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Abstract— In this paper, we describe our method for clas-
sification of protein crystallization trial images using geo-
metric features. The objective is to automatically categorize
a protein crystal according to the presence of protein crystal
types in the images. We consider only the images consisting
of protein crystals for the classification. The images are clas-
sified into 4 categories- needles, small crystals, large crystals
and other crystals. Image classification consists of two main
steps - image feature extraction and applying decision tree
classifier. Our feature extraction includes application of
canny edge detection, extraction of edge related features
from the edge image, and extraction of blob related features
from multiple thresholding techniques. We performed our
experiments on 212 expert labeled images and tested our
results using 10-fold cross validation. Our results indicate
that the proposed classification technique produces a rea-
sonable classification performance. The overall accuracy of
the classification is 75%.
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1. Introduction
Protein crystallization is the process for formation of

protein crystals. Protein crystallization is a rare process and
requires thousands of trials for successful crystallization [1].
The objective of crystallization trials is to determine suitable
conditions for protein crystallization and produce protein
crystals suitable for X-ray diffraction.

High throughput systems have been developed in recent
years trying to identify the best conditions to crystallize
proteins [1]. Imaging techniques are used to monitor the
progress of crystallization. The crystallization trials are
scanned periodically to determine the state change or the
possibility of forming crystals. With large number of images
being captured, it is necessary to have a reliable classification
system to distinguish the crystallization states each image
belongs to. The fundamental aim is to discard the unsuccess-
ful trials, identify the successful trials, and possibly identify
the trials which could be optimized.

Many research studies have been done to distinguish the
protein images as non-crystal (does not contain crystal) or
crystal (has crystal). For example, Cumba et al. (2003)[2],
Cumba et al. (2005) [3], Berry et al. (2006) [4], Pan et
al. (2006) [5] and Po and Laine (2008) [6] have described

the classification of crystallization trials into non-crystal or
crystal categories. In our previous work [7], we described
classification of crystallization images into three categories
(non-crystals, likely-leads and crystals). Saitoh et al. (2006)
[8] proposed crystallization trials classification into five cate-
gories (clear drop, creamy precipitate, granulated precipitate,
amorphous state precipitate, and crystal). Spraggon et al.
(2002) [9] have described classification of the crystallization
imagery into 6 different categories (experimental mistake,
clear drop, homogeneous precipitant, inhomogeneous pre-
cipitant, microcrystals, and crystals). Likewise, Cumba et
al. (2010) [10] classified into 6 basic categories (phase
separation, precipitate, skin effect, crystal, junk, and unsure).

Not all protein crystals are suitable for X-ray diffraction.
The main interest for crystallographers is the formation of
large 3D crystals. Other crystal structures are also important
as the crystallization conditions can be optimized to get
better crystals. Therefore, it is necessary to have a reliable
system that distinguishes between different types of crystals
according to the shapes and sizes. In the previous studies,
classification of the different types of crystals has not been
the main focus.

Various classification techniques have been proposed for
the classification of protein crystallization trials. Classifica-
tion algorithms such as support vector machines (SVMs),
decision trees, neural networks, boosting, and random forest
have been used [7]. Alternatively, combination of multiple
classifiers has also been studied in the literature [8]. The
recent study by Hung et al. (2014) [11] have proposed
protein crystallization image classification using elastic net.

In terms of the feature extraction, a variety of image
processing techniques have been proposed. Research studies
Cumba et al. (2003) [2], Saitoh et al. (2004)[12] and Zhu et
al. (2004) [13] used a combination of geometric and texture
features as the input to their classifier. Saitoh et al. (2006) [8]
used global texture features as well as features from local
parts in the image and features from differential images.
Cumba et al. (2010) [10] extracted several features such
as basic statistics, energy, Euler numbers, Radon-Laplacian
features, Sobel-edge features, microcrystal features, and
GLCM features to obtain a large feature vector. Increasing
the number of features may not necessarily improve the
accuracy. Moreover, it may slow down the classification
process.



This study describes our technique for protein crystalliza-
tion image classification. Our focus is on classifying crystal-
lization trial images according to the types of protein crystals
present in the images. Our feature extraction includes edge
related features from canny edge image and extracting blob
related features from multiple thresholding techniques. The
images are classified into 4 categories- needle crystals, small
crystals, large crystals and other crystals. Image classifica-
tion consists of two main steps - image feature extraction
and applying decision tree for the classification. We are able
to achieve a reasonable classification performance.

This paper is arranged as follows. The following section
describes the image categories for the classification problem
considered in this paper. Section 3 provides the image
processing and feature extraction steps used in our research.
Experimental results and discussion are provided in Section
4. The last section concludes the paper with future work.

2. Image Categories
The simplest classification of the crystallization trials

distinguishes between the non-crystals (trial images not
containing crystals) and crystals (images having crystals).
In this study, we are interested in developing a system
to classify different crystal types. We consider four image
categories (Needle crystals, Small crystals, Large crystals,
Other Crystals) for protein crystallization images consisting
crystals. Description of each of these categories is provided
next.

Needle Crystals - Needle crystals have pointed edges and
look like needles. These crystals can appear alone or as a
cluster in the images. The overlapping of multiple needle
crystals on top of each other makes it difficult to get the
correct crystal structure for these images. Fig. 1[a-c] show
some sample images under this category.

Small Crystals - This category contains small sized crys-
tals. These crystals can have 2-dimensional or 3-dimensional
shapes. These crystals can also appear alone or as a cluster
in the images. Because of their small size, it is difficult to
visualize the geometric shapes expected in crystals. Besides,
the crystals may be blurred because of focusing problems.
Fig. 1[d-f] provide some sample images under this category.

Large Crystals - This category includes images with large
crystals with quadrangle (2-dimensional or 3-dimensional)
shapes. Depending on the orientation of protein crystals in
the solution, more than one surface may be visible in some
images. Fig. 1[g-i] show some sample images under this
category.

Other Crystals - The images in this category may be com-
bination of needles, plates, and other types of crystals. We
can observe high intensity regions without proper geometric
shapes expected in a crystal. This can be due to focusing
problems. Some representative images are shown in Fig 1[j-
l].

Fig. 1: Sample protein crystallization images: [a-c] Needle
Crystals [d-f] Small Crystals [g-i] Large Crystals [j-l] Other
Crystals

3. Feature Extraction
The images of crystallization trials are collected using

CrystalX2 software from iXpressGenes Inc. Protein solu-
tions are trace fluorescently labeled and the images are
collected with green light as the excitation source. As such,
the crystals are expected to be highlighted (high intensity)
in the image. This can simplify further image processing as
the desired objects (crystals) become distinct.

The distinguishing characteristics of protein crystals are
the presence of straight lines and quadrangular shapes.
Therefore, we focus on extracting geometric features of
the objects (or regions) in the image. Fig. 2 shows the
components for image pre-processing and feature extraction
of our system. Firstly, we down-sample the image and
generate binary images using two thresholding techniques.
Next, we apply image segmentation and extract features
related to the blobs from these binary images. Similarly,
we apply canny edge detection and link the edges to get
separated segments (graphs) in the image. We then find
features related to the segments and the edges. Details of
our image processing and feature extraction technique is
provided next.

3.1 Image downsampling
A high resolution image may keep unnecessary details and

increases the computation time significantly. Therefore, we
down-sample the images before further processing. In our



Fig. 2: Component diagram for image processing and feature
extraction

experiments, the original size of the images is 2560x1920
pixels. We reduce the image size by 8-fold to get 320x240
sized image. Our analysis shows that the down-sampled
images contain sufficient detail for feature extraction.

3.2 Image binarization
Image binarization is a technique for separating fore-

ground and background regions in an image. For the pro-
tein images consisting of crystals, the crystal regions are
expected to be represented as the foreground in the binary
image. Images vary depending on crystallization techniques
and imaging devices. This makes it difficult to use a fixed
threshold for binarization. Therefore, dynamic thresholding
methods are preferred. Different thresholding techniques
provide good results for different images. Hence, extracting
features from multiple thresholding techniques can be help-
ful. We apply two percentile based thresholding methods.
The implementation and results for each of these techniques
are described next.

1) 95th Percentile of Green (G95) - When green light
is used as the excitation source for fluorescence based
acquisition, the intensity of the green pixel component
is observed to be higher than the red and blue compo-
nents in the crystal regions [7]. We utilize this feature
for image binarization. First, threshold intensity τg95
is computed as the 95th percentile intensity of the
green component in all pixels. This means that the
number pixels in the image with the green component
intensity below this intensity constitute around 95%
of the pixels. Also, a minimum gray level intensity
condition (τmin = 40) is applied. All pixels with gray

level intensity greater than τmin and having green
pixel component greater than τg95 constitute the fore-
ground region while the remaining pixels constitute
the background region.

2) Max green threshold (GMax) - This technique is
similar to the 95th percentile green intensity threshold
described earlier. In this method, maximum intensity
of green component (τgmax) is used as the threshold
intensity for green component. All pixels with gray
level intensity greater than τmin and having green
pixel component greater than τgmax constitute the
foreground region while the remaining pixels consti-
tute the background region. The foreground (object)
region in the binary image from this method is usually
smaller than the foreground region from G95 thresh-
old.

Fig. 3 shows some sample thresholded images using the
two methods. From the original and binary images in Fig.
3, we can observe that a single technique may not yield
good results for all images. For the images (i) and (ii),
the binary images with G95 provide better representation
of the crystal objects. However, for image (iii), the result
from GMax threshold provides better representation of the
crystals.

Fig. 3: Figure showing results of two image binarization
techniques on crystallization trial images a) Original images
b) G95 thresholded images c) GMax thresholded images

3.3 Image segmentation
After we generate the binary image, we apply connected

component labeling to segment the regions (crystals). The
binary image could be obtained from any of the thresholding
methods. Let O be the set of the blobs in a binary image
B, and B consists of n number of blobs. The blobs are
ordered from the largest to the smallest such that area(Oi)



≥ area(Oi+1). Each blob Oi is enclosed by a minimum
boundary rectangle (MBR) having width (wi) and height
(hi). In our implementation, we define the minimum size of
the blob to be 25 pixels.

We include the number of blobs in the binary image as one
of the image feature. Likewise, for the 3 largest blobs (O1,
O2 and O3), we extract the following features and append
it to our feature vector.

1) Blob area - This is the area of the minimum bounding
rectangle (MBR) enclosing the blob. In other words,
it is simply the number of pixels in the blob image.

2) Blob perimeter - This is calculated as the sum of
distance between each adjoining pair of pixels around
the border of a blob.

3) Blob filled area - This is calculated as the number of
white pixels in the blob.

4) Blob eccentricity - This measure corresponds to the
ratio of the length of the MBR to the the width of the
MBR. Eccentricity value lies between 0 and 1 where 0
is obtained when the blob is a circle and 1 is obtained
when the blob corresponds to a line segment.

If a binary image contains less than 3 blobs, the value 0
is used for each of these features. It should be noted that the
blobs may not necessarily represent crystals in an image. For
such cases, the blob features may not be particularly useful
for the classifier.

3.4 Convex hull area
In binary images, convex hull is the smallest set of points

that forms a polygon shape, which contains the entire objects
under consideration [14]. Convex hull points of an object
indicates us the smallest number of enclosing object points
which can be useful to detect boundaries of the object. We
use area of convex hull as another image feature. This feature
is useful to determine how the crystals are spread in the
image.

3.5 Canny edge detection
Canny edge detection algorithm [15] is one of the most

reliable algorithms for edge detection. The algorithm con-
sists of four major steps. Firstly, Gaussian smoothing is done
to reduce noise in the image. After Gaussian smoothing,
intensity gradient of the image is calculated in different
directions. Edge detection operators like Robers, Perwitt,
Sobel are used to find the first derivative in the horizontal
direction (Gy) and the vertical direction (Gx). Then edge
gradient and direction are determined as follows:

g =

√
Gx

2 +Gy
2 (1)

θ = Gy/Gx (2)

After finding the edge gradient and direction, the edges
which do not have local maximum are suppressed and clas-
sified as weak edges. Likewise, edges with local maximum

are classified as strong edges. If a weak edge is in the
neighbor of a strong edge, then it is reclassified as strong
edge. The strong edges and the reclassified weak edges form
the complete edge image. The result of applying canny edge
detector on three images is shown in Fig. 4. Our results show
that for most cases, the shapes of crystals are kept intact in
the resulting edge image.

Fig. 4: Applying canny edge detection for 3 images a)
Original image b) Canny edge image

3.6 Edge linking

An edge image can contain many edges which may or
may not be part of the crystals. To analyze the shape and
other edge related features, we link the edges to form graphs
or segments. We used the MATLAB procedure by Kovesi
[16] to perform this operation. The input to this step is a
binary edge image. Firstly, isolated pixels are removed from
the input edge image. Next, the information of start and end
points of the edges, endings and junctions are determined.
From every end point, we track points along an edge until
an end point or junction is encountered, and label the image
pixels.

The result of edge linking is shown in Fig. 5c and Fig.
6c. The corresponding edge images are provided in Fig. 5b
and Fig. 6b respectively.



Fig. 5: Figure showing edge detection and edge feature extraction a) Original image b) Canny edge image c) Edge linking
d) Line fitting e) Edge cleaning f) Image with cyclic graphs or edges forming line normals

3.7 Line fitting and edge cleaning
Due to problem with focusing, many edges could be

formed. To reduce the number of edges and to link the edges
together, line fitting is done. In this step, edges within certain
deviation from a line are connected to form a single edge.
The result from line fitting is shown in Fig. 5d and Fig.
6d. Here, the margin of 3 pixels is used as the maximum
allowable deviation. From the figures, we can observe that
after line fitting, the number of edges is reduced and the
shapes resemble to that of exact shapes of the crystals.
However, although desirable, this may not be achieved in
all images.

Likewise, isolated edges and edges that are shorter than
a minimum length are removed. The result from removing
the uninterested edges is shown in Fig. 5e and Fig. 6e. Thus
obtained list of edges is used to extract the following edge
related features.

1) Length of edges - We determine the length of each
edge using Euclidean distance measure. For an edge
with the edge points (x1, y1) and (x2, y2), the length
(l) of the edge is computed using equation (3).

l =

√
(x1 − x2)

2
+ (y1 − y2)

2 (3)

2) Angle between the edges - We determine the slope of

each line and use it to compute the angle between
connected lines. If two adjacent lines are almost per-
pendicular to each other, that provides a hint for the
object to be small crystal or large crystal.

3) Line normals - Two lines are said to form line normals
if the angle between the lines is 90 degrees. For each
connected edge segment, we determine if two edges
are perpendicular with each other. We consider two
lines to be normals if the angle between the lines θ
lies between 60 and 90 i.e., 60 ≤ θ ≤ 120.

4) Cyclic graphs - We check the edge link list and
determine if the edges form a cycle. This is a useful
feature to distinguish between needle crystals and
other crystals.

Fig. 5f and Fig. 6f provide the edge linked image with
only the edge segments that are cyclic or have line normals.

3.8 Harris corner detection
Corner points are considered as one of the uniquely rec-

ognizable features in an image. A corner is the intersection
of two edges where the variation in both x and y gradient
vector directions is very high. Harris corner detection [17]
exploits this idea and it basically measures the change in
intensity of a pixel (x, y) for a displacement of a search
window in all directions. We apply Harris corner detection



Fig. 6: Figure showing edge detection and edge feature extraction a) Original image b) Canny edge image c) Edge linking
d) Line fitting e) Edge cleaning f) Image with cyclic graphs or edges forming line normals

and count the number of corners as the image feature.

3.9 List of features
For each image, we apply 2 dynamic image thresholding

methods. Connected component labeling is done on the
thresholded images and corresponding blob features are
extracted. From each binary image, we extract 3*4 + 2 = 14
blob features. Likewise, we apply canny edge detection and
extract 11 edge and corner features. Therefore, we extract a
total of 2*14 + 11 = 39 features per image. Below is the list
of all the extracted features.

1) Blob features
a) Area of the 3 largest blobs
b) Perimeter of the 3 largest blobs
c) Filled area of the 3 largest blobs
d) Eccentricity of the 3 largest blobs
e) No of blobs
f) Area of convex hull

2) Edge features
a) No of segments (graphs)
b) No of 1 edge graphs
c) No of 2 edge graphs
d) Has cyclic graph (0 or 1)
e) Has line normals (0 or 1)
f) No of cyclic graphs

g) No of graphs with line normals
h) Average length of edge in all segments
i) Sum of lengths of all edges
j) Maximum length of an edge
k) No of Harris corner points

4. Experimental Results
Our experimental dataset consists of 212 expert labeled

images. The images are hand-labeled by an expert into 4
different categories - Needle Crystals (NC), Small Crystals
(SC), Large Crystals (LC) and Other Crystals (OC). These
are represented in the proportion 24%, 20%, 35% and 21%
respectively. Each image is processed as described in the
earlier section and 39-dimension feature vector is obtained
by extracting the blob, edge and corner features. We use
decision tree as the classifier and evaluate the performance
using 10-fold cross validation. Table 1 provides the result-
ing confusion matrix. We are able to achieve an accuracy
of 75% [(38+36+58+26)/212] on average for a four-class
classification problem.

Among the 4 classes, we can observe that the system
distinguishes the small crystals and needle crystals with
high accuracy. Distinction between large crystals and other
crystals is the most problematic.

From our discussion with the expert, small and large
crystals are the most important crystals in terms of their



Table 1: Confusion Matrix
Actual Class Observed Class

OC NC SC LC
OC 26 4 4 10
NC 6 38 5 2
SC 1 3 36 3
LC 10 2 4 58

usability for the diffraction process. Therefore, it is critical
not to misclassify the images in these categories into the
other two categories. From Table 1, we can observe that
our system misses 4 Small Crystals (1 image grouped as
other crystals and 3 images grouped as needles). Likewise,
our system classifies 10 Large crystals as Other Crystals
and 2 Large Crystals as Needles. In overall, our system
misses 16 critical images. Thus, the rate of miss of critical
crystals of our system is around 8% [16/212]. This is a
promising achievement for crystal subclassification of crystal
categories.

5. Conclusion and Future Work
In this paper, we described a method for classifying

different types of protein crystals in protein crystallization
trial images. We extracted features related to edge and the
shape characteristics of high intensity regions (blobs). We
applied decision tree to develop the classification model and
tested our experiments using 10-fold cross-validation. Our
results indicate that the proposed classification technique
produces a reasonable classification performance.

Crystallographers can not fully rely on the system as the
classification accuracy is not very high. Hence, we need
to improve the accuracy. The performance of our system
depends on the accuracy of image binarization. In some
images, the thresholded images do not capture the shapes
of crystals correctly. Therefore, the features extracted from
blobs may not necessarily represent crystals. Because of
this, the features extracted from those blobs are not useful.
To solve this problem, we plan to investigate different
thresholding techniques. Our initial study shows that using
the best thresholded image for feature extraction improves
the classification performance.

We also plan to investigate hierarchical classification to
obtain the decision model for the classification problem.
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