NbQ-CLOCK: A Non-blocking Queue-based CLOCK Algorithm
for Web-Object Caching

Gage Eads', Juan A. Colmenares

2

'EECS Department, University of California, Berkeley, CA, USA
2Computer Science Laboratory, Samsung Research America — Silicon Valley, CA, USA
geadsf@eecs.berkeley.edu, juan.col@samsung.com

Abstract— Major Internet-based service providers rely on
high-throughput web-object caches to serve millions of daily
accesses to frequently viewed web content. A web-object
cache’s ability to reduce user access time is dependent on
its replacement algorithm and the cache hit rate it yields. In
this paper, we present NbQ-CLOCK, a simple and effective
lock-free variant of the Generalized CLOCK algorithm that
is particularly suited for web-object caching. NbQ-CLOCK
is based on an unbounded non-blocking queue with no
internal dynamic memory management, instead of the tradi-
tional circular buffer. Our solution benefits from Generalized
CLOCK’s low-latency updates and high hit rates, and its
non-blocking implementation makes it scalable with only
10 bytes per-object space overhead. We demonstrate that
NbQ-CLOCK offers better throughput than other competing
algorithms, and its fast update operation scales well with
the number of threads. We also show that for our in-memory
key-value store prototype, NbQ-CLOCK provides an overall
throughput improvement of as much as 9.20% over the best
of the other algorithms.

Keywords: Replacement algorithm, key-value cache, CLOCK,
non-blocking, scalability

1. Introduction

Minimizing the service response time experienced by
users is very important for global-scale Internet-based ser-
vice providers, such as Amazon, Facebook, and Samsung.
One way to reduce service response times is with web-object
caching, in which recently or frequently accessed remote
data is cached locally to avoid slow remote requests when
possible.

Web-object caches are often implemented as key-value
stores. In general, key-value stores provide access to unstruc-
tured data through read and write operations, where each
unique key maps to one data object. Popular key-value stores
used for web-object caching operate purely in memory; a
prime example is Memcached [1] (summarized in Section 2).
In key-value stores of this type, frequently accessed data
items are stored in cache servers’ volatile RAM to achieve

G. Eads conducted this work during his internship at Samsung Research
America — Silicon Valley

low round-trip access times. Only object requests that miss
in the cache are routed to the slower, non-volatile storage
layer; in this way, the key-value store mitigates the load on
the storage layer.

A recent analysis [2] finds that Memcached on Linux
spends 83% of its processing time in the kernel, primarily
in the network layer. However, recent work such as KV-
Cache [3] removes this bottleneck by using a lightweight
protocol stack together with a zero copy design. Further-
more, non-blocking hash tables can eliminate contention
accessing key-value pairs. Thus, we anticipate the bottle-
neck in high-performance key-value stores shifting to the
replacement algorithm, the focus of this paper.

The replacement algorithm is responsible for deciding
which item to evict when the cache is full and there are new
incoming items. The approach used to evict items in a web-
object cache can dramatically impact the performance of the
Internet-based services the cache assists, and that influence
on service performance is characterized by the cache hit rate.

In the context of web-object caching, a replacement algo-
rithm’s API consists of four operations: insert adds a new
item to the replacement data structure, delete removes an
item from the replacement data structure, update notifies
the replacement algorithm of an access of an existing item,
and evict selects one or more cached items for eviction.

A recent study of Facebook’s Memcached traces [4] shows
that large-scale key-value store workloads are read-heavy,
and key and value sizes vary. Hence, a replacement algorithm
for an in-memory key-value store should support variably-
sized objects and allow for low-latency, scalable updates and
evictions, as well as high cache hit rates.

The most common replacement algorithms are the Least
Recently Used (LRU) algorithm and its derivatives. LRU, as
its name implies, evicts the least recently accessed item. Its
derivatives (e.g., pseudo-LRU and CLOCK) trade-off hit rate
in favor of lower space complexity or implementation cost.

CLOCK [5] is a well-known memory-page replacement
algorithm. It maintains a circular buffer of reference bits,
one for each memory page, and a buffer pointer (“clock
hand”). When a page is referenced, its reference bit is set
to indicate a recent access. To evict a page, the clock hand
sweeps through the buffer and resets each non-zero bit it
encounters, until it finds an unset bit; then, the corresponding

page is evicted. Unfortunately, CLOCK’s hit rate can suffer
because with a single bit reference it cannot differentiate
access frequency from access recency. To solve this problem,
Generalized CLOCK [6] replaces each reference bit with a
counter.

While their fast update path is ideal for read-mostly
web-object caches, CLOCK and its variants assume a fixed
number of cache entries. For instance, CAR (CLOCK with
Adaptive Replacement) [7] assumes the cache has a fixed
size ¢, and CLOCK-pro [8] depends on a fixed total memory
size m, and both algorithms operate on uniformly-sized
pages. WSClock [9] is based on a fixed circular list. The
fixed-size assumption is not the case for web-object caches,
and this limitation renders CLOCK and existing variants
impractical in the web-object caching domain.

In this paper, we present Non-blocking Queue-based
CLOCK (NbQ-CLOCK). It is a lock-free variant of the
Generalized CLOCK replacement algorithm suited to caches
containing variable number of items with different sizes. To
the best of our knowledge, no prior work in literature has
evaluated a similar CLOCK variant that could effectively
handle such dynamically-sized caches, which are essential
to web-object caching. NbQ-CLOCK has been implemented
in KV-Cache [3], a high-performance in-memory key-value
cache conforming to the Memcache protocol, with encour-
aging preliminary results.

In Section 5, we evaluate NbQ-CLOCK against other
replacement algorithms applicable to Memcached, including
Bag-LRU [10]. We focus our evaluation on Memcached [1]
because it is widely deployed and has recently received
considerable attention [10], [11], [12]. We demonstrate that
NbQ-CLOCK’s low update latency scales well with the
thread count, and that it exhibits better throughput scaling
than the other algorithms. Moreover, when used in our in-
memory key-value store prototype, NbQ-CLOCK offers an
improvement on the system’s throughput of as much as
9.20% over the best of the other replacement algorithms. We
also show that NbQ-CLOCK’s cache hit rates are at least as
good as those of the other replacement algorithms.

2. An Overview of Memcached

Memcached [1], [12], [13] is a widely deployed web-
object caching solution. It is typically deployed in a “side-
cache” configuration, in which end users, via client devices,
send requests to the front-end web servers. The front-end
servers then attempt to resolve each end-user request from
one or more local Memcached servers by, in turn, sending
GET requests to them. If a cache miss occurs, the front-
end server handling the end-user request forwards it to the
back-end database servers that carry out the computation and
IO operations to produce the result. On receiving the result,
the front-end server both sends the answer to the client and
updates the cache by issuing a SET request to the appropriate
Memcached server.

An analysis of Facebook’s Memcached traces over a
period of several days [4] revealed the following about large-
scale key-value store workloads. They are read-heavy, with
a GET/SET ratio of 30:1, and request sizes are seen as small
as 2 bytes and as large as 1 Mbytes.

3. Replacement Algorithms for Mem-
cached

In this section, we describe two existing replacement algo-
rithms used in Memcached [1]: the algorithm shipped with
its stock version, and Bag-LRU [10]. In addition, we present
Static CLOCK, a conceivable, but ineffective extension to
CLOCK that statically over-provisions for the largest number
of items that an instance of an in-memory key-value store
(e.g., Memcached) can possibly accommodate in order to
support variably-sized objects.

3.1 Memcached LRU

The replacement algorithm in the stock version of Mem-
cached is a per-slab class LRU algorithm. Every item in
Memcached has a corresponding item descriptor, which
contains a pointer for the LRU list. This algorithm uses a
doubly-linked list to support arbitrary item removals, which
is important for DELETE requests and expired items. A
global cache lock protects the LRU list from concurrent
modifications, and fine-grained locks protect the hash table.
Lock contention on the global lock greatly impairs intra-
node scalability, though this was not a concern at the time
of Memcached’s initial development. Instead, the developers
sought a simple mechanism to ensure thread-safety.! This
synchronization solution is clearly unscalable, and there have
been many attempts at solving it.

3.2 Bag-LRU

Memcached’s poor scalability within the node motivated
the development of the Bag-LRU replacement strategy [10].
Bag-LRU is an LRU approximation designed to mitigate
lock contention. Its data structure comprises a list of multiple
timestamp-ordered “bags”, each containing a pointer to the
head of a singly-linked list of items. Bag-LRU keeps track
of the two newest bags (needed for updates) and the oldest
bag (needed for evictions).

Bag-LRU’s update operation consists of writing the
newest bag’s address to the item’s back pointer and updating
the item’s timestamp. The lock-free insert operation
places the item in the newest bag’s list. To do so, a worker
thread repeatedly attempts to append the item to the tail of
the list using the atomic compare-and-swap (CAS) operation.

Brad Fitzpatrick, Memcached’s original developer, built it with a “scale
out, not up” philosophy [14], at a time when multi-core chips were
just entering the market. Scale-up, however, is important for Memcached
deployments to rapidly serve web-objects stored on the same node in
parallel.

If the CAS fails, the worker thread traverses the bag’s list
until it finds a NULL next pointer and retries.

An eviction requires grabbing a global eviction lock to
determine the oldest bag with items in it, locking that bag,
and choosing the first available item to evict. Bag-LRU
requires locks for evictions and deletes to prevent the cleaner
thread from simultaneously removing items, which can result
in a corrupted list.

3.3 Static CLOCK

There are two ways to extend CLOCK in order to support
dynamically-sized objects. These are:
« Statically pre-allocate a bit-buffer that is large enough
to support the worst-case (i.e., most) number of items.
We refer to it as Static CLOCK.
« Replace the underlying data structure with a list. This is
the alternative we pursue in this paper and our solution
is described in Section 4.
For completeness, we evaluate Static CLOCK, and show
that the list-based approach is much more effective for web-
object caching.

4. NbQ-CLOCK

Queue

ref_counter ==
or delete_marker
is set?

Decrement |
ref_counter

Evict

Fig. 1: Process flow of queue-based evict, delete,
and insert operations. The data items are the moving
elements, as opposed to the clock hand in the traditional
CLOCK.

Non-blocking Queue-based CLOCK (NbQ-CLOCK) is
a lock-free variant of the Generalized CLOCK replacement
algorithm [6]. The primary difference between NbQ-CLOCK
and previous CLOCK variants is that it circulates the cached
items through the eviction logic (see Figure 1), instead of
iterating over the items (by moving the clock hand). The
efficient and scalable circulation of items is enabled by
the use of a non-blocking concurrent queue, as opposed
to the traditional statically allocated circular buffer in prior
CLOCK variants. Moreover, the use of an unbounded queue
allows NbQ-CLOCK to handle a dynamically-sized cache
(containing variable number of items with different sizes),
which is key for web-object caching (e.g., Memcached [1]).

NbQ-CLOCK’s non-blocking queue is based on a singly-
linked list, and its algorithmic details are presented next in
Section 4.1. NbQ-CLOCK stores bookkeeping information
in each linked-list node; a node includes:

« a reference counter,?

¢ an atomic delete marker, and

« a pointer to the next node.

In addition, each linked-list node contains a pointer to a
unique data item (e.g., a key-value pair). We also refer to
these nodes as item descriptors.

NbQ-CLOCK maintains the traditional CLOCK interface
with the following operations:

e insert pushes an allocated list node into the queue.
The node’s reference counter is initialized to zero and
the delete marker to false.

o update increments the node’s reference counter.

e delete removes an item from the queue. The non-
blocking queue can only remove items from the head
of the queue, but web-object caches must support the
ability to delete arbitrary objects. To support arbitrary
object deletions, we include a “delete marker” in each
item descriptor. This binary flag is set atomically and
indicates whether the corresponding item is deleted
from the cache. During the clock sweep operation, the
worker thread frees the memory of any items whose
delete marker is set.

e evict pops the head of the queue, and if the node’s
reference counter is zero or its delete marker is set,
evicts the item. If the item is not suitable for eviction,
its reference counter is decremented and it is recycled
back into the queue.

Figure 1 depicts NbQ-CLOCK’s insert, delete, and
evict operations. For more details on the design of NbQ-
CLOCK, please refer to [15].

4.1 Underlying Non-blocking Queue

NbQ-CLOCK is operates on top of a non-blocking con-
current queue. Hence, the clock hand is not an explicitly
maintained variable, but instead is implicitly represented by
the head of the queue.

For our non-blocking queue we use Michael and Scott’s
algorithm [16], but we have made two key optimizations.
First, our queue performs no memory allocation in its init,
push, or pop operations. Instead, the caller function is
responsible for allocating and freeing nodes. Second, NbQ-
CLOCK’s push and pop methods operate on nodes, not
the data items themselves, so that one can re-insert a
popped node at the tail with no memory management over-
head. These optimizations primarily benefit NbQ-CLOCK’s
evict operation.

Michael and Scott’s algorithm consists of a singly-linked
list of nodes, a tail pointer, and a head pointer, where the

2or a reference bit for a non-blocking variant of the original CLOCK [5].

head always points to a dummy node at the front of the
list. Their algorithm uses a simple form of snapshotting, in
which the pointer values are re-checked before and during
the CAS operations, to obtain consistent pointer values.

One manner in which NbQ-CLOCK’s queue and Michael
and Scott’s algorithm differ is that their queue performs a
memory allocation on each push and a de-allocation on
each pop. Then, if a clock sweep operation inspects n items
before finding one suitable for eviction, it pops n list nodes
and pushes (n — 1) list nodes — resulting in n memory frees
and (n — 1) memory allocations. On the contrary, our non-
blocking queue takes the memory management logic out of
push and pop so that every evict incurs the minimum
amount of memory management overhead: a single de-
allocation. Further, most memory allocators use internal
locking, in which case the queue is not fully non-blocking.
We avoid this problem by taking the allocators out of the
queue.

We also remove the modification counters in Michael and
Scott’s algorithm from our queue. The modification counters
protect against the ABA problem,’ which can corrupt the
queue’s linked list. However, for sufficiently large queues,
the likelihood that other threads can cycle through the queue
in such a short time is effectively zero. Since key-value stores
typically cache millions of items, we choose not to include
modification counters in the NbQ-CLOCK queue.

5. Comparative Evaluation

In this section, we evaluate NbQ-CLOCK against the
replacement algorithms Memcached LRU, Bag-LRU, and
Static CLOCK, presented in Section 3. We focus on update
latency scalability, cache hit rate, and throughput, which
are performance metrics important to high-throughput, low-
latency, read-mostly web-object caches.

The version of NbQ-CLOCK used in our experiments
implements the Generalized CLOCK with 8-bit reference
counters. The Static CLOCK, on the other hand, uses an
array of packed reference bits.

5.1 Experimental Setup

The test software platform consists of two C++ appli-
cations: an in-memory key-value store prototype, which is
Memcached-protocol conformant, and a client traffic gener-
ator, called KVTG. The two applications run in Linux 3.2.0
and are connected through high-performance shared-memory
channels [17].

The key-value store prototype primarily comprises a hash
table and an item-replacement algorithm, plus the logic nec-
essary to receive and parse client requests and generate and
transmit responses. Each worker thread in the key-value store
receives requests on a receive (RX) channel, performs the

3The ABA problem can occur when, between reading a shared value of
A and performing a CAS on it, another thread changes the A to a B and
then back to n A. In this case, the CAS may succeed when it should not.

Average Replacement Update Latency

®—& NbHQ-CLOCK *
+— Bag-LRU
* % Memcached LRU *

Static CLOCK

107 - * - = 1 L 1

CPU Cycles

012 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of worker threads

Fig. 2: Scalability of replacement algorithms’ update operation.
Each data point is the average update latency over 10 million
GET requests.

hash-table and replacement operations necessary to satisfy
the requests, and transmits the results across a transmit (TX)
channel.

The key-value store prototype, like Memcached [1], al-
lows us to set the cache size, which is the memory limit for
keys, values, and item descriptors (including replacement-
algorithm bookkeeping). Also similar to Memcached, the
prototype uses 7 slab allocators with sizes ranging in powers
of two from 64 B to 4 KB. While per-slab class replacement
logic is necessary in a deployment scenario,* we restrict our
focus to a single replacement instance by choosing object
sizes that use a single slab allocator.

Our experimental platform is a quad-socket server con-
taining the Intel E5-4640 2.4GHz CPU (8 cores, 16 hardware
threads per socket) with 20 MB of last-level cache, and 128-
GB DRAM overall. To minimize performance variability
across test runs, we disable Turbo Boost, redirect interrupts
to unused cores, fix each CPU’s frequency to 2.4 GHz, and
affinitize software threads to cores isolated from the Linux
scheduler.

5.2 Update Latency Scaling

Update latency is the time to update a cached item’s entry
in the replacement data structure in the event of a cache hit.
It is crucial for server performance that this process — the
common case in a read-heavy workload — scales well.

In this experiment, we measure the average latency for
the update operation of the replacement algorithms under
evaluation with the worker thread count varying from 1 to
16. The results are shown in Figure 2, with the y-axis (CPU
cycles) plotted on a logarithmic scale. Each data point in

4When a request causes an eviction, the evicted item must occupy enough
dynamic memory to satisfy that request. To find an appropriately-sized item
quickly, each slab class must have its own replacement logic.

the figure was calculated over 10 million GET requests, with
key frequency determined by a power-law probability distri-
bution. NbQ-CLOCK’s update latency scales significantly
better than Memcached LRU. Heavy contention for the
global lock seriously hinders LRU’s scalability, resulting in a
44.6x increase in mean update latency from 1 to 16 threads,
while NbQ-CLOCK’s mean update latency increases by
2.11x in that range.

Interestingly, Static CLOCK’s update performs worse
than NbQ-CLOCK despite both being CLOCK variants. The
main reason is the read-modify-write loop with CAS in the
update operation of our Static-CLOCK implementation.
We observe that a single atomic CAS operation takes 483
cycles on average on the test platform for a single thread
(see Figure 2), but the likelihood of CAS failing and the
loop repeating grows with the number of threads, resulting in
the observed update-latency increase. NbQ-CLOCK’s non-
blocking update operation, requiring a single increment
operation, scales much better.

The Bag-LRU solution [10] scales well, but its aver-
age update latency is between 1.5x-1.73x that of NbQ-
CLOCK. This is because, besides writing the back pointer,
the update operation must also check if the newest bag
is full and, if so, atomically update the global newest bag
pointer.

The performance dip between 8 and 9 worker threads
occurs in all algorithms and appears to be a memory-system
artifact resulting from the 9th thread running on a second
socket.

5.3 Cache Hit Rate

Another metric fundamental to a web-object cache is hit
rate. Besides having lower-latency update operations, this
experiment shows that NbQ-CLOCK is comparable to and
never worse than the alternative algorithms in terms of hit
rate.

We set a memory limit of 1 GB for slab allocators for
keys, values, item descriptors, and replacement algorithm
overhead. The key space is modeled by a standard normal
distribution of 30 million items and the requests are 70%
GETs and 30% ADDs. KVTG issues 15 million SET requests
during the “warm up” phase, in which no data is collected. In
the subsequent phase, 15 million requests are sent according
to the key and request-type distributions and hit rate data
is collected. We evaluate a range of object sizes (key plus
value) from 64 B to 4 KB.

Table 1 shows that NbQ-CLOCK’s cache hit rates exceed
the next best algorithm by as much as 1.40% (for 4 KB
objects). NbQ-CLOCK’s hit rate improvement over Bag-
LRU’s is more significant in the context of real workloads
of web-object cache systems. For instance, considering the
workload characterization of live Memcached traffic reported
in [4], an additional 1.40% hits of 4.897 billion requests in a
day amounts to an additional 68.6 million cache hits per day.

Object Size NbQ- Static
(bytes) CLOCK Bag-LRU CLOCK LRU
Number of items stored (millions)
64 5.263 5.113 4.503 5.089
128 4.006 3.919 3.336 3.905
256 2.711 2.671 2.198 2.664
512 1.647 1.632 1.306 1.629
1024 0.922 0.918 0.721 0.916
2048 0.491 0.489 0.380 0.489
4096 0.253 0.253 0.196 0.253
Hit rate
64 82.81% 82.34% 81.32% 82.29%
128 80.86 % 80.76% 80.34% 80.76%
256 78.23 % 78.13% 77.14% 78.13%
512 75.26 % 75.26% 74.06% 75.25%
1024 72.20% 72.05% 70.90% 72.07%
2048 68.92 % 68.32% 67.29% 68.32%
4096 65.60 % 64.20% 63.32% 64.19%

Table 1: Number of stored data items and hit rate for a 1
GB cache, with a standard normal key distribution, across
various object sizes.

Furthermore, this workload characterization was generated
from five server pools within one of many datacenters; the
impact of an improved replacement algorithm compounds in
a global Memcached deployment.

NbQ-CLOCK’s higher hit rates for small objects can
be attributed to its superior space efficiency. Compared
to Bag-LRU, NbQ-CLOCK has six fewer bytes per item
due to its use of one pointer for its singly-, not doubly-,
linked list, plus the single-byte reference counter and single-
byte delete marker. For smaller object sizes, NbQ-CLOCK’s
bookkeeping space advantage is more significant relative to
the object size, allowing it to store more objects than the
alternatives — 150 thousand more than Bag-LRU for 64 B
objects, for instance.

Static CLOCK has poor space efficiency, despite our effort
to improve this aspect in our implementation. The reason is
that it requires a statically allocated reference-bit array and
item pointer array for every possible item in the cache. In
this experiment, 249.67 MB (25% of the memory limit) is
dedicated to Static CLOCK’s arrays, and the hit rate suffers
as a result.

For larger object sizes, the space overhead advantage of
NbQ-CLOCK is insignificant with respect to the object size
— NbQ-CLOCK, Bag-LRU, and LRU can store nearly the
same number of items for 2 KB and higher. In the case
of 4 KB objects, NbQ-CLOCK, Bag-LRU, and LRU can
only store a small fraction (0.84%) of the 30 million items
(due to the 1 GB memory limit), so the eviction algorithm’s
intelligence is the main factor affecting the hit rate.

The reason for NbQ-CLOCK’s hit-rate advantage for 1
KB and larger objects is that NbQ-CLOCK, as a variant of
Generalized CLOCK, considers not only access recency, but
also access frequency. As a result, frequently accessed items

1.0e8 Replacement Throughput Scaling

@—e NbQ-CLOCK

+— Bag-LRU

0.8}
#* * Memcached LRU

Static CLOCK

o
o

Requests Per Second
I
»

0.2

0.0,

0 2 4 6 8 10 12 14 16
Number of worker threads

Fig. 3: Throughput scaling of the replacement algorithms when
the in-memory key-value store imposes no additional bottlenecks.

tend to persist longer in a cache with Generalized CLOCK
than in one with LRU. This is particularly important when
the number of key-value pairs the cache can store is small
compared to the total set of pairs, and key appearance is
governed by a power-law distribution (as in this experiment).
For this distribution, a small fraction of the keys appear much
more frequently than the rest, and NbQ-CLOCK keeps the
key-value pairs in that fraction longer than the LRU variants
do.

5.4 Throughput Scaling

In the following two experiments, we measure the scala-
bility of the replacement algorithms in isolation and as part
of a key-value store. In the first experiment, we evaluate the
performance of NbQ-CLOCK, Memcached LRU, Bag-LRU,
and Static CLOCK in the best case — i.e., when the rest of the
cache imposes no bottlenecks. This allows one to accurately
measure the scalability (or lack thereof) of each replacement
algorithm in the cache. To remove all bottlenecks, we replace
the hash table with a pre-allocated array of keys and item
descriptors and remove any dynamic memory management.
By designing the benchmark in this way, we replicate the
behavior of the hash table without any of its scalability
bottlenecks.

For this experiment, we define throughput as the time
spent in the replacement algorithm operations divided by the
number of requests (10 million). We use 70% GET and 30%
ADD operations. We model the key-appearance frequency
with a power-law distribution for 10 million unique keys,
and use an object size of 128 B. We fill the cache during an
initialization phase before running the experiment.

The results are shown in Figure 3. Each cache stores
between 33% and 40% of the 10 million objects, depending
on the replacement algorithm. By storing at least 1/3 of
the keys whose appearance is modeled by a power-law

distribution, 91% of all GETs are successful. On the other
hand, successful ADDs - wherein the key does not already
exist - occur the other 9% of the time. NbQ-CLOCK, with
its low-latency updates (276 cycles average for 16 threads),
outperforms the other replacement algorithms. The other
algorithms perform as one would expect from Figure 2: Bag-
LRU performs better than Static CLOCK, and Memcached
LRU scales poorly, particularly after crossing the socket
boundary. As with the update latency scaling experiment in
Section 5.2, the performance dip between 8 and 9 worker
threads appears to be a memory system artifact resulting
from the 9th thread running on a second socket.

While hit rate and update latency scalability give impor-
tant insight into the performance of a replacement algorithm,
those pieces in isolation can only tell part of the story.
To capture the effect of a replacement algorithm on the
performance of an in-memory key-value store, one must
measure the entire system’s throughput. Unlike in the pre-
vious benchmark, in the following benchmark the key-value
store prototype is not fully optimized for scalability; there is
lock contention in the hash table and memory management
operations. Thus NbQ-CLOCK’s inherent advantages are
hindered by the rest of the cache.

For the second scaling experiment, we set a memory limit
of 1 GB for slab allocators for keys, values, item descriptors,
and replacement algorithm overhead, and use an object size
of 128 bytes. The key-appearance frequency is modeled by
a power-law distribution of 10 million keys and the requests
are 70% GETs and 30% ADDs. KVTG issues 40 million
SET requests during the “warm up” phase to ensure the
cache is well populated; in this phase no data is collected.
In the subsequent phase, 20 million requests are sent to each
worker thread according to the key-appearance and request-
type distributions. We evaluate each replacement algorithm
for up to 6 worker threads. For up to 4 worker threads the
key-value store prototype uses the same thread configuration
as that in the latency scaling experiment (Section 5.2).
However, for 5 and 6 worker threads, we pair a KVTG’s
transmit thread and a key-value store’s worker thread on
sibling hardware threads.

The results are shown in Figure 4. As expected, there
is much less differentiation in throughput between the four
replacement algorithms with the key-value store prototype.
For one and two worker threads, and again with five and
six worker threads, there is little difference between the
algorithms. As opposed to the previous experiment, the
latency for a single request is a function of the replacement
algorithm and the rest of the cache (i.e., the hash table and
memory management). As the number of worker threads
increases and the performance difference in the replace-
ment algorithm grows, the throughput difference becomes
more pronounced. With four worker threads, NbQ-CLOCK’s
throughput exceeds the next best by 9.20%. Because the rest
of the cache is the limiting factor for five or more worker

1600000 Cache Throughput Scaling

@@ NbQ-CLOCK
A Bag-LRU

1400000 ¥e-¥¢ Memcached LRU

1500000

13000001 Static CLOCK

1200000

1100000

1000000

Serviced Requests Per Second

900000

800000

7000001 2 3 2 5

Number of worker threads

Fig. 4: Throughput scaling of a realistic in-memory key-value store
with different replacement algorithms.

threads, we do not show results beyond six threads.

6. Related Work

Nb-GCLOCK [18] is a non-blocking variant of the Gen-
eralized CLOCK algorithm intended for memory-page re-
placement in operating systems. Nb-GCLOCK assumes a
fixed (typically 4KB) cache-object size, and as such is based
on a statically allocated circular buffer. This assumption
typically does not hold for in-memory key-value stores (e.g.,
Memcached), where keys and values have variable size,
which makes Nb-GCLOCK unsuitable for most web-object
caching scenarios.

MemC3 [11] is a Memcached implementation that uses
CLOCK for its replacement algorithm. However, MemC3
makes the (generally incorrect) assumption that the object
size is fixed. Further, MemC3 does not consider the pos-
sibility of slab class re-balancing, which requires either
pre-allocating a large enough CLOCK buffer for the worst
case (i.e., re-balancing all memory to a given slab) for
every slab, or dynamic CLOCK buffer resizing. However,
maintaining correctness in the presence of dynamic CLOCK
buffer resizing is impossible without introducing locks, and
statically pre-allocating the buffer introduces an unwieldy
space overhead (discussed further in Section 4).

7. Conclusion

This paper presents NbQ-CLOCK, a replacement algo-
rithm for web-object caches. Its performance exceeds state-
of-the-art algorithms like Bag-LRU in terms of overall
system throughput and number of items stored, while of-
fering hit rates at least as good as those of the alternative
algorithms. Furthermore, NbQ-CLOCK’s simplicity is ben-
eficial when developing a multi-threaded key-value store,

as it requires less debugging and testing effort than more
complicated alternatives.

NbQ-CLOCK has been implemented in KV-Cache [3], a
high-performance in-memory key-value cache conforming
to the Memcache protocol. Our preliminary experimental
results show that, when servicing traffic consisting of 70%
GETs and 30% SETs, KV-Cache experiences negligible
degradation in total system throughput, whereas the per-
formance of Intel’s Bag-LRU Memcached [10] is severely
affected by the presence of SET requests. Besides storing
and replacing data items, SET requests trigger KV-Cache’s
eviction logic once the amount of memory used to store key-
value pairs exceeds a predetermined threshold. Thus, these
results are an encouraging indication of NbQ-CLOCK’s
effectiveness as part of this full system.

One future direction for this work is to adapt higher-
performance CLOCK variants (e.g., [7], [8], [9]) to web-
object caching with the ideas presented in this paper.
CLOCK has well-documented deficiencies that these vari-
ants overcome. For instance, they can cope with scans, self-
tune to a given workload, better measure access frequency,
and in general outperform CLOCK. Additionally, we also
believe that NbQ-CLOCK could be used in other domains,
especially when the cache size and object size vary. We plan
to explore these opportunities in the future.

References

[1] “Memcached,” http://www.memcached.org.

[2] J. Leverich and C. Kozyrakis, “Reconciling high server utilization
and sub-millisecond quality-of-service,” in Proceedings of the 9th
European Conference on Computer Systems (Eurosys’14), April 2014.

[3] D. Waddington, J. Colmenares, J. Kuang, and F. Song, “KV-Cache:

A scalable high-performance web-object cache for manycore,” in

Proceedings of the 6th IEEE/ACM International Conference on Utility

and Cloud Computing (UCC’13), December 2013, pp. 123-130.

B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,

“Workload analysis of a large-scale key-value store,” ACM SIGMET-

RICS Performance Evaluation Review, vol. 40, no. 1, pp. 53-64, June

2012.

F. J. Corbat6, “A paging experiment with the Multics system,” in In

Honor of P. M. Morse. MIT Press, 1969, pp. 217-228.

[6] A. J. Smith, “Sequentiality and prefetching in database systems,”

ACM Transactions on Database Systems, vol. 3, no. 3, pp. 223-247,

September 1978.

S. Bansal and D. S. Modha, “CAR: Clock with adaptive replacement,”

in Proceedings of the 3rd USENIX Conference on File and Storage

Technologies (FAST'04), March 2004, pp. 187-200.

S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: An effective im-

provement of the CLOCK replacement,” in Proceedings of the 2005

USENIX Annual Technical Conference (ATC’05), April 2005, pp. 323—

336.

[9] R. W. Carr and J. L. Hennessy, “WSCLOCK: A simple and effective
algorithm for virtual memory management,” in Proceedings of the Sth
ACM Symposium on Operating Systems Principles (SOSP’81), 1981,
pp. 87-95.

[10] A. Wiggins and J. Langston, “Enhancing the scalability
of Memcached,” Intel Corporation, Tech. Rep., May
2012. [Online]. Available: http://software.intel.com/en-us/articles/
enhancing-the-scalability-of-memcached

[11] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact and
concurrent MemCache with dumber caching and smarter hashing,” in
Proceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation (NSDI’13), April 2013, pp. 371-384.

[4

—

[5

—_

[7

—

[8

—_

[12]

[13]
[14]

[15]

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling Memcache at Facebook,” in Proceedings
of the 10th USENIX Conference on Networked Systems Design and
Implementation (NSDI’13), April 2013, pp. 385-398.

C. Aniszczyk, “Caching with Twemcache,” https://blog.twitter.com/
2012/caching-twemcache, 2012.

B. Fitzpatrick, “Distributed caching with Memcached,” Linux Journal,
vol. 2004, no. 124, pp. 5—, August 2004.

G. Eads, “NbQ-CLOCK: A non-blocking queue-based CLOCK
algorithm for web-object caching,” Master’s thesis, EECS
Department, University of California, Berkeley, October 2013.
[Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/
2013/EECS-2013-174.html

[16]

[17]

[18]

M. M. Michael and M. L. Scott, “Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms,” in Proceedings
of the 15th Annual ACM Symposium on Principles of Distributed
Computing (PODC’96), May 1996, pp. 267-275.

K. Kim, J. Colmenares, and K.-W. Rim, “Efficient adaptations of
the non-blocking buffer for event message communication between
real-time threads,” in Proceedings of the 10th IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC’07), May 2007, pp. 29-40.

M. Yui, J. Miyazaki, S. Uemura, and H. Yamana, “Nb-GCLOCK: A
non-blocking buffer management based on the Generalized CLOCK,”
in Proceedings of the IEEE 26th International Conference on Data
Engineering (ICDE’10), March 2010, pp. 745-756.

