
Implementing MPI_Barrier with the NetFPGA

O. Arap1, G. Brown2, B. Himebaugh2, and M. Swany1
1Center for Research in Extreme Scale Technologies, Indiana University, Bloomington, IN, USA

2School of Informatics and Computing, Indiana University, Bloomington, IN, USA

Abstract— Parallel programs written using the standard
Message Passing Interface (MPI) frequently depend upon
the ability to synchronize execution using a barrier. Barrier
synchronization operations can be very time consuming. As
a consequence, there have been investigations of custom
interconnects and protocols for accelerating this operation
and other collective operations in parallel MPI programs.

In this paper, we explore the use of hardware pro-
grammable network interface cards utilizing standard media
access protocols as an alternative to fully custom synchro-
nization networks. Our work is based upon the NetFPGA –
a programmable network interface with an on-board Virtex
FPGA and four Ethernet interfaces. We have implemented a
network-level barrier operation using the NetFPGA for use
in MPI environments. This paper compares the performance
of this implementation with MPI over Ethernet for a small
configuration.

Keywords: NetFPGA, MPI, MPI_Barrier, Synchronization, Col-
lective Operations

1. Introduction
Barrier synchronization can have a significant perfor-

mance impact on programs running on large parallel pro-
cessors. A barrier is a logical delimiter for participating
processes to ensure that all the processes are at the barrier
point in their execution sequence [6]. A participating process
may continue with its execution after it receives a release
notification either from one of its peers or after an appro-
priate set of peer message exchanges indicates that all the
participating processes have called the barrier. Regardless of
the task parallelization, the barrier is a sequential blocking
call for all the processes. It introduces a latency completely
depending on the execution sequences of other processes,
underlying communication infrastructure and the logic of the
barrier implementation.

In the past years, many proposals have been presented
to reduce the latency of barrier synchronizations. They
are classified as software solutions, hardware solutions and
hybrid solutions that involve both hardware and software
aspects. Software barrier proposals are largely independent
of underlying hardware technology [12] [19]. They tend to
be implemented using generic solutions that can be applied
to different platforms by just changing the calls in the user
level library implementation. Software solutions lack the
performance of hardware and hybrid solutions due to the

fact that software solutions are inherently limited by the
hardware, which is not necessarily optimized to implement
barrier logic.

Hardware based and hybrid solutions are typically pro-
posed for specific target platforms such as parallel machines
with custom interconnects, clusters of FPGAs with a specific
communication medium, parallel machines with specific
target topologies, etc [11] [14] [5] [20] [15] [7] [18] [1] [8].
However, not all researchers have access to special purpose
parallel machines. As a result, many researchers build their
own cluster using Commodity Off-the-Shelf (COTS) hard-
ware. This is an active area of research focused on clusters
of workstations, which can be constructed using Commodity
Off-the-Shelf (COTS) processors and hardware to achieve
high performance parallel execution.

This work is focused on investigating how programmable
hardware platforms such as the NetFPGA [13] can be
utilized to implement barriers. The NetFPGA has become a
standard platform for learning and implementing networking
hardware in academic research. To the best of our knowl-
edge, this is the first attempt to utilize the NetFPGA in the
implementation of barrier synchronization. The NetFPGA
platform has been widely used to prototype networking
hardware with the goal of reducing the performance costs
by offloading some specific tasks to the hardware level. It
has standardized interfaces between hardware modules and
software level access to the hardware modules.

It is difficult to claim that our hardware barrier imple-
mentation using the NetFPGA bests all the other hardware
barrier solutions in terms of performance since we do not
have access to all the competitive technologies, and it is not
our goal with this work. However, lowering the barrier logic
into the hardware provides significant performance benefits
compared to software based implementations, and we will
show that our implementation using the NetFPGA does not
conflict with this assumption. There are several proposals
that target different FPGA platforms, which either implement
the entire system on chip, or utilize single FPGA as a
separate networking device such as NIC or switch. However,
our design is different since the NetFPGA provides imple-
mentation standards with a specific development suite. We
completely utilize the NetFPGA development environment,
and thus leverage its extensibility for future functionality.

The remainder of this paper is organized as follows:
Section 2 summarizes the design goals. Section 3 outlines
the implementation details and architectural design. Section

4 presents performance evaluation of our design. Section
5 provides some background and discusses related work.
Section 6 offers discussion about our work and how it could
be extended in the future, and finally Section 7 concludes
the paper.

2. Design Goals
In this paper, we propose a barrier synchronization frame-

work utilizing the standard infrastructure from the NetFPGA
platform and using standard protocols such as UDP, IP
and Ethernet. The unique contributions of our work are as
follows:

• The design relies on the standard NetFPGA driver
and there is no need to change anything in the OS.
We incorporate some simple changes in the user-level
code, utilizing the Open MPI [2] library to generate the
packets that the NetFPGA recognizes and processes.

• All of our additional hardware modules live in the
user-data-path [4], as recommended by the NetFPGA
user community. Therefore, it is self-describing and
could be extended by someone who is familiar with
the NetFPGA environment.

• We enable a flexible topology that could be created by
connecting different ports of the NetFPGA directly to
each other. The current implementation supports four
distinct physical topologies.

• We are providing a framework that can be easily
extended to other types of MPI collective operations.
We began with the barrier implementation as our base.

• Our work does not require a separate control network
for barrier synchronization as it can perform the syn-
chronization on the network where the data also flows.

3. Implementation
Our FPGA node design is derived from the reference

NIC implementation distributed with the NetFPGA package.
The host communicates with our synchronization engine
through a UDP socket – operating system support for such
sockets is part of the standard package. The NF_Barrier
implementation consists of sending a specially crafted UDP
message, and then blocking until a barrier release message is
received. An added feature of building our implementation
upon the NetFPGA reference NIC is that our node maintains
the ability to forward standard IP packets.

The simplicity of the host interface belies the complex task
that the barrier node must perform. The barrier tracks out-
standing requests by storing the various MAC, IP addresses,
checksum and UDP header fields. These are later used to
generate a message to release the host from the barrier. The
generated release packet must arrive user-space travelling up
to the protocol stack. Therefore, it must be properly formed,
so that none of the layers prevent packet to be processed by
the application layer.

Barrier&Packet&
0..3 4..7 8..11 12..15 16..19 20..23 24..27 28..31 32..35 36..39 40..43 44..47 48..51 52..55 56..59 60..63

dst_MAC src_MAC_1

src_MAC_2 type ver IHL Diff_Serv

Total_Length Identification flags frag_offset TTL Protocol

Header_Cksum src_IP dst_IP_1

dst_IP_2 UDP_Source_Port UDP_Dest_Port Length

UDP_checksum message comm_ID topo_type node_type

!
Fig. 1: Fields and structure of an actual NF_Barrier packet

3.1 Packet Format
Our design is intended to support a variety of topologies.

We use the packet format presented in Figure 1 to inform
the underlying synchronization hardware about the current
topology. The synchronization hardware state-machine is
customized to support each specific topology.

The message field denotes the packet type. Host processes
handle only two types of message – a barrier start and a
barrier release message. The NetFPGA updates the message
type based on its current state in the state machine. It may
handle other message types based upon the current topology.
For example, with the tree topology, there is an additional
message to indicate that there are children at a barrier, and to
notify the parent NetFPGA that all of its children have called
the barrier. The topo_type field is to specify the network
topology. Currently, we support ring, binary tree, butterfly
and star topologies. The node_type field denotes the node
type in a specified topology.

3.1.1 Life of Barrier Packet in the NetFPGA

Once a packet arrives at the NetFPGA, it is placed in
the appropriate receive queue and is passed to the user
data path. The receive queues attach a module header to
inform subsequent modules about the packet source and
length. From the input queue, the packet arrives at the
output_port_lookup module which examines whether it is a
barrier packet. If it is a barrier packet, based on the state it is
in, the output_port_lookup module determines which ports
the packet is going to be injected. If the packet is going to
be forwarded to multiple ports, the packet is duplicated to
the multiple transmit queues at the same time. If the packet
is not a barrier packet, the packet is handled as a regular
Ethernet traffic, and is forwarded based on the receive queue
number it is received in.

3.2 Supported Topologies
We explain in detail how the organization of NetFPGA

nodes in specific topologies and the communication required
to achieve synchronization.

3.2.1 Ring Topology

The ring topology has two types of nodes: head and
regular nodes. Head nodes wait for their host to call the
barrier, and then for the rest of the ring to call the barrier.
After the head node learns that all previous nodes are
at the barrier, it initiates a release message to the next
node and to the host. Non-head nodes wait for the nodes
preceding them and their hosts to call the barrier before
sending the MSG_PREV_AT_BR message; they then wait
to receive a release message, initiated by the head node, and
subsequently forward the release message to their host and
successor in the ring.

In the ring topology, port0 is used to connect to the
successor in the ring and port1 is used to connect to the
predecessor node in the ring. On the wire, the synchroniza-
tion packet flow runs in only one direction, which is from
port0 of the current node to the port1 of the next node.

3.2.2 Tree Topology

The tree topology is implemented with three node types:
root, internal, and leaf. As expected, a leaf node has no
children and a root node has no parent. Internal nodes have
both children and a parent. A leaf node waits for the host
to call the barrier, sends a MSG_CHILD_AT_BR message,
waits to receive a release message from its parent, and finally
releases its host. The root node waits for its children and
host to call the barrier (the order is irrelevant), then it sends
a release message to its children and the host. An internal
node is a combination of leaf and root nodes. It initially
waits for its children and host to call the barrier. Then, it
notifies its parent that its host and children have called the
barrier. Finally, it waits for a release message from its parent.
When an internal node receives a release message from its
parent, it forwards the message to its children and host.

In the tree topology, port0 and 1 are used to connect to
children (if any) and port2 is used to connect to the parent
node (if any). In this topology, the packet flow is on both
directions on the link.

3.2.3 Star Topology

The star topology is implemented with 2 node types:
center and regular nodes. Center node will wait for all the
other nodes connected to it to call the barrier. After all
regular nodes send the MSG_AT_BR messages; they wait
for center node to send the release message. The center
node will craft the release message when all the other nodes
and its host call the barrier. It sends the release message to
the regular nodes and its host. In the star topology, if the
node is a regular node, only port0 is used to connect to the
center node. All of the ports of center node could be used to
establish the star topology which is up to 5 nodes because
of the NetFPGA port limitation.

7"node'Binary'Tree'Topology'Packet'Flow'

NetFPGA'
(root)'

Host'
(root)'

4' 1'

NetFPGA'

Host'

5' 1'

NetFPGA'

Host'

5' 1'

NetFPGA'
(leaf)'

Host'
(leaf)'

6' 1'

NetFPGA'
(leaf)'

Host'
(leaf)'

6' 1'

NetFPGA'
(leaf)'

Host'
(leaf)'

6' 1'

NetFPGA'
(leaf)'

Host'
(leaf)'

6' 1'

5' 5'5' 5'

4'4'

2' 2'2' 2'

3'3'

Fig. 2: NF_Barrier packet flow for 7 nodes in a binary tree

3.3 Sample Packet Flow
Figure 2 depicts a sample packet flow scenario for a 7-

node complete binary tree.
1) All the hosts invoke the barrier and the NetFPGAs

receive the MSG_AT_BR messages. The NetFPGA
stores necessary header fields for constructing a release
message when the time comes.

2) Leaf NetFPGAs update the message received from the
host and tell their parents that the node and its children
are all at the barrier even when they have no children.

3) The NetFPGAs that are in between root NetFPGA
and leaf NetFPGAs receive the messages from their
children and since their hosts are also at the barrier,
they forward the message to their parent which is the
root NetFPGA.

4) Since all of its children and the host itself are at the
barrier, the root NetFPGA crafts a release message
with the remembered header fields and sends it to its
children and the host at the same time.

5) Internal NetFPGAs also perform necessary header
field updates, and forward the release message both
to the host and children.

6) The leaf NetFPGAs receive the release message and,
after updating the header fields, they release their host
processes from the barrier.

The preceding scenario demonstrates the packet flow in
our tree design. We are going to present a sample packet
flow for our ring topology in the next section, while we
describe our performance measurement model.

3.4 State Machines
To describe the designs, we provide the protocol state

machines for the various nodes in the tree topology. Figure 3
presents the state machines employed in a full binary tree
topology. Figure 3.d details the meaning of the state names
and transitions between them.

We did not provide figures for the state machines for
ring and star topologies because they are very simple. On

RootAt
Barrier$

1$Child$At$
Barrier$

2$Children$
At$Barrier$

Root$and$$$$$
1$Child$

Wait$
Release$

IDLE$

IDLE$

InternalAt$
Barrier$

1$Child$At$
Barrier$

2$Children$
At$Barrier$

Internal$
and1
Child$

IDLE$

LeafAt
Barrier$

L_H P

R_H C

C

C

C

C C

C R_H

I_H

I_H

I_H

P

C

R_H

L_H$ Leaf$Host$offloads$barrier$

R_H$ Root$Host$offloads$barrier$

I_H$ Internal$Host$offloads$barrier$

C$ At$Barrier$packet$from$a$child$

P$ Release$packet$fromtheparent$

(a)$ (b)$ (c)$ (d)$

Fig. 3: State Machines for the binary tree topology (a) leaf nodes (b) root node (c) internal nodes (c) Legend for state
transitions

the other hand, the butterfly topology state machine is not
presented but briefly discussed because it is so complex
compared to the other cases. The non-central node in the star
topology should employ a state machine like a leaf node in
a tree case because its role is to wait for the host to call the
barrier, notify the central node about the barrier call and wait
for the central node to broadcast the release message. The
central node is like the root node in the tree topology and it
waits for regular nodes notifications to generate the release
message. The order of message arrival from the neighbor
hosts does not matter.

The most complex topology is the butterfly. The number
of states is a lot more than other cases because the order
of packet arrival matters in this implementation. There is
no specific node role in this implementation and every node
employs the same state machine unlike other cases discussed
so far. In an 8-node butterfly topology, each NetFPGA must
connect three other NetFPGAs. In addition, it will also
interface to the host. Therefore, there are total of four ways
to receive barrier packets. Since the order of the packet
arrival matters, there are 4!=24 different sequences these
packets can arrive. The order is important, and the ports,
which packets are received from, represent different states.
For example, if it is received from the port1, it means 2
nodes in the whole topology called the barrier. The states
somewhat employ a logic to keep track of who have called
the barrier until then in the whole topology from a single
node’s perspective. Since the butterfly algorithm is a 1-phase
barrier algorithm, there is no release message circulating
between the NetFPGAs and the only release message is sent
from NetFPGA to the host.

4. Evaluation
4.1 Experimental setup and results

Our experimental setup consists of 8 NetFPGAs in hosts
with Intel(R) Core i5-2400 at 3.10GHz CPUs, 4GB RAM,
and a dual Gigabit Ethernet NIC. The NetFPGA ports

2	 3	 4	 5	 6	 7	 8	 9	
ring	 35.838	 39.44	 40.112	 42.191	 43.911	 45.738	 47.906	 49.876	
binary	 tree	 36.17	 40.17	 40.56	 43.21	
mpi	 78	 147	 157	 228	 234	 231	 241	 247	
bu9erfly	 35.75	 39.65	 42.23	
star	 35.9	 36.26	 36.45	 36.56	

0	
50	

100	
150	
200	
250	
300	

La
te
nc
y	
(u
s)
	

Number	 of	 Nodes	

Open	 MPI	 vs	 NF_Barrier	
ring	 binary	 tree	 mpi	 bu9erfly	 star	

Fig. 4: Performance comparison of NF_Barrier for imple-
mented topologies to generic MPI_Barrier for Open MPI

2	 3	 4	 5	 6	 7	 8	 9	
ring	 35.838	 39.44	 40.112	 42.191	 43.911	 45.738	 47.906	 49.876	
binary	 tree	 36.17	 40.17	 40.56	 43.21	
bu7erfly	 35.75	 39.65	 42.23	
star	 35.9	 36.26	 36.45	 36.56	

0	
10	
20	
30	
40	
50	
60	

La
te
nc
y	
(u
s)
	

Number	 of	 Nodes	

Average	 Host	 Latency	
ring	 binary	 tree	 bu7erfly	 star	

Fig. 5: Performance comparison of different topologies
which are currently implemented for NF_Barrier

were directly connected to the each other establishing a
tested topology. In this paper, we present micro-benchmark
results obtained running OSU Micro-Benchmark Suite [3]
for MPI_Barrier. In addition, we are going to describe how
we can precisely time the NetFPGA operations after we
offload the collective to the NetFPGA network.

The benchmark is configured to run 10 million barrier
calls and averaged latency results are recorded. Figure 4
shows the latency of a single barrier operation for different
numbers of hosts and various topologies.

Even though averaged results give us significantly bet-

2	 3	 4	 5	 6	 7	 8	 9	
Ring	 20.359	 21.723	 23.329	 24.865	 26.809	 28.342	 29.567	 30.581	
Binary	 Tree	 21.601	 24.396	 24.412	 27.421	
Bu8erfly	 20.31	 20.24	 20.33	

0	

5	

10	

15	

20	

25	

30	

35	

La
te
nc
y	
(u
s)
	

Number	 of	 Nodes	

Minimum	 Host	 Processing	 Time	
Ring	 Binary	 Tree	 Bu8erfly	

Fig. 6: Minimum latency experienced by different topologies
which are currently implemented for NF_Barrier

ter performance compared to the point-to-point Open MPI
implementation, it does not precisely demonstrate how our
design contributes to the overall barrier latency. According
to the results presented in Figure 5, if the number of
nodes is increased by one in ring topology, it introduces
approximately 2µ latency. If the height of the tree increased
by one, it introduces additional 3.5µ. It is also the same
for the butterfly topology, if we increase the number of
nodes by the power of 2. However, because of the node
parallelism, these numbers are expected to be close to each
other since we are introducing a single parallel NetFPGA
processing to the overall processing time. We run our
benchmarks to find out what the minimum latency of a
barrier would be for various hosts in various topologies.
The minimum latencies experienced are presented in Figure
6. The purpose of presenting the minimum results are to
show that the host itself introduces a huge variance to the
overall performance of our implementation. Therefore, it is
not fair to evaluate our design based on average results unlike
some other previous work [8]. As observed in Figure 6,
when the host involvement in barrier latency is minimal, it
provides more precise data for understanding how our design
really contributes to the overall performance. Hence, we can
extrapolate valuable information about processing time of
the NetFPGAs. According to these results, an additional
node to the ring introduces an average of 1.46µs latency,
an increase in the height of the tree introduces 2.95µs of
latency to the leaf nodes, and there is no latency introduced
for the case of butterfly implementation.

We define p as the NetFPGA’s single packet processing
time. In the ring case, if a node is the last one to arrive
barrier call, it will wait for its packet to circulate through the
ring once. Therefore, an increase in the number of nodes in
the ring would introduce extra latency of p to the last node
arrived at the barrier. In a full binary tree, if a leaf node
is the last one to arrive barrier, its notification packet goes
up to the root, and then it is sent back to all the children
as a release packet. Therefore, an increase in the height of
a tree would introduce latency of 2p to the leaf nodes. In
butterfly topology, we expect latency to increase p amount

NetFPGA(
(Head)(NetFPGA(

Host(
(Head)(Host(

21node(Ring(Topology(–(Measurement(Model(

1(3(

2,5(

4,6(

5(6(

Fig. 7: Example packet-flow scenario that describes our
precise performance measurement model

when the number of nodes increase by the powers of two.
However, we do not see consistant results for this case in
Figure 6. The presented numbers are a lot more consistent
than averaging overall latencies and give us an idea about
how fast the NetFPGA processes the packet. So, based on
these results, p is around 1.46µs. However this is still not a
precise measurement.

To precisely measure the NetFPGA processing time, p,
we developed the model pictured in Figure 7. NetFPGA
has a 125Mhz clock and we created a 64-bit timer which
increments on each clock cycle. The steps to measure the
NetFPGA’s single packet processing time in 2-node ring
topology are listed below.

1) The host of the head node manually sends an
MPI_Barrier message to the NetFPGA.

2) The NetFPGA forwards this packet to the second
NetFPGA on the ring. Second NetFPGA then waits
for its host to call MPI_Barrier.

3) The host of the second NetFPGA sends the
MPI_Barrier message to its NetFPGA. The NetFPGA
records the time at a certain place through the data-
path.

4) The second NetFPGA now forwards the packet to the
head NetFPGA, which is the head-node.

5) The head NetFPGA now knows that everyone has
called MPI_Barrier. It generates a release message and
forwards it to the host and the second NetFPGA at the
same time.

6) When the second NetFPGA receives the release mes-
sage from the head NetFPGA, it records the time again
at the same place on the data-path. The difference
between the two recorded timestamps provides the
NetFPGA processing time for both nodes. This data
is written into a packet which is sent to the host as a
release message.

The time measured in this model includes the propagation
delay. However, the propagation delay is negligible since we

2	 3	 4	 5	 6	 7	 8	 9	
Ring	 2.64	 3.984	 5.264	 6.608	 7.952	 9.296	 10.576	 11.92	
Binary	 Tree	 2.624	 5.312	 5.312	 7.936	
Bu8erfly	 2.64	 3.96	 5.28	

0	
2	
4	
6	
8	

10	
12	
14	

La
te
nc
y	
(u
s)
	

Number	 of	 Nodes	

NetFPGA	 Processing	 Time	
Ring	 Binary	 Tree	 Bu8erfly	

Fig. 8: Precise processing time of NetFPGA for different
topologies and various number of nodes

2	 3	 4	 5	 6	 7	 8	 9	
Ring	 5.13	 7.65	 8.858	 9.669	 10.364	 12.885	 13.923	 15.727	
Binary	 Tree	 5.453	 8.453	 8.927	 12.175	
Bu8erfly	 4.8	 5.276	 7.168	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

La
te
nc
y	
(u
s)
	

Number	 of	 Nodes	

Average	 Network	 Processing	 Time	
Ring	 Binary	 Tree	 Bu8erfly	

Fig. 9: Average latency introduced after MPI_Barrier is
offloaded to the NetFPGA network for various topologies

used short cables to connect the hosts. Based on our precise
measurements, p is 1.32µ. An increase in the number of
nodes in the ring introduces 1.32µ delay, and the results
are presented in Figure 8 that prove the consistency of our
precise measurement. Similar model is used for the tree
topology for the leaf nodes and an increase in the height
of a tree introduces 2p latency. Based on the number of
processing time, we put the estimate results for the butterfly
algorithm, however they are not measured, since it is very
hard to inject packets to the NetFPGAs at the same time
because of the system noise of the different arrival times.

Network’s average performance results after the host
offloads the barrier operation to the NetFPGA still present
valuable information especially for the butterfly topology.
For these measurements we used a similar approach as we
did for the precise measurements. However, in this case
we recorded the timestamp when NetFPGA receives offload
request from the host. The second timestamp is recorded
when the NetFPGA sends the release message to the host.
The difference is attached to the release packet. Measure-
ments for the ring and butterfly are averaged for each host.
However, for the tree case, only the results for the leaf nodes
are averaged since the upper nodes are released quite earlier
than the leaf nodes. Non-leaf nodes can introduce a huge
bias and do not offer how the network processing time is
related with the height of the tree. The results are presented
in Figure 9.

5. Related Work
Zotov [20] proposes a hardware mechanism to synchro-

nize n-dimensional mesh-connected MIMD computers. This
work is one of the most comprehensive works in the
literature about barrier synchronization and maps out the
limitations of different synchronization frameworks. The
work itself proposes a separate control networks for mesh-
connected MIMD computers, and it is different from our
work in three key aspects. This work proposes a separate
control network for barrier synchronization. Instead, our
work implements synchronization on the data network. Al-
masi et al. [5] are also another example claiming that it is
better to have separate barrier logic and build a separate
network to handle the synchronization.

Even though they are not considered as clusters of work-
stations, FPGA based network on chip (NoC) architectures
are also related to our work. Mahr at al. [14] implement an
MPI library for multiprocessor systems on a single chip.
They connect the processing elements on a single chip
in different ways such as a ring topology, star topology
and shared bus. [15] also similarly proposes a centralized
synchronization solution for 8 cores on a single chip. [7]
is another example to achieve barrier synchronization on a
NoC environment. According to [7] the defining feature is
that the barrier release messages are broadcasted to facilitate
the job of storing the source node information. Our work
differs in that sense since we store the source node protocol
information until the end of barrier release message. [18]
discusses scalability and effect of different barrier algorithms
on a NoC based platform. The algorithms investigated in this
paper are central counter, combining tree and dissemination
algorithm. Huang et al. [11] also focus on optimizing MPI
primitives on a NoC system.

Moreover, there are some other proposals for different
platforms. TMD- MPI [16] focuses on MPI_Send and
MPI_Recv implementation in multi-FGPA platforms and
[17] is the extension of their work to unite their design
with a specialized x86 platform. Our work provides both
a distributed barrier implementation and has the potential to
support a variety of network topologies. Previous work [8]
is the most similar to our work, but with some caveats. It
is applicable only for a specific FPGA cluster architecture
and topology - a tree. In contrast, we support a variety of
topologies - all ring, tree and star are discussed in this paper.
In addition, the communication between the FPGA systems
is not using standard protocols as we do in our work. In
another FPGA implementation [10], a single FPGA is used
to collect barrier messages from connected hosts and to
distribute them a release message when all nodes call barrier.
It implements a centralized barrier algorithm employing a
simple state machine. Fabric Collective Accelerator (FCA)
[1] offloads the collective communication burden to Mel-
lanox InfiniBand adapters and switches. Along with that [9]
describes the implementation of a non-blocking barrier call

with CORE-Direct hardware capabilities introduced in the
InfiniBand NIC ConnectX-2. They provide a list of tasks that
achieves the barrier utilizing recursive-doubling algorithm.
However, unlike our work, this implementation does not
totally implement the barrier collective in the hardware but
defines the routine that employs the primitive tasks provided
by the hardware.

6. Discussion and Future Work
Our design has obvious limitations, including manual

configuration. We leave these to be addressed in future work.
Moreover, even though we integrated our design into the
Open MPI via simply replacing the included MPI_Barrier,
a more significant integration effort is necessary to preserve
the architecture and semantics of Open MPI.

In our packet format we defined a field called comm_ID.
However, it is not used in this design; the goal is to
distinguish active barrier operations, which may run on
simultaneously for different MPI communicators. Each of
the simultaneous barrier operation will require a separate
state machine. Therefore, in order to distinguish the states
of active barrier synchronizations, we are planning to investi-
gate the best way to store the comm_ID with their associated
barrier states. We are currently investigating approaches to
store the (comm_ID, barrier_state) tuples since the read and
write operations for those tuples are going to be almost
equal.

Moreover, we are planning to put hardware logic into
the NetFPGA to learn the topology of the NetFPGA collec-
tive network and configure node roles as appropriate. This
information will be propagated to the MPI environment,
eliminating the hardcoding that comes with the current
design and making it portable to other NetFPGA network
configurations. We are also planning to achieve the self-
configurability without changing any system level driver, and
implementing the logic at the hardware and user-level.

7. Conclusion
In this paper, we have presented preliminary results us-

ing NetFPGAs to implement MPI_Barrier synchronization.
While the hardware designs presented have some limitations,
the results provide strong evidence that this is likely to
be a fruitful research domain. Limitations in our initial
design include lack of mechanisms for failure recovery and
the need for a pre-assigned root node. Our plans include
better and more robust implementations of barriers and other
synchronization mechanisms, performance evaluation on real
parallel code, and integration with MPI libraries.

References
[1] Fabric collective accelerator. www.mellanox.com/products/

fca/.
[2] Open mpi: Open source high performance computing. http://

www.open-mpi.org.

[3] Osu micro-benchmarks 4.0. http://mvapich.cse.
ohio-state.edu/benchmarks/.

[4] Reference router walkthrough. http://wiki.
netfpga.org/foswiki/bin/view/NetFPGA/OneGig/
ReferenceRouterWalkthrough.

[5] G. Almási, P. Heidelberger, C. J. Archer, X. Martorell, C. C. Erway,
J. E. Moreira, B. Steinmacher-Burow, and Y. Zheng. Optimization
of MPI collective communication on BlueGene/L systems. In ICS
’05: Proceedings of the 19th annual international conference on
Supercomputing, pages 1–10. ACM Request Permissions, June 2005.

[6] T. S. Axelrod. Effects of synchronization barriers on multiprocessor
performance. Parallel Comput., 3(2):129–140, May 1986.

[7] X. Chen, S. Chen, Z. Lu, A. Jantsch, B. Xu, and H. Luo. Multi-FPGA
implementation of a Network-on-Chip based many-core architecture
with fast barrier synchronization mechanism. NORCHIP, 2010, 2010.

[8] S. Gao, A. G. Schmidt, and R. Sass. Hardware Implementation Of
MPI_Barrier On An FPGA Cluster. In International Conference on
Field Programmable Logic and Applications (FPL 2009), pages 12–
17. IEEE, 2009.

[9] R. Graham, S. Poole, P. Shamis, G. Bloch, N. Bloch, H. Chapman,
M. Kagan, A. Shahar, I. Rabinovitz, and G. Shainer. Overlapping
computation and communication: Barrier algorithms and connectx-2
core-direct capabilities. In Parallel Distributed Processing, Workshops
and Phd Forum (IPDPSW), 2010 IEEE International Symposium on,
pages 1–8, 2010.

[10] T. Hoefler, J. M. Squyres, T. Mehlan, F. Mietke, and W. Rehm.
Implementing a Hardware-Based Barrier in Open MPI. Proceedings
of KiCC, 2005.

[11] L. Huang, Z. Wang, and N. Xiao. Accelerating NoC-Based MPI
Primitives via Communication Architecture Customization. In 2012
IEEE 23rd International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pages 141–148. IEEE, 2012.

[12] I. Jung, J. Hyun, J. Lee, and J. Ma. Two-phase barrier: A synchroniza-
tion primitive for improving the processor utilization. Int. J. Parallel
Program., 29(6):607–627, Dec. 2001.

[13] J. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo. Netfpga–an open platform for gigabit-rate
network switching and routing. In Microelectronic Systems Education,
2007. MSE’07. IEEE International Conference on, pages 160–161.
IEEE, 2007.

[14] P. Mahr, C. Lörchner, H. Ishebabi, and C. Bobda. SoC-MPI: A Flex-
ible Message Passing Library for Multiprocessor Systems-on-Chips.
In 2008 International Conference on Reconfigurable Computing and
FPGAs (ReConFig), pages 187–192. IEEE, 2008.

[15] M. Monchiero, G. Palermo, C. Silvano, and O. Villa. Efficient Syn-
chronization for Embedded On-Chip Multiprocessors. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 14(10):1049–
1062, 2006.

[16] M. Saldana and P. Chow. TMD-MPI: An MPI Implementation
for Multiple Processors Across Multiple FPGAs. In International
Conference on Field Programmable Logic and Applications (FPL
2006), pages 1–6, 2006.

[17] M. Saldana, A. Patel, C. Madill, D. Nunes, D. Wang, P. Chow,
R. Wittig, H. Styles, and A. Putnam. MPI as a programming model
for high-performance reconfigurable computers. ACM Transactions
on Reconfigurable Technology and Systems (TRETS), 3(4):22, 2010.

[18] V. F. Silva, C. de Oliveira Fontes, F. R. V. Wagner, and S. on-Chip
VLSI-SoC 2012 IEEE IFIP 20th International Conference on. The
impact of synchronization in message passing while scaling multi-
core MPSoC systems. In VLSI and System-on-Chip (VLSI-SoC), 2012
IEEE/IFIP 20th International Conference on, 2012.

[19] D. Tsafrir and D. Feitelson. Barrier synchronization on a loaded
smp using two-phase waiting algorithms. In Parallel and Distributed
Processing Symposium., Proceedings International, IPDPS 2002, Ab-
stracts and CD-ROM, pages 8 pp–, 2002.

[20] I. Zotov. Distributed virtual bit-slice synchronizer: A scalable hard-
ware barrier mechanism for n-dimensional meshes. Computers, IEEE
Transactions on, 59(9):1187–1199, 2010.

	PDP2663

