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Abstract—This paper presents a parallel implementation of the
Hybrid Bi-Conjugate Gradient Stabilized (BiCGStab(2)) iterative
method in a Graphics Processing Unit (GPU) for solution of
large and sparse linear systems. This implementation uses the
CUDA-Matlab integration, in which the method operations are
performed in a GPU cores using Matlab built-in functions. The
goal is to show that the exploitation of parallelism by using
this new technology can provide a significant computational
performance. For the validation of the work we compared the
proposed implementation with a BiCGStab(2) sequential and
parallelized implementation in the C and CUDA-C languages.
The results showed that the proposed implementation is more
efficient and can be viable for simulations being carried out
with quality and in a timely manner. The gains in computational
efficiency were 76x and 6x compared to the implementation in
C and CUDA-C, respectively.
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I. INTRODUCTION

A linear system is a linear equations finite set applied in a
variable finite set. Sparse and large linear systems may appear
as result of the modeling of various computer science and
engineer problems [18]. To solve such systems, iterative meth-
ods are more indicated and efficient than exact methods [20].
Iterative methods use less memory space and reduce rouding
errors in computer operations [15]. Such methods perform
successive approximations in each iteration to obtain a more
precise solution for the system.

Classical iterative methods such as Jacobi and Gauss-Seidel
are considered easy to deploy and use [17]. Nevertheless,
despite this feature both may have a slow convergence or even
not converge for large systems [20]. Another disadvantage is
that when the coefficient matrix is not square (number of rows
equal to the number of columns), these two methods can not
guarantee the linear system convergence. As a consequence,
the research and implementation of computational methods
are considered important tasks in various areas of science,
particularly those that involve the solution of large linear
equations systems [6].

There are several methods for solution of linear systems.
Some of them are considered good in relation to the computa-
tional cost. However, the computational performance may be

affected if the size of the system is large. In some cases in
which the linear systems to be solved are very large, the com-
putational processing may last too many days and the meth-
ods solution speed difference are significant. Consequently,
the implementation of efficient and robust methods such as
the Hybrid Bi-Conjugate Gradient Stabilized (BiCGStab(2))
becomes important and often necessary for the simulations
are performed with quality and in a short time [2]. The
BiCGStab(2) is an iterative method developed for solving large
and sparse linear systems and is considered a good one [6].

Several studies have used the computational resources of
Graphics Processing Units (GPU) to solve large and sparse
linear systems. For instance, Bowins [2] presented a compari-
son of computational performance between the Jacobi method
and the Bi-Conjugate Gradient Stabilized (BiCGStab) method.
In that work, both methods were implemented in two versions:
sequential and parallelized. Based on the results obtained,
he showed that as the size of the system increases, the
parallel implementation outperforms the sequential in terms
of computational efficiency.

Weber et al. [21] presented graphics processing unit (GPU)
data structures and algorithms to efficiently solve sparse linear
systems that are typically required in simulations of multi-
body systems and deformable bodies. Their solving method
results in a speedup factor of up to 13 in comparison to other
sequential and GPU methods.

More recently, Paula et al. [6] proposed a parallelization
of the BiCGStab(2) method for solving linear systems using
Compute Unified Device Architecture (CUDA) and compared
the computational performance between the sequential and
parallelized versions of the method. They showed that from
the computational point of view, the parallel version of
BiCGStab(2) method is more efficient.

In this context, this paper presents a parallel implementation
of the BiCGstab(2) method, which uses the CUDA-Matlab
technology in a GPU for solving linear systems. The goal
was showing that the proposed implementation can be more
appropriate and, through its use, it is possible to enable the
efficient solution of large and sparse linear systems for in-



creasingly complex (larger) systems can be solved in a timely
manner. To achieve this goal, we performed a comparison with
the implementation of the BiCGStab(2) method proposed by
Paula et al. [6] in the solution of linear systems of varying
sizes. The results showed that the computation time can be
significantly reduced with the implementation proposed in this
paper. It was possible to obtain speedup gains of 76x and 6x
compared with the sequential and parallelized implementation
proposed in [6], respectively.

The remainder of this paper is organized as follows. It is
detailed in Section II the BiCGStab(2) iterative method. Sec-
tion III describes the CUDA and its integration with Matlab.
The materials and methods used to achieve the objective of the
work are described in Section IV. The results are presented
and discussed in Section V. Finally, Section VI contains the
conclusions.

II. BICGSTAB(2) METHOD

The solution of a linear equations system Ax = b, where
An×n is the coefficient matrix and bn×1 the vector of in-
dependent terms, may require a huge computational effort
especially when A is very large. For example, to solve a linear
system one can use an iterative method. Iterative methods
perform successive approximations in each iteration to obtain
a more accurate solution and are recommended for large linear
systems with sparse matrices [1].

Iterative methods are classified into two groups: stationary
and non-stationary methods [6]. The stationary methods use
the same information at each iteration, i.e., the results of one
iteration are used for the next iterations [18]. In non-stationary
methods, the information used may change with each iteration.
The non-stationary methods are difficult to implement but
may provide a faster convergence for the system and are
more suitable even when the coefficient matrix is dense (non-
sparse) [20].

The BiCGStab(2) is a non-stationary iterative method de-
veloped by van der Vorst and Sleijpen [18]. This method
combines the advantages of BiCGStab and Generalized Min-
imum Residual (GMRES) method [14]. Consequently, the
BiCGStab(2) is considered a robust method and with conver-
gence guarantee superior to BiCGStab, suitable for solution
of linear systems generated in the solution of differential
equations of fluid flow [18].

Algorithm 1 shows a snippet of pseudocode for the algo-
rithm of BiCGStab(2) method. A full pseudocode can be ob-
tained in [6]. Some adjustments were made naming comparing
with the original algorithm. In the Algorithm 1, the Greek
letters represent scalars, lowercase letters represent vectors
expressed in matrix form, capital letters represent matrices,
and parentheses with comma separated vectors represent scalar
products between vectors.

In step 38 of the method, so that the vector xi+2 is
sufficiently precise, the higher value corresponding to the
difference between the results of each term of the vector x
in two consecutive iterations, divided by the result of the term

in the current iteration, should be less than a given accuracy
as, for example, max(xi−(xi−1)

xi
) < 10−5.

Algorithm 1: Snippet of pseudocode for the algorithm of
BiCGStab(2) method.

1. r0 = b - Ax0
2. r̂0 = r0
3. ρ = α = ω1 = ω2 = 1
4. v = w = p = 0
5. for i = 0, 2, 4, ... do
6. ρ̂ = -ω2ρ

Even BiCGStab step: from step 7 to 16
7. ρ = rTi r̂0 ...
16. xi = xi + αp

Odd BiCGStab step: from step 17 to 27
17. ρ = sT r̂0 ...
27. t = As

GMRES(2)-part: from step 28 to 38
28. ω1 = rT s ...
36. xi+2 = xi + αp + ω1r + ω2s
37. ri+2 = ri - ω1s - ω2t
38. If xi+2 is accurate, stop.
39. end for

III. CUDA
Compute Unified Device Architecture (CUDA) was the

first Application Programming Interface (API), created by
NV IDIA R© in 2006, to allow the GPU could be used for
a wide variety of applications [4]. CUDA is supported by
all graphics cards from NV IDIA R©, which are extremely
parallel, having many cores with many memories and a
memory cache shared by all cores. The CUDA code is an
extension of the C computer language (CUDA-C), where a
few keywords are used to label the parallel functions (kernels)
and their data structures [3].

Since its inception, several studies have used CUDA to
parallelization of various types of problems. For instance,
Yldirim and Ozdogan [22] presented an algorithm as a clus-
tering approach based on wavelet transform for parallelization
on GPU using CUDA-C. Fabris and Krohling [9] proposed an
algorithm of evolution implemented in CUDA-C for solving
optimization problems. Atasoy et al. [1] presented a eliminat-
ing method implemented in CUDA-C using Gauss-Jordan to
solve systems of linear equations. Paula et al. [6] used CUDA-
C to parallelize the BiCGStab(2) method for solving linear
systems of varying sizes. Finally, Paula et al. [8] proposed a
parallelization strategy for phase 2 of the Successive Projec-
tions Algorithm using CUDA-C.

In order to help programmers, the MathWorks R© has
developed a plugin able to do integration between CUDA
and Matlab. Make use of Matlab to GPU computing can
enable applications to be more easily accelerated. GPUs can
be used with Matlab using the Parallel Computing Toolbox
(PCT). The PCT provides an efficient way to speedup codes
in Matlab language, running them on a GPU [11], [7]. For



this, the programmer must change the data type to input a
function to use the commands (functions) in Matlab that were
overloaded (GPUArray). Through GPUArray function one
can allocate memory in the GPU and make calls to various
functions of Matlab, which are performed on the GPU’s
processing cores. Additionally, developers can make use of
the PCT CUDAKernel interface to integrate their code in
CUDA-C with Matlab [13].

The development of applications running on the GPU using
the PCT is usually easier and faster than using CUDA-C
language [12]. According to Little and Moler [11], this is
because aspects of exploitation of parallelism are implicitly
performed by the PCT itself, freeing the programmer from
many inconveniences. However, the organization and the num-
ber of threads to be executed on the GPU cores can not be
managed manually by the programmer. Still, it is important to
emphasize that in order to be used, the PCT requires a graphics
card from NV IDIA R©.

After CUDA-Matlab integration, few studies have used this
technology. For example, the NV IDIA R© [5] released a book
that demonstrates how programs developed in Matlab can be
accelerated using GPUs. Simek and Asn [16] presented an
implementation in MATLAB with CUDA for compression
of medical images. Kong et al. [10] accelerated some func-
tions in Matlab for image processing on GPUs. Reese and
Zaranek [13] developed a manual programming GPUs using
Matlab. More recently, Paula et al. [7] proposed a parallel
implementation of the Firefly Algoritm using CUDA-Matlab
for variable selection in a multivariate calibration problem.
Based on the results of these works, we note that, in future,
the PCT may be more used due to the fact of allowing a
code in Matlab can be easily parallelized. Therefore, instead
of implementing a kernel function and set the amount and
organization of threads blocks, the programmer must only
identify which parts of your code are parallelizable and make
use of the built-in Matlab functions.

IV. EXPERIMENTAL

The GPU was initially developed as a flow-oriented technol-
ogy, optimized for calculations of data-intensive applications ,
where many identical operations can be performed in parallel
on different data [4]. Unlike a Central Processing Unit (CPU),
which executes only a few threads in parallel, the GPU was
designed to run thousands of them [8].

As previously mentioned, one can explore parallelism in
GPUs using the PCT plugin, which provides an efficient
way to speedup codes in Matlab language invoking functions
that are overloaded to run in the cores of a GPU from
NV IDIA R©. Thus, this paper presents an implementation of
the BiCGStab(2) method in Matlab, which uses this technol-
ogy. The proposed implementation is analogous to Algorithm
1. Initially, the data are transferred to the GPU memory.
Soon after, the method begins execution and all operations
are performed in the GPU’s processing cores for threads that
are created and managed implicitly by the PCT.

All the linear systems used in this paper were generated
using Matlab (version R2013a) built-in functions. The coef-
ficient matrix (A) of each system was generated randomly
using the function gallery(′dorr′, n) , which returns a square
matrix of dimension n, sparse and diagonally dominant. The
diagonal dominant characteristic indicates that the sum of all
elements in a row is not greater than the main diagonal element
of the matrix. The vector of unknowns (x) was randomly
generated by randn(n, 1) function, which returns a vector of
n rows and 1 column. The vector of independent terms (b)
was generated by multiplying the matrix A and vector x. For
each system generated was passed to BiCGStab(2) only the
matrix A and the vector b which, after attempting convergence
system, returned vector x.

To evaluate the computational gain obtained by implement-
ing the parallelized method, it was recorded the time spent on
each iteration of the BiCGStab(2) algorithm.

The purpose of this paper was not to compare the differ-
ences between Matlab and solution methods, but only use
Matlab to generate the random systems and compare the speed
of calculation of the methods in the solution of several linear
systems.

A. Computational setup

All calculations were carried out by using a desktop com-
puter with an Intel Core i7 2600 (3.40 GHz), 8 GB of RAM
memory and a NV IDIA R© GeForce GTX 550Ti graphics
card with 192 CUDA cores and 2 GB of memory config. The
Matlab R2013a software platform was employed throughout.

V. RESULTS AND DISCUSSION

The results obtained with the BiCGStab(2) parallelized
method were compared with its sequential implementation,
in order to verify the computational gain obtained with
parallelized implementation. Additionally, a comparison was
made with implementations (sequential and parallelized) of
BiCGStab(2) proposed by Paula et al. [6]. The comparative
graphs of processing time (in seconds) of different linear
systems solved with the BiCGStab(2) method (sequential and
parallelized) in Matlab are shown in Figures 1 and 2.

Figure 1 shows that the sequential implementation may be
more efficient for linear systems with dimensions ranging from
10 to 1000. This is due to the fact the algorithm of the method
contain inherently sequential operations. For example, the
scalar products running sequentially on the CPU, depending
on the size of the system, may have a significantly reduced
computational time compared to the same time of execution
in cores of the GPU. Likewise, the operations between scalars
(steps 8, 13 and 34, for example) can not be divided between
multiple threads and, consequently, this may result in poor
performance when executed by a single GPU thread. Further-
more, due to the existence of an overhead associated with the
parallelization of tasks in GPU, the size of the system to be
solved must be taken into consideration [3], [6], [8].

On the other hand, Figure 2 shows that for systems with
dimension greater than 1500, the parallelized BiCGStab(2)



0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Matrix dimension

C
om

pu
ta

tio
na

l t
im

e 
(s

)

 

 

GPU time
CPU time

Fig. 1. Comparison of calculation speed for systems with dimension between
10 and 1000.
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Fig. 2. Comparison of calculation speed for systems with dimension between
1500 and 4000.

exceeds the sequential implementation. In this case, in com-
parison of computational efficiency, the speedup gain obtained
was approximately 2.59x. Therefore, the implementation that
uses the GPU would be more appropriate since the size of the
system used is greater than 1500×1500.

Figure 3 shows a comparison between the proposed se-
quential implementation and the sequential implementation
proposed by Paula et al. [6]. The BiCGStab(2) implemented in
Matlab is much higher compared to the same implementation
in C language. It is observed that the time for implementation
proposed by Paula et al. [6] requires a computational effort
which increases approximately exponentially with the size of
the system, while the time for implementation in Matlab is
less pronounced. The speedup gain provided by the sequential
implementation in Matlab was approximately 76.75x. Conse-
quently, the use of the method implementation in Matlab can

provide a more significant gain of computational performance.
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Fig. 3. Comparison of calculation speed for systems with dimension between
1500 and 4000 between sequential implementations of the BiCGStab(2) in
Matlab and C.

Figure 4 shows a comparison between the proposed par-
allelized implementation and the parallelized implementation
proposed by Paula et al. [6]. As in the previous case, it is
possible to note the superiority of the parallelized BiCGStab(2)
using CUDA-Matlab integration in the solution of the treated
systems. It can be seen that the time for implementation in
CUDA-C also requires a computational effort approximately
exponentially in that the size of the system increases. In this
case, the speedup obtained was approximately 6.12x. There-
fore, compared to the parallelized implementation proposed by
in [6], the parallelized BiCGStab(2) in Matlab can be a more
appropriate choice of the computational point of view.
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VI. CONCLUSION

We have implemented and used in this work a computer
code in Matlab of the BiCGStab(2) iterative method for solu-
tion of large and sparse linear systems. The method was imple-
mented on a fully sequential version as well as in a parallelized
version using a GPU with CUDA-Matlab integration. The
purpose of this paper was to present a new implementation of
BiCGStab(2) to enable the rapid solution of linear systems and
compare the computational performance with the sequential
implementation. Additionally, a comparison was made with
the sequential and parallelized implementation proposed in [6].

For the systems evaluated here, it was found a superiority of
the parallelized implementation with CUDA-Matlab regarding
the computational time spent in the calculation of each system.
It was possible to obtain a speedup gain of around 76x and 6x
compared to the sequential and parallelized implementation
presented in [6], respectively. Compared to the sequential
implementation in Matlab, the parallelized BiCGstab(2) was
faster only for systems with dimension greater than 1500, and
the speedup was approximately 2.5x. Therefore, it was con-
cluded that the implementation of the method that performs in
the GPU, compared to implementations proposed by Paula et
al. [6], would be a more suitable and appropriate implemen-
tation to obtain a significant computational performance.

Future works in this same line of research may solve
linear systems with larger dimensions than this paper. The
systems generated in the simulations of fluid flow problems
studied in the Computational Fluid Dynamics may be solved.
Techniques for efficient exploitation of parallelism in scalar
product between vectors operations can also be applied in
an attempt to further increase the computational performance.
Furthermore, alternatives to CUDA-Matlab integration such as
OpenCL [19] may be investigated for comparative studies.
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[8] Lauro Cássio Martins de Paula, Anderson Silva Soares, Telma W.
Soares, Wellington Santos Martins, Arlindo Rodrigues Galvo Filho, and
Clarimar Jos Coelho, Partial parallelization of the successive projec-
tions algorithm using compute unified device architecture, International
Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA), 2013, pp. 737–741.

[9] Fabio Fabris and Renato A. Krohling, A co-evolutionary differential
evolution algorithm for solving min-max optimization problems imple-
mented on gpu using c-cuda, Expert Systems with Applications 39
(2012), no. 12, 10324–10333.

[10] Jingfei Kong, Martin Dimitrov, Yi Yang, Janaka Liyanage, Lin Cao,
Jacob Staples, Mike Mantor, and Huiyang Zhou, Accelerating matlab
image processing toolbox functions on gpus, Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing
Units, ACM, 2010, pp. 75–85.

[11] J. Little and C. Moler, Matlab gpu computing support for nvidia cuda-
enabled gpus, http://www.mathworks.com/discovery/matlab-gpu.html,
2013.

[12] Xiongwei Liu, Lizhi Cheng, and Qun Zhou, Research and comparison of
cuda gpu programming in matlab and mathematica, Proceedings of 2013
Chinese Intelligent Automation Conference, Springer, 2013, pp. 251–
257.

[13] J. Reese and S. Zaranek, Gpu programming in matlab,
http://www.mathworks.com/company/newsletters/articles/gpu-
programming-in-matlab.html, 2011.

[14] Youcef Saad and Martin Schultz, Gmres: A generalized minimal residual
algorithm for solving nonsymmetric linear systems, SIAM Journal on
scientific and statistical computing 7 (1986), no. 3, 856–869.

[15] Yousef Saad, Iterative methods for sparse linear systems, Siam, 2003.
[16] Vaclav Simek and Ram Rakesh Asn, Gpu acceleration of 2d-dwt image

compression in matlab with cuda, Computer Modeling and Simulation,
2008. EMS’08. Second UKSIM European Symposium on, IEEE, 2008,
pp. 274–277.

[17] Gerard Sleijpen and Henk A. Van der Vorst, A jacobi-davidson iteration
method for linear eigenvalue problems, SIAM Review 42 (2000), no. 2,
267–293.

[18] Gerard L. G. Sleijpen and Henk A. Van Vorst, Hybrid bi-conjugate
gradient methods for cfd problems, Computational Fluid Dynamics
REVIEW (1995), no. 902.

[19] Ryoji Tsuchiyama, Takashi Nakamura, Takuro Iizuka, Akihiro Asahara,
Jeongdo Son, and Satoshi Miki, The opencl programming book, Fixstars,
2010.

[20] Henk A. Van Vorst, Bi-cgstab: A fast and smoothly converging variant
of bi-cg for the solution of nonsymmetric linear systems, SIAM Journal
of Scientific and Statistical Computing 13 (1992), no. 2, 631–644.

[21] Daniel Weber, Jan Bender, and Markus Schnoes, Efficient gpu data
structures and methods to solve sparse linear systems in dynamics
applications, Computer Graphics Forum, Wiley Online Library, 2012.

[22] Ahmet Artu Yldirim and Cem Ozdogan, Parallel wavelet-based cluster-
ing algorithm on gpus using cuda, Procedia Computer Science 3 (2011),
no. 0, 396–400.


