
Efficient Image Segmentation Algorithm for Mobile Devices

Mark Smith

University of Central Arkansas

Conway, Arkansas 72035

Abstract

An efficient image segmentation algorithm utilized for

mobile applications running on the iPhone’s iOS

platform is presented. Mobile devices such as the

iPhone have limited CPU and memory resources, thus

presenting a more challenging task when implementing

complex algorithms such as image segmentation. The

image segmentation utilized in this work splits the

image into real-world objects that are numbered for

the user to either select for further processing. First, a

color quantization algorithm is applied to the entire

image thus simplifying the image to only 16 available

colors. Next, a fast texture measurement utilizing the

co-occurrence matrix is applied to entire image using

a pre-selected neighborhood of interest. Multiple

regions are then automatically merged based on a

color comparison measurement extracted at each

object’s boundary. The resulting regions are then

displayed to the user for further analysis or selection.

The primary usage of this algorithm is within other

mobile apps that require the segmentation of images

into realistic objects. Examples of these apps would be

those that read bar codes, QVC codes, or OCR text

regions. Results are shown for numerous standard

image samples and compared with other image

segmentation algorithms.

.

1. Introduction

The interest in mobile devices has exploded in

recent years, especially the usage of the Apple’s

iPhone and iPad. These devices allow users to capture

pictures and live video instantaneously while

processing these images in real-time by an App. The
App described in this paper is used for segmenting the

image into real-world objects that can be used for

further processing. In other words, this App could

provide a foundation for other Apps that require an

image (or even a video) segmented into realistic

objects for further analysis. The image segmentation
algorithm described in this work very efficiently

processes the image thus minimizing the limited CPU

and memory requirements. A novel image

segmentation algorithm implemented in this app

consists of the following steps:

• Color Quantization to 16 colors

• Fast Texture measurement extracted from the Co-

Occurrence Matrix

• Adjacent regions are merged based on a dominant

color matching. Algorithm.

• The resulting segmentation provides a realistic set
of objects

The following sections outline each of these steps

found in the process discussed in this work as well as a

results section comparing this algorithm with other

comparable systems.

2. Color Quantization and Color Matching

There are tens of thousands of unique colors in a

given image and perhaps millions of unique colors

across several pictures of a video sequence. The

quantization of all possible colors to only a few levels

is an important simplification step, since the

comparison so many different color possibilities prove

difficult when identifying the optimal foundation color
to be applied to a region. The image undergoes a

standard k-means clustering algorithm [9,17] and 16

quantized colors are extracted from this initial object.

The motivation behind using 16 colors is because it has

been found that most realistic regions can be

represented by this many discrete labels - thus shading,

textured regions, etc can be modeled most accurately

this way. Before clustering, the original RGB pixel

colors are converted to the CIE- L*a*b* color space

which has been shown to be perceptually uniform and

therefore preserve more accurate distances than the

RGB color space, thus providing superior results [14].
The clustering results on the CIE-L*a*b* colors are

then converted back to the RGB colors, the main

feature used in this system.

The quantized colors in the regions are then

compared with the actual colors in the other regions.

The colors will be classified in one of two ways:

1. An existing color found in the largest possible

region.

2. A new color not found in the region.
The symbol pcn will be used to represent the

actual color in an additional region whereas pcp

represents the corresponding matching color in the

largest region. A new color is identified in the

additional regions by (1) as

 (1)
where µ is the mean of the cluster that pcp belongs to,

pci is the ith color belonging to this cluster with i =1,

2,….N, and N is the total number of colors grouped

with the cluster. σ is the standard deviation of the

distances computed between µ and the colors in its

cluster and is given by

 || ||

(1)

N

i

pci

N

µ

σ

−

−

∑
=

 (2)
and α is a scaling factor. We have found that α equal

to 2 works well for the application considered in this

work. This color-matching step is illustrated in Fig. 1.

In the example shown in Fig. 1, pcn is classified as a

new color.

3. Co-Occurrence Texture Measurement

The Gray-Level Co-occurrence Matrix (GLCM) is one

of the most popular statistical texture measurements

[15,19] and has been used as the primary component in

a wide range of image segmentation applications

[18,20]. The GLCM is a second-order statistical

measurement; second-order statistics take into account

the relationship between groups of two (usually

neighboring) pixels in the original image. In contrast,

first-order statistics, (e.g., mean and variance), do not

consider any neighborhood associations. The process

by which the GLCM is computed is outlined as follows
1. The GLCM computation utilizes the relation

between two pixels at a time; one is called

the reference and the other the neighbor pixel.

2. A displacement vector d, as specified as

, (- distance in horizontal direction)

 (- distance in vertical direction)

x y x

y

d d d d

d

=< >

 is selected and determines the relationship

between the pixels in the image. Utilizing

only neighboring pixels (d = 1) is the most

commonly used distance measurement and is
also the one utilized in this system.

3. There are 8 possible relationships (i.e.,

displacement vectors) that can be formed

between neighboring pixels (directions

between neighboring pixels are shown in

parenthesis –the first component refers to the

horizontal displacement, whereas the second

parameter refers to the vertical displacement):

< 1,0> (0)

< 0,1> (90)

<-1,0> (180)
< 0,-1> (270)

< 1, 1> (45)

<1,-1> (315)

<-1, 1> (135)

<-1,-1> (225)

4. A displacement vectors d is chosen for each

co-occurrence matrix calculation [4,11]. All

occurrences of gray levels i and j of two

pixels separated by displacement vector d are

accumulated. For instance, if i = 0, and j = 0,

and the displacement vector is <1,0>, the

calculation is performed by accumulating the
frequency on the selected image region that a

pixel with gray level 0 (neighbor pixel) falls

to the right of another pixel with gray level 0

(reference pixel). The GLCM is a very

compact and optimal measurement. An

example illustrating a complete GLCM

calculation, consider the following 4x4 image

with pixel values shown in Fig. 2:

0 0 1 1

0 0 1 1

0 2 2 2
2 2 3 3

Fig. 2 Example 4x4 Image Gray-Levels

|| - || > max|| - || +pcn pciµ µ ασ

N Colors in Previous Frame’s Cluster

qc – Quantized Color

 µ max ||µ - pci||

pcn ||pcn – pcp||

Figure 1. Color Matching

For example, if the East displacement vector is chosen

(i.e., <1,0>), each image pixel is selected in turn as a

reference pixel. The pixel immediately to its right is

then chosen as the neighbor pixel. The occurrences of

these two pixels together are then accumulated. In this

example, 0-0 occurs twice, 1-1 occurs twice and so on.
The entire co-occurrence matrix for the image in Fig. 2

and the <1,0> displacement vector is shown in Fig. 3.

0 1 2 3

0 2 2 1 0

1 0 2 0 0

2 0 0 3 1

3 0 0 0 1

 Fig. 3 GLCM Computed for Fig. 2

 Both the rows/columns pertain to a discrete gray-level

0,1,2, or 3. Note that the co-occurrence matrix is

square and its dimensions are always determined by

the number of gray-levels (i.e., for this system number

of quantized colors) of the image [6,13]. The GLCM

dimensions are CxC where C is the largest gray-scale
value, or number of quantized colors.

4. Image Segmentation Algorithm

This system uses the mean of the GLCM as a key

feature in its image segmentation algorithm (see

section 4.) and the mean of the GLCM and its

magnitude is given below as [12]:

1 1

()
C C

i j

i iji Pµ
= =

=∑∑ (3)

1 1

()
C C

i j

j ijj Pµ
= =

=∑∑ (4)

2 2
|| || i jµ µ µ= + (5)

Where µi is the horizontal mean, i is a given row value,

Pij is an element of the GLCM, µj is the vertical mean,

j is a given column value, ||µ|| is the mean’s magnitude,

and N is the size of the sliding window used in

computing the GLCM mean. The two values, µi and µj

are equal because of the GLCM’s symmetry [7].

Plotting the magnitude of the GLCM’s mean as a 2-d

image is shown below in Figure 5:

Fig. 4. GLCM Mean Feature

The mean textured image is very smooth and

almost all micro-textures have been removed [8]. The

individual region interiors possess consistent gray-

scales throughout this image; therefore the region

boundaries can be identified from a basic edge

detection filter. An NxN filter computing the variance
as is selected as the edge detection filter and is

convolved with the mean textured image resulting in

an edge intensity image. In equation (4) above, µ is the

average grayscale within the NxN region and gij is the

gray-scale at the ith row, jth column of the GLCM

mean. A plot of the edge image generated as a result

of applying the above filter is shown below in Figure

5.

Fig. 5. Image Segmentation Results

The highlighted regions provide an initial set of

objects.

5. Region Merging Algorithm

The objects created from the image segmentation

of section 3 are occasionally over-segmented thus

requiring an additional step to merge similar objects

together [10,16]. A step that merges smaller regions

with the larger, adjacent region is needed to provide

optimal object segmentation. The region merging

algorithm introduced in this section demonstrates that

small color samples extracted near the boundaries of

adjacent regions provide an excellent criteria for
merging the areas. The algorithm utilized in this

system relies on the dominant (quantized) colors when

comparing adjacent regions. Therefore, the adjacent

regions are merged based on how similar their colors

are to the largest region. The example shown below is

for a standard image. The algorithm is summarized as:

1. The regions created by the image segmentation

are extracted. The regions (and their

corresponding labels) as well as their contours

overlaid onto the original color frame are shown in

Figure 3.

2. All neighboring segments for each region are

determined and only those neighboring segments

that are larger are considered as merging

candidates. The main concept is that smaller

regions are only merged with larger, bordering

regions. For example, region 12 has larger

neighboring segments 5,11,16 and 17, whereas

region 17 has larger adjacent segment region 5.

3. Each region’s quantized colors are then compared

with the quantized colors of each of its larger,

neighboring segments. The smaller region will be

merged with the larger one if their quantized
colors are sufficiently close [5]. The steps

utilized in this process are outlined as follows:

a. A windowed area running the length of the

adjacent boundary between neighboring

objects is selected for each region. Each area

provides a representative sample of the

quantized colors for the object. Colors

selected at their adjacent boundary provide

the best measurement on whether the objects

should be merged, thus minimizing the

effects from outlying colors. The sampled

regions usually have a maximum width of 5
pixels and are parallel to the entire length of

the boundary. Additional points are selected

when the sampled regions consist of 25

pixels or less. Examples of these sampled

regions are shown in Figure 6 for selected

neighboring objects.

Fig. 6. Selected Regions

b. Each quantized color (i.e., discrete label) and

its corresponding concentration (measured in
percentage) are extracted from each sampled

area within each region. Only those quantized

colors with a concentration greater than 5%

are considered.

c. If the majority of the quantized colors of the

smaller region match those of the larger

region, the larger region is then selected as a

candidate for merging with the smaller one.

4. Step 3 is repeated for all larger neighboring

objects and all candidates for merging with the

smaller objects are maintained [2].
5. The candidate which best matches the smaller

object’s quantized color concentration is then

selected as the best matching region for merging.

The smaller region is then marked for merging

with the larger region – but the actual object

merging is not done at this time.

6. Steps 1 – 5 are repeated for all remaining objects.

7. All smaller objects previously marked for merging

are then merged with their best matching

neighboring objects.

The results of this algorithm as applied to the

original segmentation, Figure 3, is shown in Figure 5.

Fig. 7 Region Merging Results

6. Results

The image segmentation algorithm described in

this work was implemented as an App on Apple’s iPad

iOS 7.1 platform using XCode and Objective-C.

Testing the App was performed using a series of

standard test images added to the iPad’s camera roll

[9]. The test pictures consisted of popular images

extracted from three different categories – Happy

Granny, Foreman, and Tennis. Examples of these test

images are shown below:

Fig. 8. Test Images

The author’s algorithm was compared with 2 other

popular image segmentation algorithm commonly

referenced in the literature. The first of these was the

JSEG [1] algorithm developed by researchers at UCSB

while the second algorithm is implemented as part of

the OpenCV [3] library, a popular image processing

library implemented by Intel. The algorithms utilize

both color and texture when segmenting images. The

algorithms were compared based on their speed in

milliseconds required to process each of the test

images on the iPad device. A table showing the results

of these comparisons is shown below in Table I:

Table 1

Algorithm Happy

Granny

Foreman Tennis

Author’s 875 1478 583

JSEG 923 1367 1033

OpenCV 2154 3382 1932

As observed from the table, the results of the

author’s algorithm appear to be very promising. The

algorithm described in this work could provide the

substrate layer needed for many apps implemented on

the iOS platform requiring a captured image segmented

into realistic objects. The applications for this type of
algorithm is numerous, especially when segmentation

of specific regions such as barcodes or printed text is

required.

Future work for this system include enhancing

various apps (e.g., barcode, text) with the image

segmentation algorithm described in this work thus

providing them with the efficient object segmentation

capabilities often only currently found in high-end

desk-top applications

:

7. References

[1] Y. Deng and B. S. Manjunath, “Unsupervised
segmentation of color-texture regions in images and
video,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 22, no. 6, pp. 939-954, 2001.

[2] Air Pressure: Why IT Must Sort Out App Mobilization
Challenges". InformationWeek. 5 December 2009.

[3] E. D. Gelasca, E. Salvador and T. Ebrahimi, “Intuitive

strategy for parameter setting in video segmentation,”
Proc. IEEE Workshop on Video Analysis, pp.221-225,
2000.

[4] MPEG-4 , “Testing and evaluation procedures
document”, ISO/TEC JTC1/SC29/WG11, N999, (July
1995).

[5] R. Mech and M. Wollborn, “A noise robust method for

segmentation of moving objects in video sequences,”
ICASSP ’97 Proceedings, pp. 2657 – 2660, 1997.

 [6] T. Aach, A Kaup, and R. Mester, “Statistical model-

based change detection in moving video,” IEEE Trans.

on Signal Processing, vol. 31, no 2, pp. 165-180,

March 1993.

[7] L. Chiariglione-Convenor, technical specification

MPEG-1 ISO/IEC JTC1/SC29/WG11 NMPEG 96, pp.
34-82, June, 1996.

[8] MPEG-7, ISO/IEC JTC1/SC29/WG211, N2207,

Context and objectives, (March 1998).

 [9] P. Deitel ,iPhone Programming, Prentice

 Hall, pp. 190-194, 2009.

[10] C. Zhan, X. Duan, S. Xu., Z. Song, M. Luo, “An
Improved Moving Object Detection Algorithm Based
on Frame Difference and Edge Detection,” 4th
International Conference on Image and Graphics
(ICIG), 2007.

[11] R. Cucchiara, C. Grana, M. Piccardi, Member and A.

Prati, “Detecting Moving Objects, Ghosts, and
Shadows in Video Streams,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 25, no.
10, pp. 1337-1342, October, 2003.

[12] F. Rothganger, S. Lazebnik, C. Schmid and J. Ponce,

“Segmenting, Modeling, and Matching Video Clips
Containing Multiple Moving Objects,” IEEE
Transactions on Pattern Analysis and Machine
Intelligence, vol. 29, no.3, pp. 477-491, March 2007.

[13] Neil Day, Jose M. Martinez, “Introduction to MPEG-

7”, ISO/IEC/SC29/WG11 N4325, July, 2001.

[14] M. Ghanbari, Video Coding an Introduction to standard
codecs, Institution of Electrical Engineers (IEE), 1999,
pp. 87- 116.

[15] L. Davis, “An Empirical Evaluation of Generalized

Cooccurrence Matrices,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol 2, pp. 214-221, 1981.

[16] R. Gonzalez, Digital Image Processing, Prentice Hall,
2nd edition, pp. 326-327, 2002

[17] K. Castelman,Digital Image Processing, Prentice Hall,

pp. 452-454, 1996.

[18] L. S. Davis and S. Johns, “Texture analysis using

generalized co-occurrence matrices, “ IEEE

Trans. Pattern Analysis and Machine Intelligence,

vol 3, pp. 251-259, 1979.

[19] L. S. Davis, “An Empirical Evaluation of

Generalized Cooccurrence Matrices,” IEEE

Trans. Pattern Analysis and Machine Intelligence,

vol. 2, pp. 214-221, 1981.

[20] J. Haddon and J. Boyce, "Image segmentation by

unifying region and boundary information," IEEE

Transactions on Pattern Analysis and Machine

Intelligence, vol. 12, October 1990.

