
Automatic Performance Tuning of Pipeline Patterns for
Heterogeneous Parallel Architectures

E. Bajrovic1 and S. Benkner1
1Research Group Scientific Computing, Faculty of Computer Science, University of Vienna, Vienna, Austria

Abstract— Heterogeneous parallel architectures combining
conventional multicore CPUs with GPUs and other types
of accelerators promise significant performance gains com-
pared to homogeneous systems. However, exploiting the
full potential of such systems is becoming more and more
challenging often forcing programmers to combine differ-
ent programming models and parallelization strategies. A
promising approach to coping with the increased program-
ming complexity is the use of parallel patterns for expressing
certain types of computations at a high-level of abstraction
while relying on the compiler and runtime system to map
such patterns onto a heterogeneous system. In this paper
we present an approach for automatic performance tuning
of high-level pipeline patterns for heterogeneous parallel
systems in the context of a task-parallel component-based
programming model. Our automatic performance tuning
approach attempts to automatically determine the best com-
bination of pattern-specific parameters, parameters exposed
by the runtime system, and machine-specific parameters such
that execution is optimized for a given workload and target
architecture. Experimental results on two state-of-the-art
heterogeneous systems demonstrate the effectiveness of our
approach.

Keywords: parallel programming, patterns, autotuning, heteroge-
neous manycore architectures

1. Introduction
Over the last decade we have seen dramatic changes in

the architecture of parallel systems due to the introduc-
tion of multicore processors and the shift to heterogeneous
parallel systems that comprise different types of execution
units specialized for efficiently processing different types of
computational workloads. Typically, heterogeneous parallel
architectures combine conventional multicore CPUs with
GPUs and other types of accelerators. Such systems have
become increasingly important since they promise signifi-
cant performance gains compared to homogeneous systems.
However, exploiting the full potential of such systems of-
ten requires combining different programming models and
parallelization strategies, which significantly increases the
complexity of application development.

A promising approach for coping with the complexity
of programming heterogeneous parallel architectures is the
use of parallel patterns or skeletons [1], [2], [3], [4], for

expressing certain types of computations at a high-level
of abstraction while relying on the compiler and runtime
system to map such patterns onto a heterogeneous system.
However, mapping high-level parallel patterns efficiently to
different types of heterogeneous target architectures often
requires fine-tuning of various parameters at the application
level (e.g. replication factors of pipeline stages) or runtime
level (e.g. the scheduling strategy), which usually is a time-
consuming tasks and requires detailed knowledge of the
involved compiler(s) and runtime system(s) as well as of
the target architecture. As a consequence, automatic perfor-
mance tuning techniques (also referred to as autotuning)
to automatically search for the best combination of such
parameters have become of growing interest.

In this paper we present an approach for automatic per-
formance tuning of high-level pipeline patterns for accel-
erated parallel systems. Our work builds on a component-
based task-parallel programming framework that has been
developed in the context of the European PEPPHER project
[5], which addressed programmability and performance
portability for single-node heterogeneous manycore systems.
Within the PEPPHER framework, pipeline patterns are re-
alized based on while-loops with source-code annotations
[6]. Pipeline stages usually correspond to calls to multi-
architectural components, for which multiple implementa-
tion variants may be provided. Such component implemen-
tation variants may be optimized for different execution
units of a heterogeneous target architecture, e.g., for a
homogeneous multicore CPU, for a GPU, or for other types
of accelerators. At runtime, for each call to a component a
task is generated, yielding a dynamic task graph. It is then up
to the runtime system to schedule the task graph for efficient
parallel execution on the different execution units of a het-
erogeneous target system. The runtime system chooses for
each task a suitable component implementation variant and
dynamically scheduling its execution onto a free execution
unit of the target architecture such that all available execution
units are utilized and overall performance is optimized.

Within the European Autotune project [11] we have in-
tegrated the PEPPHER high-level programming framework
with the Periscope Tuning Framework [11] for online per-
formance analysis and tuning. Our automatic performance
tuning approach takes into account pattern-specific param-
eters, parameters exposed by the runtime system, as well
as machine-specific characteristics in order to optimize the



execution of applications with pipeline patterns on hetero-
geneous parallel systems equipped with CPUs and GPUs.

The remainder of this paper is organized as follows:
In Section 2 we provide an overview of the PEPPHER
framework and describe the support for high-level pipeline
patterns. In Section 3 we describe our pipeline coordination
layer which manages the execution of pipeline patterns at
runtime and which exhibits different parameters amenable
to autotuning. Section 4 provides an overview of the Persi-
cope tuning framework and outlines the tuning of pipeline
patterns. In Section 5 we present experimental results using
a real-world face detection application. Section 6 discusses
related work followed by a conclusion in Section 7.

2. High-Level Programming Framework
The European research project PEPPHER [5] developed

a methodology for improving programmability and perfor-
mance portability for single-node heterogeneous many-core
systems. The PEPPHER methodology is characterized by
a component-based programming approach in combination
with an asynchronous task-parallel execution model.

2.1 Multiarchitectural Components
The central idea is to provide performance-critical parts

(typically functions) of applications as components with
multiple implementation variants, called multi-architectural
components. Each such variant is tailored for a different
type of target architecture (CPU, GPU, accelerator) that
may be utilized within a heterogeneous many-core system.
Component implementation variants may be sequential or
parallel and may be implemented with different program-
ming APIs including C/C++, OpenMP, CUDA and OpenCL.
All implementation variants of a specific component must
adhere to the same component interface. Components and
implementation variants are accompanied with meta-data,
supplied via external XML descriptors. Such descriptors
specify the data read and/or written by a component and
provide information about the target platform(s) [7] and
about specific resource requirements or constraints.

For constructing applications from components a set of co-
ordination primitives has been developed. Programmers may
construct applications at a high level of abstraction by in-
voking component functionality from C/C++ codes via their
interfaces and by using source code annotations (pragmas)
to delineate asynchronous (or synchronous) component calls.
With this approach, a sequential program spawns component
calls, which are then scheduled for task-parallel execution by
the runtime system. A source-to-source compiler transforms
annotated component calls such that they are registered with
the runtime system and generates corresponding glue-code.

2.2 Pipeline Patterns
In addition to the basic coordination primitives for des-

ignating asynchronous (or synchronous) component calls

we have developed high-level language support for pipeline
patterns. Pipeline patterns are expressed using annotated
while loops where the loop body comprises calls to multi-
architectural components.

An example of a high-level C++ pipeline code for face de-
tection in a stream of images is shown in Figure 1. The first
pipeline stage reads images from an input file, the middle
stages perform image transformation and face detection, and
the last stage outputs the result images where all detected
faces are marked with rectangles. For the detectFace
stage, two different component implementation variants are
provided within the PEPPHER framework, one optimized for
execution on a conventional CPU core and one optimized
for GPUs. These implementation variants have been re-
engineered from the OpenCV image processing library [10].
By means of annotations, the user can specify what kind
and size of buffers should be generated for passing data
between pipeline stages. Moreover, the user can specify a
replication factor for individual pipeline stages in order to
influence the degree of parallelism during execution. By
changing the replication factors and buffer sizes the user
can quickly experiment with different configurations of the
pipeline. However, the goal of our autotuning approach is
to automatically determine the best values for these tuning
parameters such that overall execution time is minimized.

N = get_max_execution_units ();

#pragma pph pipeline with buffer ( PRIORITY , N*2 )
while ( inputstream >> file ) {

readImage ( file , image );
#pragma pph stage replicate (N)
{

resizeAndColorConvert ( image );
detectFace ( image , outimage );

}
writeFaceDetectedImage ( file , outimage );

}

Fig. 1: A pipeline pattern for face detection in a stream of
images.

2.3 Transformation System
A source-to-source compiler transforms pipeline patterns

into a C++ code that utilizes a coordination layer for
managing parallel execution on heterogeneous many-core
architectures at runtime. Pipeline constructs are analyzed in
order to determine the structure of the pipeline (stage inter-
connection) by analyzing the data types of objects passed
between pipeline stages. For each stage interconnection
corresponding buffer data structures are generated.

The generated target code contains calls to the pipeline
coordination layer which comprises various classes for coor-
dinating the execution of pipeline stages on top of the StarPU
runtime system [8]. At run-time, component invocations
result in tasks that are managed by the StarPU runtime
system and executed non-preemptively.



3. Pipeline Coordination Layer
The pipeline coordination layer manages all aspects of

execution on a heterogeneous many-core architecture, in-
cluding the automatic management of buffers for data passed
between pipeline stages, the replication of individual stages,
and the coordination of task-parallel execution of pipeline
stages. Internally, the pipeline coordination layer utilizes the
StarPU [8] heterogeneous runtime system.

StarPU is responsible for dynamically selecting suitable
component implementation variants for pipeline stages and
for scheduling their execution to the different execution units
of a heterogeneous many-core system in a performance- and
resource-efficient way. StarPU also manages data transfers
between execution units and provides support for different
scheduling strategies, with the goal of utilizing all execution
units of the target architecture. Data transfers for tasks
are determined based on the XML meta-data provided in
component descriptors, and their costs are taken into account
during scheduling by StarPU. In the following we outline
the major aspects of the pipeline coordination layer and its
interaction with the underlying StarPU runtime system.

The pipeline coordination layer provides several classes
for coordinating the execution of pipeline stages. The
PipelineManager class is used to control multiple pipeline
patterns within an application. The Pipeline class provides
methods for starting, pausing and resuming the execution
of a pipeline pattern, and for dynamically reconfiguring the
tuning parameters of a pipeline (i.e., changing the replication
factor and buffer sizes). The Stage class encapsulates
information on the stage functionality (i.e., the component
that is invoked), connected buffers, predecessor and suc-
cessor stages, and the stage replication factor. The Stage
class provides two methods for coordinating the execution
of a pipelined application: the method execute_async() for
posting a stage for execution to the runtime system and the
method callback() for transferring control back to a stage
object after its associated component has finished execution.
Every stage instance is executed in an asynchronous fashion.

Figure 2 illustrates how a pipeline pattern is being exe-
cuted on top of the StarPU runtime system. The PipelineM-
anager creates a pipeline object and the corresponding stage
and buffer objects. It then starts the pipeline by invoking the
run_pipeline() method of the pipeline object. The pipeline
object then calls the execute_async() method for each stage
object, which initiates the execution of stages, each within
its own thread. Each instance of a stage execution pops
input data from the corresponding stage input buffer, and
then delegates the actual execution of the stage to StarPU
by calling the post() method. From this point on StarPU is
responsible for executing the stage instance by selecting an
appropriate stage implementation variant and scheduling its
execution on a suitable execution unit (CPU or GPU). When
the stage instance has finished execution, StarPU calls the
method callback() to pass control back to the stage object

push()

:Pipeline

:Stage

execute async()

pop()

post()

:Buffer

[ !termina ed ]

[ !terminated  !paused ]

create task()

callback()

:StarPURuntime

submit()

XX

X

run pipeline()

:PipelineManager

loop

<< create >>

<< create >>

<< create >>

<< create >>

loop

Processing Unit

Fig. 2: Pipeline Execution Model.

which then initiates execution of the next stage instance.
StarPU relies on a representation of the program as a

directed acyclic graph (DAG) where nodes represent compo-
nent calls (tasks) and edges represent data dependences. The
runtime system dynamically schedules component calls to
the available execution units of a heterogeneous many-core
architecture such that (1) independent component calls exe-
cute in parallel on different execution units and (2) the "best"
implementation variants for a given architecture are selected
based on historical performance information captured in
performance models. StarPU also manages data transfers
between CPUs and GPUs, ensures memory coherency, and
provides support for different scheduling strategies. Besides
the well-known EAGER scheduling policy, StarPU also
features the Heterogeneous Earliest Finish Time (HEFT)
[9] policy. The HEFT policy considers inter-component data
dependencies and schedules components to workers taking
into account the current system load, available component
implementation variants, and historical execution profiles,
with the goal of minimizing overall execution time by
favoring implementations variants with the lowest expected
execution time.

3.1 Tuning Parameters
The pipeline coordination layer enables dynamic reconfig-

uration by exposing a set of tuning parameters, thus allowing
users or external tools to tune the execution of the pipeline
in order to achieve a desired goal (e.g., to maximize pipeline
throughput). The following tuning parameters are provided:
(1) the stage replication factor, which determines the number
of stage instances that may be executed in parallel, (2)
the sizes of buffers to hold data packets passed between
pipeline stages, (3) the number of CPU cores to be used,
(4) the number of GPUs to be used, and (5) the scheduling
strategy used by StarPU for scheduling component calls to
free execution units of the target system.



All these parameters have a profound influence on the
performance of applications that rely on pipeline patterns.
Finding the best parameter combination for a given ap-
plication, problem size, and machine configuration is an
elaborate and time-consuming task for users and thus should
be automated as far as possible.

3.2 Performance Metrics
In order to support automatic performance tuning the

coordination layer provides integrated support for measuring
the following performance metrics of pipeline patterns:

• Stage execution time - the execution time of an indi-
vidual instance of a pipeline stage.

• Buffer input processing time - the time to process the
input objects of one buffer.

• Buffer output processing time - the time to process the
output objects of one buffer.

• Buffer size - the size of individual buffers.
• Pipeline execution time - the overall execution time of

one pipeline pattern.

4. The PTF Tuning Framework
The Periscope Tuning Framework (PTF) [11] is an ex-

tension of the Periscope online performance analysis tool
[12]. PTF aims at providing an integrated infrastructure for
performance analysis and automatic performance tuning that
can incorporate expert knowledge to guide the search for
performance problems and tuned code versions.

PTF facilitates the development of tuning plugins that
include codified expert knowledge about the performance
characteristics and computational patterns of the target appli-
cations and the specific tuning problem. Besides the pipeline
tuning plugin presented in this paper, several other tuning
plugins (e.g. for tuning of MPI parameters, for master/-
worker patterns, and for energy tuning via dynamic voltage
and frequency scaing) have been developed in the context
of the AutoTune project [11].

Based on performance analysis, tuning plugins identify
tuning alternatives, so-called tuning scenarios (i.e. different
configurations of tuning parameters), and then proceed to
evaluate them. The evaluation of tuning scenarios may be
performed online, i.e. during a single application run, which
reduces the time required to find the best tuning scenario
dramatically.

Automatic performance analysis is based on formalized
performance properties, e.g., load imbalance or slow pipeline
stages (limiter stages). One or more analysis agents may be
used to search for performance properties in the program
execution under investigation. Analysis agents communicate
with the monitor via the monitor request interface (MRI)
linked with the application process(es) to be tuned. The MRI
monitor performs the measurements of performance data
requested by the analysis agent and transfers the measured
performance data to the PTF.

Tu
ni
ng
	  S
tr
at
eg
y	  

Select	  Tuning	  Plugin	  

Pl
ug
in
	  S
tr
at
eg
y	  

Pre-‐Analysis	  (if	  needed)	  

Execute	  Scenarios	  

Evaluate	  Objec>ves	  

An
al
ys
is
	  S
tr
at
eg
y	  

Search	  for	  Proper>es	  

Performance	  Experiment	  

Performance	  Analysis	  

Search/Select	  Scenarios	  

Fig. 3: The PTF Tuning Model

4.1 The PTF Tuning Model
Figure 3 illustrates the PTF tuning model. As shown in the

figure, a tuning strategy is comprised of an analysis strategy
and a plugin strategy, which may be performed iteratively,
depending on the concrete nature of the tuning problem. The
analysis strategy guides performance analysis and the search
for performance properties, while the plugin strategy guides
the search for optimized tuning scenarios. Once the tuning
process is finished, a tuning report will be generated that
documents the tuning actions recommended by PTF.

The tuning process is usually proceeded with a pre-
processing step of the application source files (not shown
in Fig. 3). Preprocessing comprises code instrumentation
required for performance analysis and static analysis and
is either performed by PTF, which includes and integrated
instrumenter for C/C++ and FORTRAN, or by external tools.
In the case of pipeline patterns, instrumentation is performed
by the PEPPHER source-to-source transformation system.
During the instrumentation phase, also a SIR file (Standard
Intermediate Representation) is generated, which includes
static information about the instrumented code regions to be
utilized by PTF for performance analysis and tuning.

The analysis strategy guides the search for certain (pre-
defined) performance properties, by performing one or more
performance experiments and analyzing the corresponding
performance measurements. In case of a pipeline pattern, the
analysis strategy searches for a limiter stage, which takes
much more time than other stages. If a limiter stage is
found, the pipeline tuning plugin is triggered and attempts to



	  
	  
	  
	  
	  

PTF	  Frontend	  

C/C++	  with	  PEPPHER	  

Vienna	  Transforma9on	  System	  

Adap9ve	  Target	  Code	  +	  	  
Periscope	  Instrumenta0on	  Calls	  

Target	  Compiler(s)	  

Executable	  
	  

	  

Periscope	  
	  
	  
	  

Pipeline	  Tuning	  Plugin	  

Search	  Engine	  

M
od

ifi
ed

	  T
un

in
g	  
	  

Pa
ra
m
et
er
(s
)	  

Performance	  Data	  

Metrics	  

Annota&on	  
Compila&on	  

Instrumenta&on	  

Execu&on	  
Measurement	  
Online	  Tuning	  

SIR	  File	  

Tuning	  	  
Parameters	  

Best	  Tuning	  Scenario	  
R	  =	  4,	  B	  =	  8	  
NGPU	  =	  2	  
NCPU	  =	  4	  

Analysis	  Agent	  
measure	  MRI	  Monitor	  

PEPPHER	  	  
Framework	  

PTF	  

Code	  	  
Regions	  

#pragma	  pipeline	  buffer(?)	  
while(b	  !=	  0)	  {	  	  	  
	  	  	  readBlock(file,b);	  	  	  
	  	  #pragma	  stage	  replicate(?)	  	  	  
	  	  	  compress(b);	  	  	  
	  	  	  writeComprBlock(file,b);	  
}	  

Fig. 4: Integration of the PEPPHER framework for high-level pipeline patterns with the Periscope Tuning Framework. Blue
components are specific to the PEPPHER framework, while red components are specific to PTF.

increase the replication factor of the limiter stage such that
overall execution time is reduced. In addition to this specific
plugin strategy, we have realized a general plugin-strategy
finding a configuration of the five pipeline tuning parameters
that minimizes overall execution time.

As shown in Figure 3, a plugin strategy is comprised of an
optional pre-analysis phase, a phase for searching, selecting
and analyzing tuning scenarios within the set of overall
tuning scenarios, and phases for executing tuning scenarios
and evaluating the tuning objectives such that the best tuning
scenarios is identified. For preparation and creation of new
tuning scenarios, plugins can access a search interface,
which enables to apply different search strategies for finding
promising tuning scenarios. In our current implementation of
the pipeline tuning plugin we have used exhaustive search. In
the future we plan to integrate alternative search strategies.

4.2 Pipeline Tuning Workflow
In the following we describe the major steps of the

pipeline tuning workflow according to Figure 4.
First, the application source code is processed by the PEP-

PHER transformations system, which translates high-level
pipeline patterns into a representation that uses the pipeline
coordination layer and inserts monitoring calls for obtaining
the pipeline-specific performance metrics. In addition, a SIR
file (XML intermediate program representation) with infor-
mation about the relevant tuning parameters and code regions
is created. The generated code is then compiled with target

specific compilers and linked with the PTF performance
monitoring (MRI) libraries. During program execution, the
linked MRI monitor is used for communicating measured
performance metrics to the PTF and for (re-)setting the
values of tuning parameters. The tuning plugin decides the
measurements that will be considered for application tuning,
and the modified tuning parameters. The pipeline tuning
plugin constructs the set of tuning scenarios, executes them
by dynamically reconfiguring the pipeline tuning parameters,
and reports the best tuning scenario.

5. Experimental Evaluation
For evaluation we use the OpenCV face detection ap-

plication outlined previously in Figure 1. The application
processes a set of 350 images of nHD (640x360) res-
olution, each containing an arbitrary number of human
faces. For the computationally most demanding component
detectFace(), which is called in the middle stage, two
different implementation variants, one for a single CPU core
and one for a GPU, were utilized. These implementation
variants have been re-engineered from the OpenCV library,
which includes both a sequential C++ version and a CUDA
version, but which had to be slightly adapted to the PEP-
PHER component model.

We present speedup measurements and autotuning results
on two different CPU/GPU systems. The first machine
is equipped with two quad-core Intel Xeon X5550 CPUs



 0

 1

 2

 3

 

1
 C

P
U

 C
o
re

1
 C

P
U

 C
o
re

+
 1

 G
P

U

6
 C

P
U

 C
o
re

s
+

1
 G

P
U

s

6
 C

P
U

 C
o
re

s
+

2
 G

P
U

s  

S
p
ee

d
u
p

   

PEPPHER Pipeline
OpenCV Baseline

Fig. 5: Speedup results for face detection application on a
machine with two quad-core CPUs and two Tesla GPUs
relative to the OpenCV baseline version.

(2.66GHz, 24GB RAM) and NVIDIA Tesla C2050 and
C1060 GPUs, respectively. The second machine is equipped
with two octa-core Intel Xeon E5-2650 CPUs (2.0 GHz,
128GB RAM) and 4 NVIDIA Kepler K20 GPUs. As shown
in Figures 5 and 6, we executed the face detection pipeline
on different machine configurations and utilized PTF to
automatically determine the best combination of tuning
parameters such that execution time was minimized.

Figure 5 shows speedup results on the first machine
equipped with Tesla GPUs. The second red bar in the
figure is the OpenCV baseline version, i.e. using the original
OpenCV library which supports using just 1 CPU and 1
GPU. The two blue bars show the results of the autotuned
PEPPHER pipeline versions using 6 CPU cores and one or
two GPUs, respectively. These results clearly demonstrate
that our high-level component-based approach can effec-
tively utilize all execution units of the system. Note also that
no source code changes were necessary to run on the two
different machine configurations with one and two GPUS,
respectively. Using the whole machine a speedup of about 4
has been obtained compared to the OpenCV base version and
a speedup of about 12 compared to the single core version.

Using the PTF tuning plugin, we used exhaustive search
to find the best configuration for the available tuning pa-
rameters. As described in Section 3.1, we considered the
following five tuning parameters: (1) stage replication factor
of the detectFace() stage, (2) input buffer size of
the detectFace() stage, (3) number of CPU cores, (4)
number of GPUs, and (5) the scheduling policy - EAGER
(simple greedy scheduler) versus HEFT (Heterogeneous
Earliest Finish Time) [8]. In total PTF explored 360 possible
configurations, spending about 6 hours in doing so. Finding
the best parameter configuration manually would require sig-
nificantly more time, usually several days of reconfiguration
and performance measurement.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 

1
 C

P
U

 C
o
re

1
 C

P
U

 C
o
re

+
 1

 G
P

U

1
2
 C

P
U

 C
o
re

s
+

1
 G

P
U

s

1
2
 C

P
U

 C
o
re

s
+

2
 G

P
U

s

1
2
 C

P
U

 C
o
re

s
+

3
 G

P
U

s

1
2
 C

P
U

 C
o
re

s
+

4
 G

P
U

s  

S
p
ee

d
u
p

   

PEPPHER Pipeline
OpenCV Baseline

Fig. 6: Speedup results for face detection application on a
machine with two octa-core CPUs and four Kepler GPUs
relative to the OpenCV baseline version.

In Table 1, we summarize the explored values for each
tuning parameter when tuning the face detection application
on the first machine. With the best parameter configuration
using the whole system (i.e., all CPU cores and all GPUs)
the execution time of the face detection application over the
complete data set was 8.2 seconds. It used a replication factor
of 8, 6 CPU cores, 2 GPUs, buffer size of 32 and HEFT
scheduling policy. The slowest configuration that utilized the
whole system resulted in an execution time of 19.6 seconds.

Tuning parameter Possible values Best configuration
Replication factor 1, 2, 4, 8 8
Number of CPU cores 1, 2, 4, 6, 8 6
Number of GPUs 0, 1, 2 2
Scheduling policy “EAGER”, “HEFT” “HEFT”
Buffer size 8, 16, 32 32

Table 1: Possible values of tuning parameters (first machine).

Figure 6 shows speedup results on the second machine
equipped with Kepler GPUs. Again, the second red bar in
the figure is the OpenCV baseline version. The four blue
bars show the results of the PEPPHER pipeline version using
one up to four GPUs as well as 12 CPU cores. Again no
code changes were required to run the application on these
different machine configurations. Using 12 CPU cores and
1 GPU delivers a speedup of about 7 over the OpenCV
baseline version that uses one CPU and one GPU. Adding
more GPUs results in only modest speedup increases, which
can be mainly attributed to the rather low resolution of
the images. We expect that for higher resolutions greater
speedups with multiple GPUs would be possible due to the
increased computational complexity.

Also on the second machine we used to PTF to find the
best configuration of tuning parameters by exploring 1470
different combinations. The best parameter configuration
using all CPU cores and all GPUs of the second machine



resulted in an execution time of 4.6 seconds, with a repli-
cation factor of 16, 12 CPU cores, 4 GPUs, buffer size of
32 and HEFT scheduling policy. The slowest configuration
that utilized the whole system resulted in an execution time
of 15.3 seconds.

6. Related Work
Due to the increasing complexity and diversity of par-

allel architectures, there is a growing interest in automatic
performance tuning techniques. Existing autotuning efforts
include self-tuning specialized libraries (e.g., linear algebra
or signal processing) like ATLAS[14] or FFTW[15], tools
that automatically search for best combination of compiler
optimization parameters [16], [17], and tools that search for
best values of application-level parameters [18], [19].

Our approach mainly deals with tuning of parameters ex-
hibited by a runtime library (i.e. our coordination layer) and
thus our work is more akin to the third group (application
tuning) than the first one (self-tuning libraries), because we
execute computational components that are not part of the
library and can behave very differently from each other. Our
efforts are close to the emerging area of (possibly automated)
tuning of OpenCL or CUDA parameters [20], [21].

7. Conclusion
In this paper we presented our work on autotuning support

for high-level pipeline patterns for heterogeneous many-core
architectures. We have developed a pipeline tuning plugin for
the Periscope Tuning Framework, in order to automatically
determine the best combination of performance relevant
tuning parameters exhibited by the pipeline coordination
layer.

In our future work we will experiment with different
search strategies and investigate methods for continuous
online tuning, such that pipeline patterns are automatically
adapted to changing work loads or varying target machine
configurations. Moreover, we will extend our work to other
common parallel patterns and other architectures [22].

Acknowledgment
This work was supported by the European Commis-

sion’s FP7 project AutoTune under grant no. 288038 (see
http://www.autotune-project.eu).

References
[1] T. Mattson, B. Sanders, and B. Massingill, “Patterns for Parallel

Programming," Addison-Wesley, 2005.
[2] N. Bell and J. Hoberock, “Thrust: A Productivity-Oriented Library for

CUDA,” in GPU Computing Gems, Jade Edition (W. mei Hwu, ed.),
Morgan Kaufmann, 2011.

[3] J. Enmyren and C. W. Kessler, “Skepu: a multi-backend skeleton
programming library for multi-gpu systems,” in Proceedings of the
Fourth International Workshop on High-Level Parallel Programming
and Applications, HLPP ’10, (New York, USA), ACM, 2010.

[4] J. Dokulil, E. Bajrovic, S. Benkner, M. Sandrieser, and B. Bachmayer,
“HyPHI – Task Based Hybrid Execution C++ Library for the Intel
Xeon Phi Coprocessor,” in 42nd International Conference on Parallel
Processing (ICPP-2013), Lyon, France, 2013.

[5] S. Benkner, S. Pllana, J. L. Träff, P. Tsigas, U. Dolinsky, C. Augonnet,
B. Bachmayer, C. Kessler, D. Moloney, and V. Osipov, “PEPPHER:
Efficient and Productive Usage of Hybrid Computing Systems,” IEEE
Micro, vol. 31, no. 5, pp. 28–41, 2011.

[6] S. Benkner, E. Bajrovic, E. Marth, M. Sandrieser, R. Namyst, and
S. Thibault, “High-Level Support for Pipeline Parallelism on Manycore
Architectures,” in Euro-Par 2012 Parallel Processing - 18th Interna-
tional Conference, vol. 7484, pp. 614–625, 2012.

[7] M. Sandrieser, S. Benkner and S. Pllana, “Using Explicit Platform
Descriptions to Support Programming of Heterogeneous Many-Core
Systems,” Parallel Computing, Volume 38, Issues 1-2, Pages 52-56,
January-February 2012.

[8] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: A
Unified Platform for Task Scheduling on Heterogeneous Multicore Ar-
chitectures,” Concurrency and Computation: Practice and Experience,
Special Issue: Euro-Par 2009, vol. 23, pp. 187–198, Feb. 2011.

[9] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-Effective and
Low-Complexity Task Scheduling for Heterogeneous Computing," Par-
allel and Distributed Systems, IEEE Transactions on, vol. 13, no. 3,
2002.

[10] B. Gary, Learning openCV: Computer Vision with the openCV Li-
brary. O’Reilly USA, 2008.

[11] R. Miceli, G. Civario, A. Sikora, E. Cesar, M. Gerndt, H. Haitof,
C. Navarrete, S. Benkner, M. Sandrieser, L. Morin, and F. Bodin,
“AutoTune: A Plugin-Driven Approach to the Automatic Tuning of
Parallel Applications,” in Applied Parallel and Scientific Computing,
vol. 7782 of LNCS, pp. 328–342, Springer, 2013.

[12] S. Benedict, V. Petkov, and M. Gerndt, “PERISCOPE: An Online-
Based Distributed Performance Analysis Tool,” in Tools for High
Performance Computing 2009 (M. S. Mueller, M. M. Resch, A. Schulz,
and W. E. Nagel, eds.), pp. 1–16, Springer, 2010.

[13] M. Gerndt and E. Kereku, “Selective Instrumentation and Monitoring,”
in Proceedings of 11th Workshop on Compilers for Parallel Computers
(CPC 04), Kloster Seeon, pp. 61–74, 2004.

[14] C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical
optimization of software and the ATLAS Project,” Parallel Computing,
vol. 27, 2001.

[15] M. Frigo and S. Johnson, “FFTW: an adaptive software architecture
for the FFT,” in Acoustics, Speech and Signal Processing, 1998.
Proceedings of the 1998 IEEE International Conference on, vol. 3,
pp. 1381–1384, 1998.

[16] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. August,
“Compiler optimization-space exploration,” in Code Generation and
Optimization, 2003. CGO 2003. International Symposium on, 2003.

[17] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff, “Auto-
matic selection of compiler options using non-parametric inferential
statistics,” in Parallel Architectures and Compilation Techniques, 2005.
PACT 2005. 14th International Conference on, pp. 123–132, 2005.

[18] I.-H. Chung and J. K. Hollingsworth, “Using information from prior
runs to improve automated tuning systems,” in Proceedings of the 2004
ACM/IEEE Conference on Supercomputing.

[19] Y. L. Nelson, B. Bansal, M. Hall, A. Nakano, and K. Lerman,
“Model-guided performance tuning of parameter values: A case study
with molecular dynamics visualization,” in International Parallel and
Distributed Processing Symposium, pp. 1–8, 2008.

[20] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z.
Ueng, J. A. Stratton, and W.-m. W. Hwu, “Program optimization
space pruning for a multithreaded GPU,” in Proceedings of the 6th
annual IEEE/ACM international symposium on Code generation and
optimization, pp. 195–204, 2008.

[21] Y. Liu, E. Zhang, and X. Shen, “A cross-input adaptive framework for
GPU program optimizations,” in International Parallel and Distributed
Processing Symposium, 2009.

[22] J. Dokulil and S. Benkner. “Automatic Tuning of a Parallel Pattern
Library for Heterogeneous Systems with Intel Xeon Phi,” in 12th
International Symposium on Parallel and Distributed Processing with
Applications (ISPA 2014), Milan, Italy, 2014.


	PDP3350-2

