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Abstract 
 

An efficient image segmentation algorithm utilized for 

mobile applications running on the iPhone’s iOS 

platform is presented. Mobile devices such as the 

iPhone have limited CPU and memory resources, thus 

presenting a more challenging task when implementing 

complex algorithms such as image segmentation. The 

image segmentation utilized in this work splits the 

image into real-world objects that are numbered for 

the user to either select for further processing. First, a 

color quantization algorithm is applied to the entire 

image thus simplifying the image to only 16 available 

colors. Next, a fast texture measurement utilizing the 

co-occurrence matrix is applied to entire image using 

a pre-selected neighborhood of interest.  Multiple 

regions are then automatically merged based on a 

color comparison measurement extracted at each 

object’s boundary.  The resulting regions are then 

displayed to the user for further analysis or selection. 

The primary usage of this algorithm is within other 

mobile apps that require the segmentation of images 

into realistic objects. Examples of these apps would be 

those that read bar codes, QVC codes, or OCR text 

regions. Results are shown for numerous standard 

image samples and compared with other image 

segmentation algorithms. 

. 

 

 

1. Introduction 
 

The interest in mobile devices has exploded in 

recent years, especially the usage of the Apple’s 

iPhone and iPad. These devices allow users to capture 

pictures and live video instantaneously while 

processing these images in real-time by an App. The 
App described in this paper is used for segmenting the 

image into real-world objects that can be used for 

further processing. In other words, this App could 

provide a foundation for other Apps that require an 

image (or even a video) segmented into realistic 

objects for further analysis.  The image segmentation 
algorithm described in this work very efficiently 

processes the image thus minimizing the limited CPU 

and memory requirements. A novel image 

segmentation algorithm implemented in this app 

consists of the following steps: 

• Color Quantization to 16 colors 

• Fast Texture measurement extracted from the Co-

Occurrence Matrix 

• Adjacent regions are merged based on a dominant 

color matching. Algorithm. 

• The resulting segmentation provides a realistic set 
of objects   

The following sections outline each of these steps 

found in the process discussed in this work as well as a 

results section comparing this algorithm with other 

comparable systems. 

 

2.  Color Quantization and Color Matching 
 

There are tens of thousands of unique colors in a 

given image and perhaps millions of unique colors 

across several pictures of a video sequence.  The 

quantization of all possible colors to only a few levels 

is an important simplification step, since the 

comparison so many different color possibilities prove 

difficult when identifying the optimal foundation color 
to be applied to a region. The image undergoes a 

standard k-means clustering algorithm [9,17] and 16 

quantized colors are extracted from this initial object.  

The motivation behind using 16 colors is because it has 

been found that most realistic regions can be 

represented by this many discrete labels - thus shading, 

textured regions, etc can be modeled most accurately 

this way. Before clustering, the original RGB pixel 

colors are converted to the CIE- L*a*b* color space 

which has been shown to be perceptually uniform and 

therefore preserve more accurate distances than the 

RGB color space, thus providing superior results [14].  
The clustering results on the CIE-L*a*b* colors are 

then converted back to the RGB colors, the main 

feature used in this system. 



The quantized colors in the regions are then 

compared with the actual colors in the other regions. 

The colors will be classified in one of two ways: 

1. An existing color found in the largest possible 

region. 

2. A new color not found in the region. 
The symbol pcn will be used to represent the 

actual color in an additional region whereas pcp 

represents the corresponding matching color in the 

largest region. A new color is identified in the 

additional regions by (1) as 

 

  (1) 
where µ is the mean of the cluster that pcp belongs to, 

pci is the ith color belonging to this cluster with i =1, 

2,….N, and N is the total number of colors grouped 

with the cluster.  σ is the standard deviation of the 

distances computed between µ and the colors in its 

cluster and is given by 
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and α is a scaling factor.  We have found that α equal 

to 2 works well for the application considered in this 

work. This color-matching step is illustrated in Fig. 1. 

 

In the example shown in Fig. 1, pcn is classified as a 

new color. 
  

3. Co-Occurrence Texture Measurement 
 
The Gray-Level Co-occurrence Matrix (GLCM) is one 

of the most popular statistical texture measurements 

[15,19] and has been used as the primary component in 

a wide range of image segmentation applications 

[18,20]. The GLCM is a second-order statistical 

measurement; second-order statistics take into account 

the relationship between groups of two (usually 

neighboring) pixels in the original image.  In contrast, 

first-order statistics, (e.g., mean and variance), do not 

consider any neighborhood associations. The process 

by which the GLCM is computed is outlined as follows 
1. The GLCM computation utilizes the relation 

between two pixels at a time; one is called 

the reference and the other the neighbor pixel. 

2. A displacement vector d, as specified as  
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 is selected and determines the relationship 

between the pixels in the image. Utilizing 

only neighboring pixels (d = 1) is the most 

commonly used distance measurement and is 
also the one utilized in this system. 

3. There are 8 possible relationships (i.e., 

displacement vectors) that can be formed 

between neighboring pixels (directions 

between neighboring pixels are shown in 

parenthesis –the first component refers to the 

horizontal displacement, whereas the second 

parameter refers to the vertical displacement): 

< 1,0>    (0) 

< 0,1>    (90) 

<-1,0>   (180) 
< 0,-1>   (270) 

< 1, 1>   (45) 

<1,-1>    (315) 

<-1, 1>   (135) 

<-1,-1>   (225) 

4. A displacement vectors d is chosen for each 

co-occurrence matrix calculation [4,11].  All 

occurrences of gray levels i and j of two 

pixels separated by displacement vector d are 

accumulated.  For instance, if i = 0, and j = 0, 

and the displacement vector is <1,0>, the 

calculation is performed by accumulating the 
frequency on the selected image region that a 

pixel with gray level 0 (neighbor pixel) falls 

to the right of another pixel with gray level 0 

(reference pixel).  The GLCM is a very 

compact  and optimal measurement. An 

example illustrating a complete GLCM 

calculation, consider the following 4x4 image 

with pixel values shown in Fig. 2:   

0 0 1 1 

0 0 1 1 

0 2 2 2 
2 2 3 3 

Fig. 2  Example 4x4 Image Gray-Levels 

|| - || > max|| - || +pcn pciµ µ ασ

N  Colors in Previous Frame’s Cluster 

qc – Quantized Color 

   µ max ||µ - pci||   

pcn ||pcn – pcp||   

Figure  1.  Color Matching 



For example, if the East displacement vector is chosen 

(i.e., <1,0>),  each image pixel is selected in turn as a 

reference pixel.  The pixel immediately to its right is 

then chosen as the neighbor pixel.  The occurrences of 

these two pixels together are then accumulated.  In this 

example, 0-0 occurs twice, 1-1 occurs twice and so on.  
The entire co-occurrence matrix for the image in Fig. 2 

and  the <1,0> displacement vector is shown in Fig. 3. 

0 1 2 3 

0 2 2 1 0 

1 0 2 0 0 

2 0 0 3 1 

3 0 0 0 1 

               Fig. 3  GLCM Computed for Fig. 2 

 Both the rows/columns pertain to a discrete gray-level 

0,1,2, or 3.  Note that the co-occurrence matrix is 

square and its dimensions are always determined by 

the number of gray-levels (i.e., for this system number 

of quantized colors) of the image [6,13].  The GLCM 

dimensions are CxC where C is the largest gray-scale 
value, or number of quantized colors. 

 
 

4.  Image Segmentation Algorithm 
 

This system uses the mean of the GLCM as a key 

feature in its image segmentation algorithm (see 

section 4.) and the mean of the GLCM and its 

magnitude is given below as [12]: 
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Where µi is the horizontal mean, i is a given row value, 

Pij is an element of the GLCM, µj is the vertical mean, 

j is a given column value, ||µ|| is the mean’s magnitude, 

and N is the size of the sliding window used in 

computing the GLCM mean. The two values, µi and µj 

are equal because of the GLCM’s symmetry [7]. 

Plotting the magnitude of the GLCM’s mean as a 2-d 

image is shown below in Figure 5: 

  
Fig. 4.  GLCM Mean Feature 

The mean textured image is very smooth and 

almost all micro-textures have been removed [8].  The 

individual region interiors possess consistent gray-

scales throughout this image; therefore the region 

boundaries can be identified from a basic edge 

detection filter. An NxN filter computing the variance 
as is selected as the edge detection filter and is 

convolved with the mean textured image resulting in 

an edge intensity image. In equation (4) above, µ is the 

average grayscale within the NxN region and gij is the 

gray-scale at the ith row, jth column of the GLCM 

mean.  A plot of the edge image generated as a result 

of applying the above filter is shown below in Figure 

5.  

  
Fig. 5. Image Segmentation Results 

The highlighted regions provide an initial set of 

objects. 
 
 

5. Region Merging Algorithm 
 

The objects created from the image segmentation 

of section 3 are occasionally over-segmented thus 

requiring an additional step to merge similar objects 

together [10,16].  A step that merges smaller regions 

with the larger, adjacent region is needed to provide 

optimal object segmentation.  The region merging 

algorithm introduced in this section demonstrates that 

small color samples extracted near the boundaries of 

adjacent regions provide an excellent criteria for 
merging the areas.  The algorithm utilized in this 

system relies on the dominant (quantized) colors when 

comparing adjacent regions.  Therefore, the adjacent 

regions are merged based on how similar their colors 

are to the largest region. The example shown below is 

for a standard image. The algorithm is summarized as: 

1.  The regions created by the image segmentation 

are extracted.  The regions (and their 

corresponding labels) as well as their contours 

overlaid onto the original color frame are shown in 

Figure 3. 
 

2. All neighboring segments for each region are 

determined and only those neighboring segments 

that are larger are considered as merging 

candidates.  The main concept is that smaller 

regions are only merged with larger, bordering 

regions.  For example, region 12 has larger 



neighboring segments 5,11,16 and 17, whereas 

region 17 has larger adjacent segment region 5.  

3. Each region’s quantized colors are then compared 

with the quantized colors of each of its larger, 

neighboring segments.  The smaller region will be 

merged with the larger one if their quantized 
colors are sufficiently close [5].  The steps 

utilized in this process are outlined as follows: 

a. A windowed area running the length of the 

adjacent boundary between neighboring 

objects is selected for each region.  Each area 

provides a representative sample of the 

quantized colors for the object.  Colors 

selected at their adjacent boundary provide 

the best measurement on whether the objects 

should be merged, thus minimizing the 

effects from outlying colors.  The sampled 

regions usually have a maximum width of 5 
pixels and are parallel to the entire length of 

the boundary.  Additional points are selected 

when the sampled regions consist of 25 

pixels or less.  Examples of these sampled 

regions are shown in Figure 6 for selected 

neighboring objects. 

  

  
Fig. 6. Selected Regions 

 

b. Each quantized color (i.e., discrete label) and 

its corresponding concentration  (measured in 
percentage) are extracted from each sampled 

area within each region. Only those quantized 

colors with a concentration greater than 5% 

are considered. 

c. If the majority of the quantized colors of the 

smaller region match those of the larger 

region, the larger region is then selected as a 

candidate for merging with the smaller one. 

4. Step 3 is repeated for all larger neighboring 

objects and all candidates for merging with the 

smaller objects are maintained [2]. 
5. The candidate which best matches the smaller 

object’s quantized color concentration is then 

selected as the best matching region for merging.  

The smaller region is then marked for merging 

with the larger region – but the actual object 

merging is not done at this time. 

6. Steps 1 – 5 are repeated for all remaining objects. 

7. All smaller objects previously marked for merging 

are then merged with their best matching 

neighboring objects. 

The results of this algorithm as applied to the 

original segmentation, Figure 3, is shown in Figure 5. 

 

  
Fig. 7 Region Merging Results 

 
 

6.  Results 
 

The image segmentation algorithm described in 

this work was implemented as an App on Apple’s iPad 

iOS 7.1 platform using XCode and Objective-C. 

Testing the App was performed using a series of 

standard test images added to the iPad’s camera roll 

[9]. The test pictures consisted of popular images 

extracted from three different categories – Happy 

Granny, Foreman, and Tennis. Examples of these test 

images are shown below: 

Fig. 8. Test Images 
 

The author’s algorithm was compared with 2 other 

popular image segmentation algorithm commonly 

referenced in the literature. The first of these was the 

JSEG [1] algorithm developed by researchers at UCSB 

while the second algorithm is implemented as part of 

the OpenCV [3] library, a popular image processing 

library implemented by Intel. The algorithms utilize 

both color and texture when segmenting images. The 

algorithms were compared based on their speed in 

milliseconds required to process each of the test 

images on the iPad device.  A table showing the results 

of these comparisons is shown below in Table I: 

Table 1 

Algorithm Happy 

Granny 

Foreman Tennis 

Author’s  875 1478 583 

JSEG 923 1367 1033 

OpenCV 2154 3382 1932 



As observed from the table, the results of the 

author’s algorithm appear to be very promising. The 

algorithm described in this work could provide the 

substrate layer needed for many apps implemented on 

the iOS platform requiring a captured image segmented 

into realistic objects. The applications for this type of 
algorithm is numerous, especially when segmentation 

of specific regions such as barcodes or printed text is 

required. 

Future work for this system include enhancing 

various apps (e.g., barcode, text) with the image 

segmentation algorithm described in this work thus 

providing them with the efficient object segmentation 

capabilities often only currently found in high-end 

desk-top applications 

: 
 

7.  References 
 
 

[1] Y. Deng and B. S. Manjunath, “Unsupervised 
segmentation of color-texture regions in images and 
video,” IEEE Trans. on Pattern Analysis and Machine 
Intelligence, vol. 22, no. 6, pp. 939-954, 2001. 

 

[2]   Air Pressure: Why IT Must Sort Out App Mobilization 
Challenges". InformationWeek. 5 December 2009. 

 
[3]  E. D. Gelasca, E. Salvador and T. Ebrahimi, “Intuitive 

strategy for parameter setting in video segmentation,”  
Proc. IEEE Workshop on Video Analysis, pp.221-225, 
2000. 

 

[4] MPEG-4 , “Testing and evaluation procedures 
document”, ISO/TEC JTC1/SC29/WG11, N999, (July 
1995). 

 

[5] R. Mech and M. Wollborn, “A noise robust method for 

segmentation of moving objects in video sequences,” 
ICASSP ’97 Proceedings, pp. 2657 – 2660, 1997. 

 

 [6] T. Aach, A Kaup,  and R.  Mester, “Statistical model-

based change detection in moving video,”  IEEE Trans. 

on Signal Processing, vol. 31, no 2,  pp. 165-180, 

March 1993. 
 

[7] L. Chiariglione-Convenor, technical specification 

MPEG-1 ISO/IEC JTC1/SC29/WG11 NMPEG 96,  pp. 
34-82, June, 1996. 

 

[8]    MPEG-7, ISO/IEC JTC1/SC29/WG211, N2207, 

Context and objectives, (March 1998). 
 

    [9]   P. Deitel ,iPhone Programming, Prentice   

            Hall,  pp. 190-194, 2009. 
 

[10] C. Zhan, X. Duan, S. Xu., Z. Song, M. Luo, “An 
Improved Moving Object Detection Algorithm Based 
on Frame Difference and Edge Detection,” 4th 
International Conference on Image and Graphics 
(ICIG),  2007. 

 
[11] R. Cucchiara, C. Grana, M. Piccardi, Member and A. 

Prati, “Detecting Moving Objects, Ghosts, and 
Shadows in Video Streams,”  IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol. 25, no. 
10, pp. 1337-1342, October, 2003. 

 
[12]   F. Rothganger, S. Lazebnik, C. Schmid and J. Ponce, 

“Segmenting, Modeling, and Matching Video Clips 
Containing Multiple Moving Objects,” IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence,  vol. 29, no.3,  pp.  477-491, March 2007. 

 
[13]  Neil Day, Jose M. Martinez, “Introduction to MPEG-

7”, ISO/IEC/SC29/WG11 N4325, July, 2001. 
 

[14] M. Ghanbari, Video Coding an Introduction to standard 
codecs,  Institution of Electrical Engineers (IEE),  1999, 
pp. 87- 116. 

 
[15] L. Davis, “An Empirical Evaluation of Generalized 

Cooccurrence Matrices,” IEEE Trans. Pattern Analysis 
and Machine Intelligence, vol 2, pp. 214-221, 1981.  

 

[16] R. Gonzalez, Digital Image Processing, Prentice Hall, 
2nd edition, pp. 326-327, 2002 

 
[17] K. Castelman,Digital Image Processing, Prentice Hall,  

pp. 452-454, 1996. 

 

[18] L. S. Davis and S. Johns, “Texture analysis using 

generalized co-occurrence matrices, “ IEEE 

Trans. Pattern Analysis and Machine Intelligence, 

vol 3, pp. 251-259, 1979. 

 

[19] L. S. Davis, “An Empirical Evaluation of 

Generalized Cooccurrence Matrices,” IEEE 

Trans. Pattern Analysis and Machine Intelligence, 

vol. 2, pp. 214-221, 1981. 

 

[20]   J. Haddon and J. Boyce, "Image segmentation by 

unifying region and boundary information," IEEE 

Transactions on  Pattern Analysis and Machine 

Intelligence, vol. 12,  October 1990. 

 


