of a parallel 
database server since the data can logically and physically 
partitioned similar to the data organization of a database 
table or spreadsheet [2][8][9][10][11] and [12].   

This research paper discusses the initial design of 
an in-memory database server using a Intel Xeon Phi co-
processors.  This research will discuss the design 
considerations and challenges for a database server and 
SQL engine that interfaces with the memory of a 
hardware accelerated data parallel computer.  This system 
design can promote the use of massively parallel 

computers as database servers for use in embedded 
database systems, real-time database systems, and fast 
parallel associative search engines. 

Database management systems (DBMS) provide a 
structured mechanism for storing, organizing, and 
retrieving data in a way that is consistent with the 
database’s format [14].  System software will allow data 
storage and access to a database without the user’s 
knowledge about the internal data representation either in 
persistent storage or in the computer’s memory.  A 
DBMS usually has but is not limited to the following 
components [14]: 

• Processors and main memory – the hardware of 
the DBMS for data selection and computation 

• Secondary storage – disks for data persistence 
and offline storage 

• Database manager – software for creating and 
maintaining databases, tables, fields, and 
relations 

• Utilities – software for database maintenance, 
data integrity and security, and database repair 

• Application development tools – software for 
database application development integrated into 
the DBMS 

• Report writers – software modules for 
presentations and reports based on tables and 
queries from database information 

• Design aids – software to assist in the design of 
databases, tables, fields, indexes, and 
relationships 

  
The organization of this research paper is as 

follows.  Section 2 will use the tracking and correlation 
problem in air traffic control as a motivating example.  
Section 3 present an overview of the Intel Xeon Phi co-
processor and system software.  Section 4 will present the 
hardware and physical design of the database server 
including the mapping of table records into the memory 
of the parallel computer.  Section 5 will discuss the 
techniques of sequential and parallel database query 
processing.  Section 6 will present the system software 
design of the parallel SQL engine and the algorithms for 



the basic database server operations. Section 7 will 
discuss the conclusions and future research. 
 

2 Example Application: ATC Tracking 
and Correlation 
Consider a real world and real time application of air 

traffic control.  The following example is an extremely 
simplified version of the air-traffic tracking and control 
problem, but provides enough detail to illustrate the 
system software design for a parallel database server and 
SQL interface [11].  Some of the basic tasks of air traffic 
control are: 

 
• Tracking and correlation – The radar will generate 

reports of flights of returns that must be correlated to 
tracks of flights currently in the system.   

• Conflict detection – The computer system must then 
determine if there are any tracks/flights that will 
conflict/collide with a time look ahead of a 
predetermined number of minutes or miles. 

• Flight plan update – Based on the tracking and 
correlation information and combining it with the 
conflict detection, the flight plan information will be 
updated. 

 
There are many other important tasks in air traffic 

control, but this is an example of a real-time processing 
problem [6],[7], and [8].  There are also hard deadlines 
for computation imposed on the above tasks.  They must 
be completed prior to the next hard deadline in this real 
time system.  

The flight plans and tracks from radar can be 
stored in a simplified tabular format (flat table) in a 
database table similar to illustration in Figure 1. 
 

 
Figure 1: Sample database to store flight plan 
information. 
 
The ATC system software will/may have to perform the 
following operations when receiving a new set of track 
information. 

• Insert a new flight into the table.  As aircraft enter the 
airspace, they need to be stored into the flight table.  
This involves searching for an open/free record in the 
table and then copying the flight information into that 
newly created record. 

• Deleting a flight from the table.  As aircraft leave the 
airspace, they need to be deleted from the flight table.  
This involves searching for the record of the flight to 
delete and marking that the record is inactive. 

• Selecting a flight from the table.  Selection involves 
identifying one or more flights for further processing.  
The selection must scan the data in the fields for this 
table and then return that information back for further 
processing. 

• Updating the flight information.  Updating a flight 
begins with a search followed by a copy of new 
information into the selected record from the track 
information. 

 
Each of these frequent operations (insert, select, 

update, delete) requires some type of a parallel memory 
search.  In the case of insert, the search operation is for an 
open record in the table.  In the case of the select, update, 
and delete operations, the search required is based on the 
data stored in the records of the table.  This is a contextual 
search or associative based search. 

The most common method to improve search 
performance in a database server is to use index tables.  
This is illustrated in the Figure 2. 

 
Figure 2: Flight table illustrating the use of index 
tables to improve performance. 

 
An index table stores the record indexes based on some 
ordering criteria or sorting functions.  In Figure 2, an 
index table may store pointers to the indices for the 
aircraft sorted by aircraft id.  Another index may store 
pointers to indices for the aircraft based on altitude.  
Finally another index may store pointers to the indices for 
the aircraft based on airspeed.   

In theory, a database table can have one or more 
indices for each field.  However, this dramatically reduces 
the performance of the insert, update, and delete 
operations at the benefit of doing fast searches 
[1][3][4][5].  As new records (flights) are entered into the 
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table, the index tables need to be updated and maintain 
their sorted order.  The constant resorting of each index 
table becomes increasingly computational demanding.  
The same is true for the delete and update operations 
when the flight information changes.  The performance 
degradation is further amplified when multiple index 
tables must change. 

 
3 Overview of the Intel Xeon Phi 

The Intel Xeon Phi co-processors have 60 in-order 
Intel MIC architecture cores running at 1 GHz.  The Intel 
MIC architecture is based on the x86 ISA, extended with 
64-bit addressing and 512-bit wide SIMD vector 
instructions and registers.  Each core supports 4 hardware 
threads.  In addition to the cores, there are multiple on-die 
memory controllers and other components. 

As shown in Figure 3, each core has a newly 
designed Vector Processing Unit (VPU).  Each VPU unit 
contains 32 512-bit vector registers.  To support the new 
vector processing model, a new 512-bit SIMD ISA was 
introduced.  The VPU is a key feature of the Intel MIC 
architecture based cores.  Fully utilizing the vector unit is 
critical the best performance.  The Intel MIC architecture 
cores do not support other SIMD ISA’s such as MMX, 
SSE, or AVX.  

 
Figure 3: Intel Xeon Phi MIC core block diagram. 

 
Each core has a 32KB L1 data cache, a 32KB L1 

instruction cache, and a 512KB L2 cache.  As shown in 
Figure 4, The L2 caches of all cores are interconnected 
with each other and the memory controllers via a 
bidirectional ring bus, that effectively creates a shared 
last-level cache of up to 32 MB.  The design of each core 
includes a short in-order pipeline.  There is no latency in 
executing scalar operations and low latency in executing 
vector operations.  Since the in-order pipeline is short, the 
overhead for branch misprediction is low. 

 

 
 
Figure 4: Logical MIC core layout and ring 
communication bus. 
 

4 Database Engine Hardware Design 
and Architecture 

There are a few assumptions regarding the design of 
the parallel database server [11].     

 
1. The database, tables, and records in the parallel 

database server are memory resident.  Storage is 
completely volatile and there is no persistent storage 
in the cells or array memory implemented in this 
design.  For real-time computation, storing data and 
record information in in secondary storage is costly 
in terms of access time.  Having the data reside in 
memory, close to the processing elements is more 
conducive for real-time applications.  

 
2. The data parallel memory map is similar to the field 

layout planned of a database table.  If TABLE_A has 
fields F1, F2, F3 created in that order, then the parallel 
memory map will have parallel variables F1[$], F2[$], 
and F3[$] located in lower to higher parallel memory  
addresses.   

 
3. The number of actual processing elements is fixed 

during the execution of the parallel database server.  
This is not an unrealistic assumption since the Intel 
Xeon Phi has a fixed number of cores (or hyper-
thread processors).     

 
4. The amount of memory per processing element is 

fixed.  Again, the memory in the Intel Xeon Phi 
separate “parallel memory space” than the memory of 
the host computer.  Albeit the parallel memory space 
is often smaller than the host memory, for most 
database applications, the amount of parallel storage 
is adequate. 

 
Since this model is using massively parallel search 

and responder processing as a model of data parallelism, 



database index tables are no longer required.  Each 
database field (column) can be searched for the desired 
value in constant time.  Data parallelism can also support 
efficient software for associative searches. 

The cores, or processing elements (PE) of the Intel 
Xeon Phi will be used to assist in the basic database 
operations and searching.  This is illustrated in Figure 5.  
In this figure, the database table is superimposed on the 
memory and processing elements of a SIMD computer.  
Two additional fields have been prefixed to the table: a 
busy-idle flag to indicate if the PE or record is active and 
a responder flag used for search operations.  Using this 
approach, each individual record is located in the memory 
of a PE.  Using massive parallel searching, processing 
elements can scan their individual memories and set the 
responder flag or turn their busy-idle flag on or off. 

 

 
Figure 5: Flight table superimposed onto the PEs and 
memory of a SIMD computer. 

 
 Database tables are dynamic objects; there is 
typically no a priori knowledge of the number of table 
records.  If the number of records in a table exceeds the 
number of physical PEs in the system (parallel memory 
overflow) the database server will use a cyclical data 
placement strategy when inserting new records.  This is a 
form of virtual parallelism that is maintained by the 
parallel database server and not the operating system.  
This cyclical placement will manage multiple tables with 
multiple folds in an interleaved fashion as determined by 
the amount of data in the tables.  For example, in Figure 
6, Table A utilizes only 4 PEs, while the number of 
records in Table B has exceeded the number of PEs 
resulting in multiple folds.   
 An insert operation for Table A will add a new 
record into the area occupied by fold 1 for table A.  For 
table B, the next insert operation will be in fold 2.  If 
enough records are added to Table A to exceed the 
capacity of fold 1, a new fold will be created in the free 
memory space to the right of fold 2 of Table B [11]. 
 

 
Figure 6: Multiple database tables, table folds, and 
unused parallel memory.folds, and unused parallel 
memory. 

 
By necessity, data memory management 

becomes the responsibility of the parallel database server 
instead of the parallel compiler or other system software 
[11].  A coalescing parallel memory manager (CPMM) 
was developed to keep track of table, field and fold 
addresses.  Figure 7 illustrates some of the administrative 
data structures that must be maintained for folded tables.   

 

 
Figure 7: Data structures for logical database tables, 
folds, records, and fields. 

The parallel database server will maintain the controlling 
data structures to manage the database, tables, folds, 
records, and column addresses.  These data structures 
reside in the sequential memory of the control unit or 
front-end computer.  Dark shaded regions in this figure 
represent active records in the table.  Note that there are 
two folds for this table and the field list is replicated for 
each fold.  The table fold is an absolute parallel memory 
address while the field address is a relative parallel 
memory address.  By adding the two memory addresses 
together, the physical memory address for a database field 
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within a fold can be determined.  The parallel memory 
manager also created extra hidden table fields used for 
basic database operations (described in a later section).  
These hidden table fields included several responder bits, 
a busy/idle flag, and timestamp fields for record insertion, 
selection, and update. 
 
5 Sequential and Parallel Query 
Processing 

 
Query processing refers to the range of activities 

involved with extracting data from a database.  The 
activities include translation of queries in high-level 
database languages into expressions that can be used at 
the physical (storage) level.  The fundamental steps a 
database server must perform when processing a database 
query appear in Figure 8: 

 
Figure 8: Major functional components of database 
query processing. 

 
Before query processing can begin, the system 

must translate the query into a usable form.  A language 
such as SQL is appropriate for software application 
development, but is not amenable to be the system’s 
internal representation of a query.  As shown in Figure 3, 
the first step the system must take in query processing is 
to translate a given query into its internal form.  This 
translation process is similar to the work performed by the 
parser of a compiler.  In generating the internal form of 
the query, the parser checks the syntax of the user’s query 
and verifies that the query names appear in the database.  
The system then constructs a parse tree representation of 
the query, which it then translates into a relational algebra 
expression.   

The sequence of steps in query processing is 
representative.  Not all databases exactly follow these 
steps.  However, the concepts that have been described 
form the basis of query processing in databases. 

 

5.1 Sequential Query Processing Algorithms 
 

There are several sequential query processing algorithms 
defined in the literature [14] and [15].  Each algorithm has 
a particular use when the query processing evaluation 
takes place.   

The most relevant query processing algorithm 
related to this research is the A1 – Linear Search 
algorithm, which is now described.  In a linear search, the 
system scans each file block and tests all records to see 
whether they satisfy the selection condition.  An initial 
seek is required to access the first block of the file.  The 
cost of linear search, in terms of number of disk 
operations, is one seek plus br block transfers, where br 
denotes the number of blocks in the file.  Equivalently, 
the time cost is tS + br * tT.   

Although the A1 – Linear Search algorithm may 
be slower on sequential computers than other algorithms 
for implementing selection and other query processing 
tasks, it is the most natural algorithm in terms of 
conversion to a massively parallel equivalent since the 
linear search on a parallel variable can be accomplished in 
constant time on SIMD (or MASC) computers assuming 
the database can be held entirely in memory. 
 
6 System Software Design and 
Architecture 

 
Now that the basic parallel memory management 

issues have been addressed, the system software design of 
the database server is described. 
 A client application will use the database driver 
manager to interface with the client database driver.  The 
client database driver communicates with the SQL 
Engine.  The SQL Engine will call process these 
instructions and then call the appropriate parallel database 
server, where there will be a corresponding function call 
to perform an operation in the memory of the parallel 
computer. The parallel database server will then receive 
the request from the database driver and control the 
databases, tables, records, and columns in the parallel 
memory.  

 
6.1 Parallel SQL Insert Algorithm 

The task of the parallel SQL insert operation is 
to insert new data into a free record located anywhere in 
the table in any fold.  An example of the SQL INSERT 
statement is the following: 

 
INSERT INTO FLIGHTS( AID, LAT, LON, ALT, AS )  
VALUES( ‘CO128’, 43.39, 83.67, 190, 450 ) 

 
This insert statement will insert a new record into the 
FLIGHTS table (reference the database table in Figure 4) 
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and assign the respective values to the AID, LAT, LON, 
ALT, and AS fields. 

For inserting a record into a parallel memory 
space, the basic parallel insert algorithm is the following: 

 
Algorithm Par_SQL_Insert( RecordData ) 
 
  open_record_found = FALSE 
 
  For each table fold 
 
    Perform associative search on the 
    table’s BI field where BI field is  
    false (i.e. record is empty – there  
    may be multiple records returned) 
 
    if ( idle records found )  
       select one record;  
       BI = TRUE 
       open_record_found = TRUE 
       break 
 
    // no open record is found 
    // in any fold 
    if ( open_record_found == FALSE )  
      create a new fold  
      select first record in the new fold  
      BI = TRUE 
      break 
 
  Copy the data into the parallel memory record 
  Return success or failure 

Figure 8: Parallel SQL insert algorithm. 

 The algorithm Figure 8 begins by searching for 
an open or idle record in each of the table folds in turn.  If 
idle records are found, then PE identification number and 
the fold select one record and field addresses are used to 
copy the data into the parallel memory record.  If no idle 
record is found, then the parallel memory manager must 
create a new fold.  This can be accomplished by 
allocating space from the unused space in parallel 
memory the same width as previous folds and recording 
the new base address in sequential memory.  Since a new 
fold is created, the parallel memory manager can select 
any PE for the insertion; e.g. the first PE (lowest PE id 
number) can be used.  The basic parallel search can be 
done in O(1) time.  However, since each table fold may 
have to be scanned, the running time is O(#folds) which is 
typically small and normally still O(1) since the number 
of folds normally constant and not a function of higher 
complexity.  
 
6.2 Parallel SQL Delete Algorithm 

The task of the parallel SQL delete operation is 
to delete records according to some searching or selection 
criteria.  An example of the SQL DELETE statement is 
the following: 
DELETE FROM FLIGHTS 
WHERE AID = ‘NW 545’     /* delete criteria */ 

This delete statement will delete all records 
where the AID (aircraft ID) is ‘NW 545’.  For deleting a 
record from the parallel memory space, the parallel delete 
algorithm is the following: 

 
Algorithm Parallel_SQL_Delete( DeleteCriteria ) 
returns Boolean 
 
  For each table fold 
 
    Perform associative search where the Delete 
    Criteria is TRUE and set responders  
    appropriately 
   
    If (the responder is TRUE) 
 Reset the Busy-Idle flag  
   
    If all records in the current fold are idle 

CPMM marks the current fold as free 
 

  Return success or failure 
 
Figure 9: Parallel SQL delete algorithm. 

 
The algorithm in Figure 9 begins by looping 

through each table fold and having each cell evaluate the 
appropriate fields as specified in the delete criteria clause.  
For those cells where the delete criteria clause is True, the 
responder busy-idle flag is reset.  If all the records in a 
given fold have their busy-idle flag reset, the coalescing 
parallel memory manager (CPMM) marks that fold as 
completely unused and returns it to the free pool of 
parallel memory.  The basic parallel delete can be done in 
O(1) time.  However, since each table fold will have to be 
scanned, the running time is O(#folds). 
 

7 Conclusions and Future Work 
This research paper has presented an initial 

design of an in-memory database engine utilizing Intel 
Xeon Phi co-processors.  Also presented was the system 
software design and interface for sequential programs and 
applications to interface with the server.  This was 
achieved by designing and developing the set of 
algorithms for common database operations that would 
support the functionality of a parallel database server.  
The SQL operations presented include insert and delete 
and execute in O(#folds) steps.  The update and selection 
operations are similar.  The design of a coalescing parallel 
memory manager was also developed to manage large 
tables and virtual parallelism. 

An area of future research explores how the 
parallel database handles virtual parallelism.  The present 
design uses a coalescing parallel memory manager to 
control the table folds in the memory of the parallel 
computer.  This parallel memory manager is a built in 
component of the parallel database server because the 
Xeon Phi environment assumed that the number of 
processing elements was fixed at runtime and could not 
change. 



Another area of future research could explore 
how the tables, records, and fields are physically mapped 
to the memory of the parallel computer.  Presently, the 
parallel memory map as shown in Figures 6 and 7 indicate 
that the parallel variables are allocated for all processing 
elements in a given fold regardless of the number of 
records actually storing information.  This leads to a 
waste of processing elements for tables with only a few 
records.    
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