
Access Point Reconfiguration Using OpenWrt

Dalton M. Tavares1, Maicon J. Lima1, Rafael V. Aroca2,
Glauco A. P. Caurin3, Antônio Carlos de Oliveira Jr1,

Tércio A. Santos Filho1, Stella J. Bachega4,
Marcos A. Batista1, and Sérgio F. da Silva1

1Computer Science Department, Federal University of Goiás, Catalão, Goiás, Brazil
2Mechanical Engineering Department / Federal University of São Carlos, São Carlos, São Paulo, Brazil

3Mechanical Engineering Department / University of São Paulo, São Carlos, São Paulo, Brazil
4Production Engineering Department / Federal University of Goiás, Catalão, Goiás, Brazil

Abstract— The research project Mobile mEsh Network to
Aid in CountEring drug TRAffiCKing (M.E.N.A.C.E-TRACK)
proposes the creation of a dynamic mesh network, intended
to interconnect field personnel to a base of operations
whenever possible. This type of network accepts the dynamic
disconnection and reconnection of nodes. To configure a
mesh node using, for instance, an access point, usually a
modified firmware is needed. In this paper we present the
first steps to build the M.E.N.A.C.E-TRACK infrastructure
concerning the configuration of the access point, the chosen
firmware and some configuration scenarios on an infra-
structured network in order to demonstrate its flexibility.

Keywords: Mesh Network, Ad hoc, OpenWrt

1. Introduction
The research project Mobile mEsh Network to Aid in

CountEring drug TRAffiCKing (M.E.N.A.C.E-TRACK) pro-
poses the creation of a dynamic mesh network, intended to
interconnect field personnel (e.g. in vehicles or on foot) to a
base of operations (e.g. a police station) whenever possible.
This type of network accepts the dynamic disconnection and
reconnection of a node or group of nodes leaving or returning
to the main base network range. The use of day to day low
cost and off the shelf devices, like access points, notebooks
or smartphones and open source software is one of the main
attractors to our approach.

To configure a mesh node using, for instance, a wireless
router, usually a modified firmware is needed. This firmware
allows the creation of a dynamic route between the base
station (the one that have the Internet connection and access
to the main systems) and the client nodes in a mesh
environment. The dynamic route can be stablished directly
between the base station and mesh nodes, or using each
mesh node as a “bridge” (in-between nodes) to amplify the
range of the original access point. Therefore, each mesh node
receives a data connection from a given node and conveys
data to the next node, extending the range of communication
for each passing node [1].

The steps to build the M.E.N.A.C.E-TRACK infrastruc-
ture involve the definition of the devices that can be used as
nodes, the choice of the operating system for such devices
and the selection of the best routing protocol(s) to provide
routing adjustments considering mobile nodes with varying
ranges. The chosen devices are off the shelf with the ability
to use wireless communication, i.e. IEEE 802.11 b/g/n, and
the TCP/IP protocol suite. Specifically, we will cover the
adaptation of access points (APs) so they can be used as
mesh nodes in the future. This procedure addresses the
selection of a firmware, preferably open source, which is
flexible enough to be modified according to the choice of
the wireless environment to be implemented (e.g. infra-
structured or ad hoc network).

2. Infra-structured versus Ad hoc net-
works

An IEEE 802.11 W-LAN can be implemented either with
infrastructure or without infrastructure (i.e. ad hoc). In an
infrastructure based network, there is a centralized controller
for each cell. This cell represents the fundamental building
block of the 802.11 architecture, known as the basic service
set (BSS). A BSS typically contains one or more wireless
stations and a central base station, known as access point
(AP). The wireless stations, which may be either fixed or
mobile, and the central base station communicate among
themselves using the IEEE 802.11 wireless MAC protocol.
Multiple APs may be connected together (e.g. using a wired
Ethernet or another wireless channel) to form a distribution
system (DS). The DS appears to upper-level protocols (e.g.
IP) as a single 802.11 network, in much the same way that
a bridged wired 802.3 Ethernet network appears as a single
network to the upper-layer protocols. We can use the same
analogy considering that an AP, which is normally connected
to a wireline backbone (either wired or wireless) is also
considered a DS, thus providing Internet access to mobile
devices. All traffic goes through the AP, even when this is
sent to a destination that belongs to the same cell [2], [3].

In an ad hoc network there is no central control with

connections to the Internet. Here, the network is a temporary
arrangement as and when required. The benefit is that no
infrastructure is needed and the users themselves may extend
the area of coverage. Hence, mobile devices that have found
themselves in proximity to each other, that have a need to
communicate and find no pre-existing network infrastructure
in the location (e.g. a pre-existing 802.11 BSS with an AP)
may communicate using each other as the current medium
[2], [4].

The focus of this paper will reside in extending the range
of an infra-structured network using multiple APs. The main
objective to be accomplish with this course of action is
to gain the necessary expertise concerning the firmware
operation and configuration, which will be invaluable in
future experiments involving mesh networks.

2.1 OpenWrt Features
OpenWrt is described as a GNU/Linux distribution for

embedded devices, which provides a fully writable filesys-
tem with package management. In that sense, by definition,
it is not strictly a firmware but a complete and modifiable
operating system. This frees the developer from the static
application profile provided by a vendor and allows the
customization of the device through the use of packages that
suit any particular need [5].

Compared to other distributions OpenWrt may also not
be regarded as a true end-user or user friendly firmware.
Nevertheless, it can be used as such sometimes, depending
on the feature set provided in addition to the main package
[5]. Therefore, OpenWrt was chosen as our base architecture
to implement M.E.N.A.C.E-TRACK. Section 3 presents a
set of experiments devised to study OpenWrt flexibility
regarding a simple research question: how can I extend the
range of an infra-structured IEEE 802.11 wireless network?

3. Experimental Testbed
We chose as our experimental testbed a TP-LINK TL-

WDR 4300 router. According to [6] this router provides a
simultaneous dual band (concurrent 2.4 GHz and 5 GHz)
and is advertised as 750 Mbps in dual-stream mode on the
2.4 GHz band, and triple-stream on the 5 GHz band. It’s
hardware can be summarized as an Atheros AR9344 CPU
operating at 560MHz, 8MB internal flash, 128 MB RAM,
4 Gigabit Ethernet ports, 1 Gigabit Ethernet WAN port, 2
USB 2.0 ports, Serial and JTag interfaces and support up to
12 VLANs.

To simplify the presentation of the experimental results,
we organized this section to discuss the device preparation
(section 3.1) and the case studies involving the two APs so
they can expand the indoor range of the Wi-Fi connection
shared by a desktop computer (section 3.2). The experimen-
tal testbed is presented in Figure 1.

Fig. 1: Proposed testbed for the case study.

3.1 Preparing the AP Devices
The first steps taken to install OpenWrt on the TP-LINK

TL-WDR 4300 router are described at [7]. They involve
consulting the Buyers’ Guide [8], and verifying how much
a given router is compatible with OpenWrt using the table
of hardware [9].

The first installation of the OpenWrt firmware is done
using the original web interface of the TP-LINK firmware.
It is performed just like a flash update of some new version
of the original TP-LINK firmware. According to [6], it is rec-
ommended to turn off the Wi-Fi interfaces manually (there is
a switch behind the device to disable them). Therefore, at the
first boot, we will not have any wireless interface enabled by
default. The first login test is done using an Ethernet cable
plugged into any Ethernet port (not the WAN port). The
computer interface must be set to any address in the range
192.168.1.0/24, exception made to 192.168.1.1, which is the
default address of the OpenWrt interface [10].

After the first connection it is recommended to setup the
root password (the only account). After the password is set,
the telnet daemon is disabled and all future accesses are
done using the ssh service [10]. Considering our testbed
is essentially experimental and is intended to test multiple
mesh routing protocols, implying in a frequent change in its
configuration files, we still did not consider the procedures
described at [11] for network and system hardening.

3.1.1 USB Storage
Considering the size of the internal flash memory (8 MB),

it is recommended to increase this size as soon as possible.
After the base installation, we have up to 4 MB available,
which runs out relatively fast depending on the number of
packages the administrator chooses to install. Fortunately,
OpenWrt allows the extension of this available size by means
of an overlay file system. This means we can extend the
root file system (stored at the internal flash memory) to an
external storage (stored in a USB stick) [12].

This configuration is called pivot overlay on version
12.09 of OpenWrt. To ensure pivot overlay will work,
it is recommended some packages are installed for
the correct USB support and mounting of the external
device (i.e. kmod-usb-core, kmod-usb-ohci,
kmod-usb-storage, kmod-usb-uhci, kmod-
usb2, libusb-1.0, usbutils,
kmod-fs-ext4, e2fsprogs) [13].

Support to pivot overlay is granted by the package
block-mount. This package allows the mounting of all
block devices by just calling the commands block mount
and block umount [14]. To create the pivot overlay on
the external USB device, one can either use an empty new
rootfs or copy the contents of the current overlay (JFFS2)
to the new rootfs. Assuming the filesystem for the new
external rootfs is mounted, for example on /mnt/sda1,
one could issue tar -C /overlay -cvf - . | tar
-C /mnt/sda1 -xf - [12].

Considering the load of the overlay file system
at boot time, it is necessary to create the file
/etc/config/fstab. This can be done by simply
issuing block detect > /etc/config/fstab
[15]. After enabling the pivot overlay at boot time, we must
ensure the external file system is being mounted correctly.
Special attention to the target and device options. If after a
system reboot a command mount /mnt issues no error,
than everything is correct. The last remaining step is to
change option target /mnt to option target
/overlay and in the next boot, the file system size will
be the size of the USB stick plugged in the USB port
(minus the space already in use).

3.2 Case Studies
Our experimental case study considers the range extension

of a connection shared by a desktop computer (SSID =
Nickel) to a notebook. When in an indoor environment in the
first floor of a building, we found it would not go further than
approximately 10 m. The next step was to establish a simple
connection to the two APs as client/server and the connection
of a notebook on their respective SSIDs (i.e. Nickel ↔ Lo1
↔ Lo2 – the notebook can access either of the SSIDs). As
each antennae has its own frequency (2.4 GHz and 5 GHz)
we had to match them as illustrated on Figure 1. In OpenWrt,
this configuration is done at /etc/config/wireless
(Listing 1).

Listing 1: Excerpt from /etc/config/wireless.
...
config wifi-device radio0

option hwmode 11ng ←
...
#radio0 is connected to the Desktop
config wifi-iface

option device radio0
option mode sta
option ssid ’Nickel’

option encryption psk2
option key password
option network wwan

...
config wifi-device radio1

option hwmode 11na ←
...
config wifi-iface

option device radio1
option network lan
option mode ap
option ssid Lo1
option encryption psk2
option key password

Listing 1 shows that radio0 operates in the 2.4 GHz
band (hwmode 11ng) while radio1 operates in the 5
GHz band (hwmode 11na). radio0 is in mode sta,
meaning it is configured to be a client of Nickel. It also
shows that Nickel uses encryption (WPA2) and is related
to a network called wwan. The configuration for radio1
is analogous, but it is operating in AP mode (option
mode ap), with SSID Lo1 and is related to network lan.
The definitions for networks wwan and lan are showed on
Listing 2.

Listing 2: Excerpt from /etc/config/network.
...
config interface ’lan’

option ifname ’eth0.1’
option type ’bridge’
option proto ’static’
option ipaddr ’192.168.0.1’
option netmask ’255.255.255.0’

...
config interface ’wwan’

option ifname ’wlan0’
option proto ’dhcp’

config interface ’stabridge’
option ’proto’ ’relay’
option ’network’ ’lan wwan’

config ’zone’
option ’name’ ’lan’
option ’network’ ’lan wwan’ #

Important
option ’input’ ’ACCEPT’
option ’forward’ ’ACCEPT’ #

Important
option ’output’ ’ACCEPT’

Listing 2 shows the settings for network lan (Ethernet
ports) and wwan (wireless – radio0). Network lan is
configured in bridge mode and its static IP address is
192.168.0.1, which ensures access to the AP via Ethernet
cable (or wireless via radio1). Any computer connected
via Ethernet cable receives an IP address via DHCP, in the
range 192.168.0.100/192.168.0.150 (Listing 3). The wwan
DHCP config ignores the lan pool and gets addresses
outside this pool.

A bridge is defined between lan and wwan. There-
fore, any computer connected to the wireless network (on
radio1) or via Ethernet cable (via lan) will receive an

IP address automatically. Instead of a true “bridge”, in this
configuration, the traffic forwarded is affected by firewall
rules, such that the wwan network and the lan network
should be configured according to the same “zone” created
by a firewall with the “forward” policy adjusted to “accept”,
so that all the traffic flows between both interfaces [19].

The insertion of firewall rules inside
/etc/config/network is not recommended, but
it was implemented as such for the sake of simplicity
in this first test. According to the official documentation
[20], this configuration should not work. It is explicitly
mentioned that “...STA and AP at the same time is not yet
supported...”. Fortunately, this was true for trunk version up
to r22989. We are using trunk version r40555.

Listing 3: Excerpt from /etc/config/dhcp.
...
config dhcp ’lan’

option interface ’lan’
option start ’100’
option limit ’150’
option leasetime ’12h’

...
config dhcp ’wwan’

option interface ’wwan’
option ignore ’1’

...

This configuration demonstrates how we can connect each
AP in series to Nickel. The configuration of the second ac-
cess point (Lo2) is analogous. Attention to the frequency of
the interfaces. In Lo2, we must connect radio1 (hwmode
11na - 5 GHz in mode sta) to radio 1 in Lo1
(hwmode 11na - 5 GHz in mode ap) and radio0
(hwmode 11ng - 2.4 GHz in mode ap) must be available
to the clients (e.g. notebooks or other APs).

The objective is to set each AP in different floors in a
building (i.e. first floor and ground floor) in order to extend
the range of Nickel. To enable Internet access from either
AP, it is necessary to set a packet forwarding service on
both APs so that each could route traffic appropriately. We
will also discuss a Wireless Distribution System (WDS)
implementation in order to extend the original SSID beyond
its original range. The specifics of each approach will be
further discussed in sections 3.2.1 and 3.2.2.

3.2.1 IP Forwarding
According to [21], netfilter is used for packet filtering,

NAT and mangling. This firewall is configured by means
of a proper syntax called Unified Configuration Interface
(UCI) [22]. This “language” is intended to centralize the
configuration of OpenWrt. The problem with UCI is the fact
one needs to learn a new syntax for something that is already
well known (i.e. iptables syntax). Although UCI is in-
tended to simplify the configuration of OpenWrt, depending
on the complexity of the intended scenario, the use of UCI
can lead to some confusion. For instance, in the beginning

of this section, we saw how to configure bridging according
to OpenWrt documentation [19]. The configuration uses the
firewall to establish the packet transport from the lan to
wwan as discussed before. Therefore, this can be assessed as
an application of the UCI firewall. This section will perform
some minor modifications on the discussion regarding the
connection of both APs and display a configuration profile
easier to follow using the iptables scripting allowed on
OpenWrt.

In order to obtain Internet access from Lo1 and Lo2, the
easiest way is to perform source network address translation
(SNAT). SNAT translates an outgoing packet, which may
come from Lo1 or Lo2 clients, so that each intermediary
OpenWrt system looks like the source. Considering the
intent to use Lo1 and Lo2 as extensions of Nickel, a
SNAT rule must be created on both. In Lo1 each out-
going packet will have its source IP changed to the Lo1
outgoing IP address (interface in mode sta). From Lo2,
the outgoing packets coming from its clients will suffer
SNAT so that they seem to come directly from Lo2. Then,
in Lo1, these packets will suffer another SNAT so the
clients connected to Lo2 can access the Internet. Therefore,
a client must be able to access the Internet connecting
directly through Nickel, through Lo1 (going further in the
same floor) or through Lo2 (covering the ground floor). The
modified configuration for /etc/config/wireless and
/etc/config/network is presented on Listings 4 and
5.

The main differences from the version presented before
are the removal of the firewall rules originally inserted
to establish the bridge rules and the creation of two dis-
tinct interfaces for each radio (wlan0 and wlan1) (on
/etc/config/network – see Listing 2). We renamed
interface wwan to make it simple to correlate the “virtual”
interface names (interface parameter) to the “real” in-
terface names (ifname parameter). Therefore, wwan will
be renamed to wlan0 and we will create a new interface
called wlan1 which will be in mode ‘ap’. We also
modified accordingly file /etc/config/dhcp. There are
no modifications to file /etc/config/wireless.

Listing 4: Excerpt from modified
/etc/config/network.
...
config interface ’wlan1’

option ifname ’wlan1’
option proto ’dhcp’

config interface ’wlan0’
option ifname ’wlan0’
option proto ’dhcp’

...

Listing 5: Excerpt from modified /etc/config/dhcp.
...
config dhcp ’wlan0’

option interface ’wlan0’

option ignore ’1’

config dhcp ’wlan1’
option interface ’wlan1’
option ignore ’1’

...

This scenario seems simple enough, however we have
some operational problems. First, considering the UCI syn-
tax, it is not clear how to specify a rule that considers any
source IP to be translated to a given destination IP. Second,
considering Lo1 and Lo2, we have to detect the destination
IP address every time the packet is translated. The outgoing
interface is being configured via DHCP so, the address is
very likely to change in each boot (or every 12 h as described
in Listing 3).

The best way to address this issues was to use the UCI
firewall interface to iptables commands. Therefore, we
achieved a simplified configuration model that is fit for the
purposes of our case study. We created a user script that is
processed by the UCI firewall, after the firewall rules are
loaded. This script is stored in /etc/firewall.user
(Listing 6).

Listing 6: Excerpt from /etc/firewall.user.
...
WANIF="wlan0"
WANIP="‘/sbin/ifconfig $WANIF | grep

’inet addr’ | awk ’{print $2}’ |
sed -e ’s/.*://’‘"

iptables -t nat -I POSTROUTING 1 -o $WANIF
-j SNAT --to $WANIP

The main part of the user script of Listing 6 is the
deduction of the IP address of the outgoing interface. We
create a filter using grep and awk in oder to extract from
the ifconfig command output exactly the IP address of
the outgoing interface (defined by the user in the WANIF
parameter). This is used as the input for the SNAT rule (in
the iptables rule). Therefore, for any IP address coming
from the WANIF interface we have the translation to the new
outgoing WANIP address.

One last quirk of OpenWrt is that the processing of the
firewall.user is not deterministic in our system. It
sometimes worked (i.e. the firewall.user file is pro-
cessed) and it sometimes didn’t. Therefore, as a workaround,
we used the init script /etc/rc.local (Listing 7). The
commands appearing inside this file are executed once the
system init is finished.

Listing 7: Excerpt from /etc/rc.local.
Workaround to load the SNAT firewall rule
correctly
sleep 10
/etc/init.d/firewall stop # clean up the system

firewall rules
sleep 10
/bin/sh /etc/firewall.user # insert SNAT firewall

rule

3.2.2 Wireless Distribution System
According to [23], WDS is a misunderstood concept.

WDS is usually referred to as a “wireless DS” or a “DS”
that operates over a WLAN. A WDS (as defined by [24])
is neither. This confusion perhaps results from an extremely
poor choice in naming the WDS capability. The “WDS”
capability actually has nothing to do with either of those
terms.

Still according to [23], WDS is a mechanism for construct-
ing 802.11 frames using a 4-address format. The content of
the data frame address fields are dependent upon the values
of To DS and From DS bits and is defined in Table 1. If
the content of a field is shown as not applicable (N/A), the
field is omitted. Note that Addr. 1 always holds the receiver
address (RA) of the intended receiver and Address 2 always
holds the address of the station that is transmitting the frame
(TA). Addr. 3 and 4 refers to the usual destination address
(DA) and source address (SA).

Table 1: WDS 4-address format [23].
To DS From DS Addr. 1 Addr. 2 Addr. 3 Addr. 4

1 1 RA TA DA SA

OpenWrt implements WDS between a client AP and
a master AP using the 4-address format, which enables
transparent bridging on the client side. In this scenario, a
bridged host (e.g. computer A) sends a packet to a target host
(e.g. computer B). The frame is relayed via the client AP (i.e.
Lo2) and the sender MAC (i.e. computer A) is preserved.
The master AP (i.e. Lo1) receives the frame and redirects
it to the target (i.e. computer B) using the original sender
source MAC (computer A). The target (computer B) receives
the frame and generates a response, using the given source
MAC (computer A) as destination. The master AP relays
the frame to the client AP with the right destination MAC
as target (computer A). The client AP receives the frame
and redirects it to the final destination using the computer
A MAC as target. Computer A receives the response frame
and the connection is established [25].

The aforementioned scenario was inspected using a net-
work sniffer (Wireshark) on both computer A and Computer
B. We used ping to send an ICMP Echo Request from
computer A and inspected the received packet on computer
B. It was possible to verify that the MAC address was really
from computer A instead of the master AP where the traffic
is relayed. We also had a Wireshark running on computer
A and we also inspected the return message (ICMP Echo
Reply) in computer B. The source MAC address from the
packet was the one from computer A and not from the relay
station (client AP).

To configure WDS, on the master AP (Lo1), we need
to add the line option wds ‘1’ on the config
wifi-iface section for radio 1 (the one configured

in mode ‘ap’), at /etc/config/wireless [26] (see
Listing 1). That’s all there is to it. If a client AP con-
nects to this master AP, the WDS interface is created as
wlan1.sta1. This can be verified using the ifconfig
command.

The client AP (Lo2) configuration is a little bit more
complicated. First, all the firewall configurations described
on section 3.2.1 must be removed. WDS approach is a level 2
bridge, not a level 3 translation via netfilter. For all purposes,
all the firewall rules can be disabled on the client AP. Second,
at /etc/config/network, interface ‘lan’ and
interface ‘wlan0’ are bridges. Care must be taken
considering the configuration of the static IP addresses in
both cases. Both bridges must not be in the same IP address
range (see Listing 8). We must also observe that the bridge
configuration for interface ‘lan’ is not done inside
/etc/config/network. This will be done afterwards
manually using the brctl command (Listing 10) [27]. This
is done because UCI, in our test case, for some reason, did
not allow the configuration of two bridges simultaneously.

Listing 8: Excerpt from /etc/config/network.
...
config interface ’lan’

option ifname ’eth0.1’
option proto ’static’

Quirk: invalid IP address to avoid conflict with
br-wlan0 address

option ipaddr ’192.168.1.199’ ←
option netmask ’255.255.255.0’
option ip6assign ’60’

config interface ’wlan0’
option ifname ’wlan0’
option type ’bridge’ ←
option proto ’static’
option ipaddr ’192.168.0.200’ ←
option netmask ’255.255.255.0’

...

The br-wlan0 bridge is a wireless to wireless
bridge (radio 1 ↔ radio 1 at 5 GHz). Its def-
inition becomes clear in the specification presented at
/etc/config/wireless, for the radio 1 (Listing 9).
One particular quirk that must be observed is the use of
both Wi-Fi interfaces (radio 0 and radio 1). radio
0 is configured as the local AP for Lo2, but its SSID is
identical to the SSID used by Lo1 (including the password).
radio 1 is configured as a client (mode ‘sta’) of the
Lo1. This configuration is necessary to assure a seamless
integration between Lo1 and Lo2. That way, for example,
a client that is moving across the boundaries of Lo1 and
Lo2 cells will not realize the transition from one AP to the
other. One particular feature in this case study is that the APs
Lo1 and Lo2 incidentally operate in different frequencies
(Lo1 uses 5GHz for its clients and Lo2 uses 2.4. GHz).
Therefore, the client must also have the ability to operate in
both frequencies.

Listing 9: Excerpt from /etc/config/wireless.
...
config wifi-iface

option device ’radio0’
option ssid ’Lo1’ ←
option encryption ’psk2’
option key ’password’ ←
option network ’wlan0’
option mode ’ap’ ←

...
config wifi-iface

option device ’radio1’
option mode ’sta’ ←
option ssid ’Lo1’ ←
option encryption ’psk2’
option key ’password’
option network ’wlan0’ ←

This line is important to establish the WDS
option wds ’1’ ←

...

The next step is to add manually a second network inter-
face to the established bridge, in this case, the br-wlan0.
As this procedure must be done on every boot of Lo2,
we recommend putting it in /etc/rc.local. Another
problem is that even though all the clients of Lo2 correctly
access the Internet, Lo2 itself cannot do it. This is important
mainly to keep the ability to install new packages from Lo2.
The problem is its routing table needs a default gateway,
therefore we use Lo1 address and create a static route
[28]. We put all this in /etc/rc.local, so the complete
procedure is executed for every boot (Listing 10).

Listing 10: Excerpt from /etc/rc.local.
...
Quirks to load static route and local DNS
(192.168.0.1)
rm /etc/resolv.conf
ln -sf /etc/config/resolv.conf.auto /etc/resolv.

conf
Create the static route for the default
gateway
sleep 5
route add default gw 192.168.0.1 br-wlan0 ←
Add Ethernet interfaces to the wifi bridge
br-wlan0
sleep 5 # Important to give time for the WDS

connection establishment
Add eth0.1 to the br-wlan0 bridge using

brctl
brctl addif br-wlan0 eth0.1 ←
exit 0
...

4. Final Remarks
The proposed research question for this paper regards

which methods could be used to extend the range of an
infra-structured wireless network. The concealed objective
was to find an open firmware, flexible enough so it could
be used in the context of project Mobile mEsh Network
to Aid in CountEring drug TRAffiCKing (M.E.N.A.C.E-
TRACK). In that sense, this paper succeeded considering the
scenarios tested on OpenWrt provided a rich environment for

interaction and customization of the firmware. Therefore, we
tested the configuration of APs used to extend the original
reach of a wireless network using a level 3 solution (i.e. a
firewall) and a level 2 solution (bridging via WDS).

The main advantage of using packet forwarding on the
APs is the solution is hardware independent. We can use
packet forwarding in virtually any device (considering it has
at least up to the network layer of TCP/IP protocol stack).
The main drawback is transparency. The user must choose
explicitly the SSID of the network he/she is using. This
limits the kind of application one can implement considering
the need for a seamless integration of APs in order to provide
a unified SSID for a bigger range (e.g. in the transit of a
mobile robot which exchanges information with an external
computer in the same Wi-Fi network).

Considering transparency of integration among devices,
WDS is the best choice between the test cases. It provides
the possibility for using multiple AP devices without the
need to choose between SSIDs. There is only one SSID
and the integration is seamless. The drawbacks, on the
other hand, can be more extreme when we compare this
solution to packet forwarding. WDS is not a certified IEEE
standard and, therefore, every vendor (e.g. Ralink, Atheros,
Broadcom etc) can have its own implementation, resulting
in incompatibility among devices [29].

One design problem we managed to solve with our con-
figuration concerns the loss of bandwidth in WDS Repeater
mode. According to [29], WDS Repeater mode will sacrifice
half of the bandwidth available from the primary router for
clients wirelessly connected to the repeater. This is a result
of the repeater taking turns talking to not just one partner
but two, and having to relay the traffic between them. As
the AP used for the WDS use case has two independent
antennae, this will not occur (i.e. it does not have to take
turns between communicating pairs).

Considering the coverage area in both cases, we achieved
roughly 40 m when compared to the original 10 m of
the desktop computer sharing its Internet connection. When
using the packet forwarding implementation, we had to
exchange SSIDs on the 1st floor (Lo1) and ground floor
(Lo2) explicitly. When using WDS, we could roam both
floors without connection loss using only Lo1.

As a future work, we will devise the case study for
implementing a mesh network using TP-LINK TL-WDR
4300. Therefore, OpenWrt will be the basis to configure
part of our mobile ad-hoc network (MANET), which will
be implemented in the context of the M.E.N.A.C.E-TRACK
system.

Acknowledgment
The authors would like to thank the Research Assistance

Foundation of the State of Goiás (FAPEG – Fundação
de Amparo a Pesquisa do Estado de Goiás) for the full
sponsorship of this research – edict number 006/2012.

References
[1] D. Johnson, K. Matthee, D. Sokoya, L. Mboweni, A. Makan, and

H. Kotze, Building a Rural Wireless Mesh Network A do-it-yourself
guide to planning and building a Freifunk based mesh network,
version 0.8, Meraka Institute, South Africa, 2007.

[2] J. F. Kurose and K. W. Ross, Computer Networking - A Top-Down
Approach, 6th ed. Pearson Education, 2012.

[3] G. Aggelou, Wireless Mesh Networking. McGraw-Hill Communica-
tions, 2009.

[4] S. Methley, Essentials of Wireless Mesh Networking, ser. Cambridge
Wireless Essentials Series. Cambridge University Press, 2009.

[5] OpenWrt, “About openwrt.” [Online]. Available:
http://wiki.openwrt.org/about/start

[6] ——, “Tp-link tl-wdr4300.” [Online]. Available:
http://wiki.openwrt.org/toh/tp-link/tl-wdr4300

[7] ——, “Beginners’ guide to openwrt.” [Online]. Available:
http://wiki.openwrt.org/doc/howto/user.beginner

[8] ——, “Buyers’ guide.” [Online]. Available:
http://wiki.openwrt.org/toh/buyerguide

[9] ——, “Table of hardware.” [Online]. Available:
http://wiki.openwrt.org/toh/start

[10] ——, “Openwrt – first login.” [Online]. Available:
http://wiki.openwrt.org/doc/howto/firstlogin

[11] ——, “Secure your router’s access.” [Online]. Available:
http://wiki.openwrt.org/doc/howto/secure.access

[12] ——, “Rootfs on external storage (extroot).” [Online]. Available:
http://wiki.openwrt.org/doc/howto/extroot

[13] ——, “Usb basic support.” [Online]. Available:
http://wiki.openwrt.org/doc/howto/usb.essentials

[14] ——, “Mounting block devices.” [Online]. Available:
http://wiki.openwrt.org/doc/techref/block_mount

[15] ——, “Fstab configuration.” [Online]. Available:
http://wiki.openwrt.org/doc/uci/fstab

[16] subsignal.org, “Luci,” 2014. [Online]. Available:
http://luci.subsignal.org/trac

[17] OpenWrt, “Luci essentials.” [Online]. Available:
http://wiki.openwrt.org/doc/howto/luci.essentials

[18] ——, “Openwrt sysupgrade.” [Online]. Available:
http://wiki.openwrt.org/doc/howto/generic.sysupgrade

[19] ——, “Network configuration.” [Online]. Available:
http://wiki.openwrt.org/doc/uci/network

[20] ——, “Wireless configuration.” [Online]. Available:
http://wiki.openwrt.org/doc/uci/wireless

[21] ——, “Firewall configuration.” [Online]. Available:
http://wiki.openwrt.org/doc/uci/firewall

[22] ——, “The uci system.” [Online]. Available:
http://wiki.openwrt.org/doc/uci

[23] D. Engwer, “Ieee p802.11 wireless lans - “wds”
clarifications,” Nortel, July 2005. [Online]. Available:
http://www.ieee802.org/1/files/public/802_architecture_group/802-
11/4-address-format.doc

[24] IEEE, “Ieee standard for information technology - telecommunications
and information exchange between systems- local and metropolitan
area networks- specific requirements- part 11: Wireless lan medium
access control (mac) and physical layer (phy) specifications,” AN-
SI/IEEE,” Standard, 2003.

[25] OpenWrt, “Client mode wireless (solu-
tion using wds).” [Online]. Available:
http://wiki.openwrt.org/doc/howto/clientmode#solution.using.wds

[26] ——, “Atheros and mac80211 wds to imple-
ment a wireless network bridge.” [Online]. Available:
http://wiki.openwrt.org/doc/recipes/atheroswds

[27] “Building bridges with linux.” [Online]. Available:
http://bwachter.lart.info/linux/bridges.html

[28] N. Craft, “Linux setup default gateway with route command,” August
2006. [Online]. Available: http://www.cyberciti.biz/faq/linux-setup-
default-gateway-with-route-command/

[29] dd-wrt.com, “Wds linked router network,”
July 2012. [Online]. Available: http://www.dd-
wrt.com/wiki/index.php/WDS_Linked_router_network

