
 
 

 

 
Abstract— In this paper we develop a state observer model for 

the armature of a DC motor based on the well-known equivalent 
circuit model, and torque and speed equations. Towards this end, 
and as a first step, we derive a state space representation for the 
circuit model, and demonstrate its controllability and 
observability properties. Using the Luenberger full state observer 
technique, we derive and implement the latter in 
MATLAB/Simulink for position control of the motor, and verify 
its operation.  
 

Keywords—Circuit Model, State Space, DC Motors, Armature, 
Rotor, Luenberger Sate Observer, Simulink.  

I. INTRODUCTION 
 DC motors are classified into two categories: the permanent 
magnet type and the electromagnet type, based on how the 
magnetic field is created. The latter category is further 
subdivided into self-excited and separately excited, depending 
on whether there is a physical connection or not between the 
field windings and the armature windings. If the two windings 
are connected in series, this is referred to as a series motor. 
These are known for their variable speed and high starting 
torque. Applications include cranes, conveyors, elevators, and 
electric locomotives. If the two windings are connected in 
parallel, this gives rise to a shunt DC motor, which has a fairly 
constant speed and a medium starting torque [1]. These are 
used in fans, pumps, controlled fabrication machines, 
automated equipment such as industrial robots, and smart 
printers and plotters. In such applications, it is imperative that 
the predetermined position be acquired from the preceding 
position within a short period of time. Hence it becomes 
necessary to control the input voltage supplied to the motor by 
continuously detecting the position and speed of the rotor 
shaft. 
 

An observer is a dynamic system that is used to estimate the 
state of a system or some of the states of a system. A full-state 
observer is used to estimate all the states of the system. The 
observer can be designed as either a continuous-time system or 
a discrete-time system. The characteristics are the same, and 
the design processes are at least very similar and in some cases 
identical. The purpose of the observer is to generate an 
estimate of the state based on measurements of the system 
output and the system input. The input and output signals are 

assumed to be exactly measurable. Also, the observer uses a 
mathematical model of the state space realization of the 
system, and is software implemented [2]-[4].  

 
 In this paper a full state observer is designed for a DC  

motor, based on the actual electrical equivalent circuit  of the 
armature winding and the relationship between position and 
voltage. The observer is simulated via MATLAB/Simulink and 
the results and performance are compared with those of  the 
actual system.  

 
 The paper is organized as follows. First the theory for the 
full observer is presented in section two. In sections three the 
armature electrical circuit is presented and the state space 
representation is derived. In section four, the design of the 
observer for the position is carried out. In section five we 
present a Simulink implementation of the system, as well as 
the simulation results. 

II. STATE OBSERVER THEORY 

A. The Physical System  
The assumptions here are that the real system is a 

deterministic, linear time-invariant (LTI), continuous control 
system that is observable and controllable, and whose internal 
states may not be determined by direct observation. Its 
dynamics are described by the following state space equations: 

 ( ) ( ) ( )x t Ax t Bu t= +   (1) 

 ( ) ( ) ( )y t Cx t Du t= +  (2) 
 
Where x  is the state vector, u the control input, y the output, 
and , , ,A B C D are constant system matrices of appropriate 
dimensions. 
 

B. System Controllability and Observability 
 A system is said to be controllable if there exists a control 
input that transfers any state of the system to zero in finite 
time. It can be shown that a LTI system is controllable if and 
only if its controllability matrix, given in (3), has full rank, i.e. 
its rank is equal to the number of states [5]. Note that the rank 
of the controllability matrix of an LTI system can be readily 
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determined in MATLAB using the commands rank(ctrb(A,B)) 
or rank(ctrb(sys)).  

 2 1[ | | | | ]nCO B AB A B A B−=   (3) 
 

All the state variables of the system may not be directly 
measurable if, for instance, one or more components of the 
system is in an inaccessible location. In these cases it is 
necessary to estimate the values of the unknown internal state 
variables using only the available system output.  

A system is said to be observable if the initial state, 0( )x t , 

can be determined from the system output, ( )y t , over some 

finite time 0 ft t t≤ ≤ . Mathematically, a LTI system is 

observable if and only if the observability matrix, given in (4), 
has full rank, i.e. its rank is equal to the number of states [5]. 
Note here also that in MATLAB this can easily be checked by 
the command rank(obsv(A,C)) or rank(obsv(sys)). Also, it is 
worth mentioning that controllability and observability are 
dual concepts. A system (A, B, C, D) is controllable if and 
only if the system ( , , , )T TA C B D  is observable. Here TA  

and TB  are the transpose matrices of A and B, respectively. 
This fact will be useful when designing an Observer [5][6].  
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C. Full Observer Model 
 There are several ways to derive the state equations for the 
full-state observer. One approach is to model the observer 
state equations as a model of the actual system plus a 
correction term based on the measured output and the estimate 
of what that output is expected to be. With the actual system 
described by (1) and (2), the observer is modeled as [2][6] 
 

 ˆ ˆ ˆ( ) ( ) ( ) [ ( ) ( )]x t Ax t Bu t L y t y t= + + −  (5) 

 ˆ ˆ( ) ( ) ( )y t Cx t Du t= +  (6) 
 
where L is the n × m gain matrix for the observer. The state 
equation in (5) is seen to model the actual state equation (1), 
with the true state, ( )x t , replaced by the estimate, ˆ( )x t , and 
a correction term which is the difference between the actual 
measured output ( )y t  and its estimate ˆ( )y t . Similarly, the 
output equation in (6) is also seen to be a model of the 
system’s output equation, with ( )x t replaced by ˆ( )x t . 
 Substituting (6) in (5) yields the following alternative form 
for the observer: 

 ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )x t A LC x t B LD u t Ly t= − + − +  (7) 
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Figure 1: Block Diagram of System and Observer Models. 

 
Note that although the matrix D explicitly appears in (7), it has 
no bearing on the state estimate produced by the observer. The 
reason is because in (5) the term ( )Du t cancels out in 

ˆ( ) ( )y t y t− . The block diagram for the system described by 
(1) and (20), and its corresponding observer described by (6) 
and (7) are shown in Figure 1 for the case D=0. 
 

D. Error Estimation 
 The purpose of the observer is to produce an estimate of the 
true state ( )x t of the real system. It is reasonable to assume 
that there will be some error in the estimate at the initial time, 
but it is hoped that the error would decrease over time. The 
estimation error is defined as 
 

 ˆ( ) ( ) ( )e t x t x t= −  (8) 
Using (1) and (7), it can easily be shown that this estimation 

error signal satisfies the differential equation  
 
 ( ) ( ) ( )e t A LC e t= −  (9) 
Thus, the state equation for the estimation error is a 

homogeneous differential equation governed by the n×n matrix 
A LC− . The solution to this equation is  

 
 ( )( ) (0)e A LC te t e − −=  (10) 
The eigenvalues of the matrix (A – LC) can be made 

arbitrary by appropriate choice of the observer gain, L, when 
the pair (A,C) is observable. So the observer error e(t) goes to 
zero as t goes t infinity.  If the gain matrix L  is chosen so that 
the eigenvalues of A LC−  are strictly in the left-half of the 
complex plane, then the error equation is asymptotically 
stable, and therefore the estimation error will decay to zero 
over time. Also, if the system (A, C) is completely observable, 
then L  can be chosen so that the eigenvalues of A LC− are 



 
 

 

placed at arbitrary locations in the plane, provided that 
complex eigenvalues occur in complex conjugate pairs.  

 

E. Computation of Gain Matrix L 
 The gain matrix L  of the full-state observer can be 
computed using any of the methods used to compute the 
control gain matrix K for a control system [5][7]. For the 
control problem with full-state feedback, the closed-loop 
system matrix of interest is A BK− . Comparing that with the 
observer problem, the closed-loop system matrix is A LC− . 
The structure of those two matrices is similar; only the order of 
the unknown matrix differs between BK and LC . Since the 
eigenvalues of a matrix and its transpose are the same, the 
observer problem can be formulated the same way as the 
control problem by considering the transpose matrix 
( )T T T TA LC A C L− = − . Therefore, the gain matrix L can 
be computed using the Row-Reduced Echelon (RRE) method, 
Singular Value Decomposition (SVD), or the MATLAB place 
function in the same way as the control gain matrix K  by 
replacing ( , )A B  by ( , )T TA C . By doing this, the result 

from any of these methods will give the matrix TL  . 

III. ARMATURE CIRCUIT MODEL 
A common actuator in control systems is the DC motor. It 

directly provides rotary motion and, coupled with wheels or 
drums and cables, can cause translational motion of another 
machine. In such a motor (separately excited DC motor), the 
field windings are excited by a DC current in order to create a 
magnetic field. In turn, the armature windings receive current 
from a separate DC source which results in the creation of a 
torque by Lenz’s Law and a back electromotive force (EMF) 
by Faraday’s law [1].  

A. Motor Equations 
 The electric equivalent circuit of the armature and the free-
body diagram of the rotor are shown in the Figure 2, where 

AR and AL  are the equivalent resistance and inductance, 

respectively, of the armature winding, Ai  the armature current, 

V  the input voltage, AE  the induced back electro-motive 
force (emf) created as a result of injecting a current into a 
magnetized coil.  
 
 It is assumed that the input of the system is the voltage V 
applied to the motor's armature, while the output is the position 
θ of the shaft.  It is further assumed a viscous friction model, 
that is, the friction torque is proportional to shaft angular 
speed. Referring to Figure 2, the corresponding governing 
Kirchoff’s voltage law and Newton's second law equations are 
given by (11) [1]. 
  

In general, the developed torque generated by a DC motor is 
proportional to the armature current and the strength of the 
magnetic field. Here we assume that the magnetic field is  

Symbol Unit Definition 
V  Volts (V) Input voltage 

Ai  Ampere (A) Armature current 

AE  Volts (V) Back EMF 

AR  Ohm (Ω ) Armature Winding 
Resistance 

AL  Henry (H) Inductance of Armature 
Windings 

mK  Volts/radians/s Machine Constant 

dT  .N m  Developed Torque 

θ  Radians Shaft angular position 

ω θ=   Radians/s Angular speed 

θ  2/Radians s  Angular acceleration 

mJ  2.kg m  Moment of Inertia 

mB  . .N m s  Viscous Frictional Constant 

LT  .N m  Load Torque 

 
Table1: Motor Parameters and Constants. 

 
constant and, therefore, the motor torque is proportional to 

the armature current Ai  as shown in (12). This is referred to as 
an armature-controlled motor. 

  
 d m AT K i=  (11) 
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Figure 2: Electrical Equivalent Circuit of Motor Armature. 
 
Here mK  is the machine constant.  Also, the back emf, AE , is 
proportional to the angular velocity of the shaft 
 

 A m m mE K Kω θ= =   (12) 
 Referring to Figure 2, the corresponding governing Kirchoff’s 
voltage law and Newton's second law equations are given by  

 
( )A

A A A m
di tV i R L K

dt
θ= + +   (13) 

 m m m A LJ B K i Tθ θ= − + −   (14) 

Where mJ is the moment of inertia of the rotor and mB the 
motor viscous frictional constant [6][9].  



 
 

 

B. Transfer Function  
 We take equations (13) and (14) as a basis for deriving two 
transfer functions for the motor under no load conditions, i. e, 

0LT = , with input being the voltage and the output the 
angular speed for the first one and the position for the second. 
Taking the Laplace transforms of (13) and (14) [8] gives: 
 

 ( )( ) [ ( ) ] 0A A A mI s R L s V s sK θ+ + − =  (15) 

 2 ( )m m As J sB K I sθ θ+ =  (16) 
 
Solving for ( )AI s  from (15) and substituting in (16) yields 

 2

( )
( ) [( )( ) ]

m

m m A A m

Ks
V s s sJ B L s R K
θ

=
+ + +

 (17) 

and  

 2

( )
( ) ( )( )

m

m m A A m

Ks
V s sJ B L s R K
θ

=
+ + +



 (18) 

C. State Space Representation 
By defining the state vector x, the output y and the input u 

as follows: 

, ,
Ai

x y u Vθ θ
θ

 
 = = = 
  

  (19) 

the state space equations for the motor are derived using (13) 
and (14) as follows: 
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 (20) 

and  

 [ ]0 1 0
Ai

y θ
θ

 
 =  
  

 (21) 

IV. OBSERVER DESIGN FOR DC MOTOR POSITION 
For the Observer design, we consider a motor with the 

following parameters: 
 

AR  AL  mK  mJ  mB  

1 310−  0.1 35.10−  410−  
 
Table 1: Values of Motor Constants and Parameters 
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Figure 3: Simulink Block Diagram for the DC Motor Model and the   
Full Observer Model. 

 
Then the systems matrices A, B, C (D=0) are constructed 
using (20 and (21), and observability and controllability are 
checked using MATLAB.  The Observer is designed by 
calculating the matrix L such that the eigenvalues of the matrix 
(A-LC) are placed at -500+j250, -500-j250, and -200 
respectively, and calculating the corresponding matrices “A”, 
“B”, and “C” for the observer model using (5) and (6).    

V. SIMULINK SIMULATION RESULTS 
The Simulink block diagram for the system and the 

Observer is shown in Figure 3.  The input signal generator 
block generates the signal u(t) which serves as the excitation 
voltage for the motor,  modeled by the motor state-space block 
which produces the state x and y as its output. The system 
output y, being equal to the second component of the state 
vector, is extracted from x using a de-multiplexer block. Both 
the motor input u(t) and the output y serve as inputs to the 
observer system, as shown in Figure 3. Note that, since the 
Simulink state space block requires the system it simulates to 
be in the form of equations (1) and (2), the observer equation 
(7) needs to be reformulated to match (1), as follows: 

 

 ˆ ˆˆ ˆ ˆ( ) ( ) ( )x t Ax t Bu t= +       (22) 

 ˆ ˆˆ ˆ ˆ( ) ( ) ( )y t Cx t Du t= +  (23) 
Where the observer matrices can be calculated from the system 
matrices, as given below: 
 

 
ˆ ˆ [ ]

ˆ ˆ [ ]

A A LC B B L

C C D D D

= − =

= =





 (24) 

 

and 
( )

ˆ( )
( )

u t
u t

y t
 

=  
 

. 

Two simulations were run for two different input voltages: a 
pulse of amplitude 100V, and a sinusoid of 100V amplitude 
and 60Hz frequency, with an initial state of [0, 0, 0].  The 



 
 

 

actual states, namely the current Ai , the angular position θ ,  

the angular speed θ , and their estimates are plotted in Figure 
4 for a time frame of 5sec for the pulse, and in Figure 5 for the 
sinusoid. The plots of Figure 5 show that the state estimates 
almost match the actual states, whereas Figure 5 indicate that 
in the sinusoidal case, though initially and up to about 15 msec 
after the start of the simulation, the estimates diverged from 
the actual quantities being estimated, they did converge very 
quickly after the initial 15 msec, thus verifying the design. 

VI. CONCLUSION 
An asymptotic algebraic state estimation method known as 
Luenberger Observer model has been successfully applied to 
estimate the current, position, and angular speed of a motor. 
Further, examining the performance of such an observer shows 
that this method provides satisfactory estimates even in the 
presence of noise levels, and different initial conditions.   
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Figure 4: (a): Input pulse Voltage, (b)-(d): Plots of  armature current, shaft 
position , and motor angular speed and their respective estimates, as produced 
by the observer system.. 
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Figure 5: (a) Sinusoidal input, (b)-(d):  Plots of armature current, shaft 
position, and motor angular speed  and their respective estimates, as 
produced by the observer system. 
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