
The 2014 International Conference on Internet Computing and Big Data (ICOMP 2014) 

 

Effective Nutrition Label Use on Smartphones 

 

Vladimir Kulyukin  

Department of Computer Science 

Utah State University 

Logan, UT, USA 

vladimir.kulyukin@usu.edu 

Tanwir Zaman 

Department of Computer Science 

Utah State University 

Logan, UT, USA 

tanwir.zaman@aggiemail.usu.edu 

Sarat Kiran Andhavarapu 

Department of Computer Science 

Utah State University 

Logan, UT, USA 

sarat.kiran@aggiemail.usu.edu 

 

 
Abstract—Proactive nutrition management is considered by 

many nutritionists and dieticians as a key factor in reducing and 

controlling cancer, diabetes, and other illnesses related to or 

caused by mismanaged diets. As more and more individuals 

manage their daily activities with smartphones, smartphones 

have the potential to become proactive diet management tools. 

Many grocery products sold worldwide have nutrition labels 

(NLs). Unfortunately, even highly motivated consumers 

sometimes find it difficult to locate or to comprehend them. The 

literature on NL use by consumers contains several 

recommendations to improve retention and comprehension of 

nutrition information: 1) central positions of NLs; 2) nutrients 

sorted by health relevance; 3) explanation of nutrients; 4) 

reduced visual clutter around NLs; 5) increased visual salience 

through contrast and orientation; 6) increased surface size of 

NLs. In this paper, a system is presented that satisfies 

recommendations 1, 3, 4, and 6. The system’s front end is 

implemented as a smartphone application. The smartphone 

application runs on the Google Nexus 4 smartphone with 

Android 4.3 or 4.4. The system’s back end is currently a four 

node Linux cluster used for image recognition and data storage. 

The presented system has broader implications for food policy. 

The position advocated in this paper argues that the current NL 

design on product packages does not necessarily have to change 

to make NL use more effective. Rather, consumers can use their 

smartphones to design and manipulate their own NL 

presentation schemes suitable to their specific nutrition needs 

without requiring product manufacturers to change physical 

product packages. 

Keywords—mobile computing; cloud computing; nutrition label 

use; nutrition management; electronic commerce 

I.  Introduction  
U.S. Department of Agriculture estimates that U.S. 

residents have increased their caloric intake by 523 calories 

per day since 1970 [1]. Mismanaged diets are estimated to 

account for 30-35 percent of cancer cases. A leading cause of 

mortality in men is prostate cancer. A leading cause of 

mortality in women is breast cancer. Approximately 

47,000,000 U.S. residents have metabolic syndrome and 

diabetes. Diabetes in adults and children appears to be closely 

related to increasing obesity levels. It is estimated that by 2030 

the prevalence of diabetes in the world will reach 4.4%, which 

will equal to approximately 366 million people [2]. Due to the 

long-term complications of diabetes, many countries will 

likely see an increase in blindness, kidney failures, and 

amputations. Many nutritionists and dieticians consider 

proactive nutrition management to be a key factor in reducing 

and controlling cancer, diabetes, and other illnesses related to 

or caused by mismanaged diets. 

Many products sold worldwide have nutrition labels (NLs). 

In the U.S., the display of nutrition information is mandated 

by the Nutrition Education and Labeling Act (NLEA) of 1990 

[3]. Similar initiatives or legislative acts (e.g., EU FLABEL 

[4]) exist in other countries. Unfortunately, even highly 

motivated consumers, who look for NLs to make healthy food 

choices, sometimes find it difficult to locate and to 

comprehend nutrition information on many products [5]. 

Recent investigations of NL use by consumers have used 

digital cameras to track consumers’ eye movements to better 

understand how consumers locate and understand NLs [6]. 

These studies have identified four key factors that appear to 

impede comprehension and retention of nutrition information: 

1) label’s location on the package; 2) presentation of 

information within the label; 3) label’s surface size; and 4) 

surrounding visual clutter. Consumers report that they can 

better locate NLs positioned centrally on a side with a small 

amount of surrounding visual clutter. Consumers also report 

failures to comprehend nutrition terms and to read small font 

sizes in NLs [7]. 

Several recommendations are made in the NL use literature 

to improve retention and comprehension of nutrition 

information: 1) central positions of NLs; 2) nutrients sorted by 

health relevance; 3) explanation of nutrients; 4) reduced visual 

clutter around NLs; 5) increased visual salience through 

contrast and orientation; 6) increased surface size of NLs [5]. 

In this paper, a system is presented that satisfies 

recommendations 1, 3, 4, and 6. The system’s front end is 

implemented as a smartphone application. The application 

runs on the Google Nexus 4 smartphone with Android 4.3 or 

4.4. The system’s back end is currently a four node Linux 

cluster used for image recognition and data storage. 

The front end smartphone sends captured frames to the 

back end cluster across a wireless data channel (e.g., 

3G/4G/Wi-Fi) where barcodes, both skewed and aligned, are 

recognized [10]. Corresponding NLs are retrieved from a 

cloud database, where they are stored as HTML documents, 

and sent across the wireless data channel back to the 
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smartphone where the HTML documents are displayed on the 

touchscreen. Wikipedia links to important nutrition terms are 

embedded for better comprehension. Consumers can use 

standard touch gestures (e.g., zoom in/out, swipe) available on 

mainstream smartphone platforms to manipulate the label’s 

surface size. The NL database currently includes 235,000 

products compiled from public web sites by a custom crawler. 

The remainder of this paper is organized as follows. In 

Section II, the system’s overview is presented and vision-

based nutrition extraction methods are discussed to give the 

reader a broader background about the front end of the system. 

In Section III, the node cluster is described in detail. Section 

IV presents several stress test experiments with the system and 

discusses the results. Section V presents our conclusions, 

outlines the strengths and limitations of our system, and 

discusses several implications for proactive nutrition 

management and food policy. 

II. Related Work 

A. Overview 

Modern nutrition management systems assume that users 
understand how to collect nutritional data and can be triggered 
into data collection with digital prompts (e.g., email or SMS) 
[7]. Such systems often underperform, because many users 
find it difficult to integrate nutrition data collection into their 
daily activities due to lack of time, motivation, or training. 
Consequently, they eventually turn off or ignore numerous 
digital stimuli [8].  

To overcome these challenges, we have begun to develop a 
Persuasive NUTrition Management System (PNUTS).  
PNUTS seeks to shift current research and clinical practices in 
nutrition management toward persuasion, automated 
nutritional information extraction and processing, and context-
sensitive nutrition decision support. 

PNUTS is based on a nutrition management approach 
inspired by the Fogg Behavior Model (FBM) [8], which states 
that motivation alone may not be insufficient to stimulate 
target behaviors such as nutrition intake recording or blood 
tests. Even a motivated user must have both the ability to 
execute a behavior and a trigger to engage in that behavior at 
an appropriate place and time. Many nutrition management 
system designers assume that consumers and patients are 
either more skilled than they actually are or that they can be 
trained to obtain the required skills. Since training is difficult 
and time consuming, a more promising path is to make target 
behaviors easier and more intuitive to execute.  

PNUTS makes proactive nutrition management easier and 
more intuitive by utilizing the relative advantages of mobile 
and cloud computing to improve nutrition information 
comprehension and retention and to automate real-time vision-
based NL analysis and nutrition intake recording [9, 10]. In 
this paper, we focus on effective NL use on smartphones that 
addresses four out of six major factors that impede nutrition 
information retention and comprehension by consumers.  
While vision-based nutrition intake recording is beyond the 
scope of this paper, we give a sketchy overview of how it 
works to give the reader a broader background on the system. 

 

B. Barcode Scanning 

In PNUTS, there are two kinds of nutrition information 
extraction algorithms: barcode localization and scanning and 
nutrition information extraction from NLs. In this section, we 
give a sketchy overview of both algorithms. Interested readers 
are referred to [9] and [10] for technical details and 
experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recognized barcodes are used to retrieve NLs from a 

database of NLs.  In our previous research [11], we presented 

an eyes-free algorithm for vision-based localization and 

decoding of aligned barcodes. The algorithm was based on the 

assumption that simple and efficient vision techniques, when 

augmented with interactive user interfaces, ensure that the 

smartphone camera is horizontally or vertically aligned with 

the surface on which a barcode is sought.  

In [10], we presented two algorithms that relaxed the 

horizontal or vertical alignment constraints, which may not 

always hold, to localize skewed barcodes in frames captured 

by the smartphone’s camera, as shown in Figures 1 and 2. The 

first algorithm localizes skewed barcodes in captured frames 

by computing dominant orientations of gradients (DOGs) of 

image segments and collecting smaller segments with similar 

DOGs into larger connected components.  

The second algorithm localizes skewed barcodes by 

growing edge alignment trees (EATs) on binary images with 

detected edges. Since our experiments showed that the DOG 

algorithm outperformed the EAT algorithm [9], the current 

version of PNUTS uses the DOG algorithm for barcode 

 
Figure 1. Skewed barcode 

 

 
Figure 2. Localized skewed barcode 
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localization. The localized barcodes are scanned without any 

image rotation. Our current barcode scanning algorithm 

handles both UPC and EAN formats. Unlike other barcode 

scanning solutions (e.g., https://github.com/zxing/zxing, 

http://redlaser.com), our algorithm does not require the user to 

align the smartphone’s camera with the barcode and can detect 

skewed or aligned barcodes anywhere in the image. 

 

C. Nutrition Label Segmentation 

We have also been working on a vision-based algorithm to 

localize NLs on grocery product packages and to segment 

them into text chunks for subsequent optical character 

recognition (OCR) [9]. The algorithm captures frames in video 

mode from the smartphone’s camera, localizes horizontally or 

vertically aligned NLs (see Figure 3), and segments the NLs 

into single- or multi-line text chunks, as shown in Figure 4 

(right). Each text chunk is given to an OCR engine. While we 

have been using free open source GOCR 

(jocr.sourceforge.net) and Tesseract 

(http://code.google.com/p/tesseract-ocr/) engines, other OCR 

engines can be used as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Images captured from the smartphone’s video stream can 

be divided into foreground and background pixels. In general, 

foreground pixels are defined as content-bearing units in a 

domain-dependent manner. For example, content can be 

defined as black pixels, white pixels, pixels with specific 

luminosity levels, specific neighborhood connection patterns 

(e.g., 4-connected, 8-connetected), etc. Background pixels are 

those that are not foreground. 

The horizontal projection of an image (HP) is a sequence 

of foreground pixel counts for each image row. The vertical 

projection of an image (VP) is a sequence of foreground pixel 

counts for each column in an image. Figure 4 shows the 

vertical projection of an NL image after edge detection, which 

is done in our system with the Canny Edge detector [11]. 

In detecting NL boundaries, three assumptions are 

currently made: 1) an NL is present in the image; 2) the NL 

present in the image is not cropped; and 3) the NL is 

horizontally or vertically aligned. The detection of NL 

boundaries proceeds in three stages. Firstly, the first 

approximation of the vertical table boundaries is computed. 

Secondly, the vertical boundaries computed in the first stage 

are extended to the left and to the right. Thirdly, the upper and 

lower horizontal boundaries are computed. 

The objective of the first stage is to detect the approximate 

location of the NL along the horizontal axis. This 

approximation starts with the detection of horizontal lines in 

the image, which is accomplished with a horizontal line 

detection kernel (HLDK) that we developed in our previous 

research and described in our previous publications [12, 13]. It 

should be noted that other line detection techniques (e.g., 

Hough transform [14]) can be used for this purpose. Our 

HLDK is designed to detect large horizontal lines in images to 

maximize computational efficiency. 

Let HLFI be a horizontally line filtered image, i.e., the 

image put through the HLDK filter or some other line 

detection filter (see Figure 4 left).  The projections of white 

pixels can then be computed for each column of HLFI.  The 

right image in Figure 4 shows the vertical projection of the 

HLFI on the left. A threshold is chosen, which in our 

application is set to the mean count of the white foreground 

pixels in columns. In Figure 4 (right), the threshold is shown 

by a red line. It can be observed that the foreground pixel 

counts in the columns of the image region with the NL are 

greater than the threshold. 

The vertical boundaries of an NL are computed as follows. 

Firstly, the left boundary is extended to the first column to the 

left of the current left boundary, for which the projection is at 

or above the threshold, whereas the right boundary is extended 

to the first column to the right of the current right boundary, 

for which the vertical projection is at or above the threshold. 

A typical NL includes text chunks with various types of 

caloric and ingredient information, e.g., “Total Fat 2g 3%.” To 

optimize the performance of subsequent OCR, which is 

beyond the scope of this paper, these text chunks are 

segmented from localized NLs (see Figure 4). This approach 

is flexible in that segmented text chunks can be wirelessly 

transmitted to multiple cloud servers for parallel OCR. As can 

be seen in Figure 5 (left), text chunks are separated by black 

colored separators. Formally, text chunks are defined as image 

segments separated by horizontal black separator lines. The 

chunking algorithm detects such separators as well as areas 

with high concentration of corners between the separators, the 

theory being that text segments are areas with higher 

concentrations of corners. Figure 5 (right) shows text chunks 

detected in the localized NL shown in Figure 5 (left). These 

chunks are subsequently sent to an OCR engine [13]. 

 

D. Nutrition Label Crawler 

Our original intention was to use only computer vision to 

extract NLs to populate the NL database. Both the localization 

and text chunking procedures outlined in the previous section 

showed robust performance levels in our experiments [13]. 

Unfortunately, when these techniques were coupled with open 

source OCR engines such as GOCR (jocr.sourceforge.net) and 

Tesseract (http://code.google.com/p/tesseract-ocr/), the 

number of OCR errors was high. 

The crawler module was implemented to compensate for 

low OCR rates. We hope that, as OCR rates improve, the need 

 

 

 

 

Figure 3. Horizontally and vertically aligned NLs 

 

https://github.com/zxing/zxing
http://redlaser.com/
http://code.google.com/p/tesseract-ocr/
http://code.google.com/p/tesseract-ocr/
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for the crawler component will become less significant, 

because NL databases will be populated with computer vision. 

Another reason that we are currently working to improve OCR 

rates is that web site scraping may be unreliable in the long 

term in that a site that currently permits robots may prohibit 

them in the future. Additionally, some sites may contain 

inaccurate or obsolete nutrition information. 

 

  
 

Figure 4. Edges detected in NL (left) and its vertical projection 

(right) 

 

 
Figure 5. Segmented NL (left) and its text chunks (right) 

 

The current version of the crawler scrapes three public web 

sites dedicated to nutrition, which we found helpful in our 

background research on public nutrition information sites: 

www.directionsforme.org, www.smithsfoodanddrug.com, 

www.digit-eyes.com. As we find other helpful public sites, we 

may add them to the crawler’s list in the future. Permissions 

are verified for each web site before it is scraped. 

Each URL is parsed with the Python BeautifulSoup library 

(http://www.crummy.com/software/BeautifulSoup/) which is 

implemented on top of the popular Python XML and HTML 

parsers LXML (lxml.de) and HTML5LIB 

(http://code.google.com/p/html5lib/) . Each URL is parsed to 

obtain the NL, ingredients, warnings, and categories. When 

this information is extracted, a new HTML document is 

generated that contains not only the extracted information but 

also embedded Wikipedia links to all nutrition terms used in 

the tabular part of the NL. A path to this HTML document is 

saved in a database under a specific barcode. The NL database 

currently includes 200,000 products compiled from public 

web sites by the crawler. 

  

 

Figure 6. Upper part of NL with embedded Wiki links 

 

 

 

Figure 7. Lower part of NL with embedded Wiki links 
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E. Nutrition Label Display 

When a barcode is recognized at the back end in an image 

sent to it from the smartphone, its HTML document (if there is 

one) is sent back to the smartphone and displayed on the 

touchscreen, as shown in Figure 6. 

Consumers can use standard touch gestures (e.g., zoom 

in/out, swipe) for manipulating the label’s surface size or 

browsing its contents. For example, Figure 7 shows the lower 

part of the NL displayed in Figure 6 after the user does a down 

swipe on the touchscreen.  When the user clicks on an 

embedded link, a Wiki page for that nutrient is displayed, as 

shown in Figure 8. 

This presentation method satisfies four out of the six 

recommendations made in the NL use literature to improve 

nutrition information retention and comprehension. As stated 

in Section I, there are six recommendations: 1) central 

positions of NLs; 2) nutrients sorted by health relevance; 3) 

explanation of nutrients; 4) reduced visual clutter around NLs; 

5) increased visual salience through contrast and orientation; 

6) increased surface size of NLs. 

 

 

Figure 8. Wiki page of a nutrient (Vitamin A) 

 

This presentation addresses the first recommendation by 

positioning NLs centrally on the touchscreen, as shown in 

Figures 6 and 7. The third recommendation is addressed 

through embedded Wiki links to the nutrients in the tabular 

component of each NL, as shown in Figure 8. The fourth 

recommendation is completely satisfied, because there is no 

visual clutter on the touchscreen around the displayed NL. The 

sixth recommendation is also addressed, because the user can 

use standard touch gestures to increase or decrease the actual 

size of the NL, which can be beneficial not only for regular 

users but also for low vision ones. 

III. Linux Node Cluster 

 To implement the back end of our system, we have built a 
Linux cluster out of four Dell computers for cloud-based 
computer vision and data storage. Each computer has an Intel 
Core i5-650 3.2 GHz dual-core processor that supports 64-bit 
computing. The processors have 3MB of cache memory. The 
machines are equipped with 6GB DDR3 SDRAM and have 
Intel integrated GMA 4500 Dynamic Video Memory 
Technology 5.0. All machines have 320 GB of hard disk 
space. Ubuntu 12.04 LTS was installed on each machine. 
 We used JBoss (http://www.jboss.org) to build and 
configure the cluster and the Apache mod_cluster module 
(http://www.jboss.org/mod_cluster) to configure the cluster 
for load balancing. Our cluster has one master node and three 
slaves. The master node is the domain controller. The master 
node also runs mod_cluster and httpd. All four machines are 
part of a local area network and have hi-speed Internet 
connectivity. We have installed JDK 7 in each node. 

The JBoss Application Server (JBoss AS) is a free open-
source Java EE-based application server. In addition to 
providing a full implementation of a Java application server, it 
also implements the Java EE part of Java. The JBoss AS is 
maintained by jboss.org, a community that provides free 
support for the server.  JBoss is licensed under the GNU 
Lesser General Public License (LGPL). 

The Apache mod_cluster module is an httpd-based load 
balancer.  The module is implemented with httpd as a set of 
modules for httpd with mod_proxy enabled. This module uses 
a communication channel to send requests from httpd to a set 
of designated application server nodes. An additional 
communication channel is established between the server 
nodes and httpd. The nodes use the additional channel to 
transmit server-side load balance factors and lifecycle events 
back to httpd via a custom set of HTTP methods collectively 
referred to as the Mod-Cluster Management Protocol 
(MCMP). 

The mod_cluster module provides dynamic configuration 
of httpd workers. The proxy's configuration is on the 
application servers.  The application server sends lifecycle 
events to   the proxies, which enables the proxies to 
auto-configure themselves.  The mod_cluster module provides 
accurate load metrics, because the load balance factors are 
calculated by the application servers, not the proxies. 

All nodes in our cluster run JBoss AS 7. Jboss AS 7.1.1 is 
the version of the application server installed on the cluster. 
Apache httpd runs on the master with the mod_cluster-1.2.0 
module enabled. The Jboss AS 7.1.1 on the master and the 
slaves are discovered by httpd. 

A Java servlet for image recognition is deployed on the 
master node as a web archive file. The servlet’s URL is 
hardcoded in every front end smartphone. The servlet receives 
images uploaded with http post requests, recognizes barcodes, 
and sends the appropriate HTML pages back to front end 
smartphones. The HTML files generated by the crawler are 
stored on the cloud via a shared directory implemented as a 
Network File System (NFS) on the cluster. No data caching is 
currently done on the servlet or the front end smartphones. 

http://www.jboss.org/
http://www.jboss.org/mod_cluster
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IV. Experiments and Results 

We tested the robustness of the node cluster in a series of 

stress test experiments. The objective was to check the 

accuracy of our cluster configuration and load balancing. We 

took eight Google Nexus 4 smartphones from our laboratory 

running Android 4.3 or 4.4 and deployed a node cluster stress 

tester application on each of them.   

The application would start a background service at 

startup. The background service would download a random 

1024 x 1024 barcode image from an http server, upload it to 

the node cluster, and display the node cluster’s response at the 

smartphone’s action bar. 
 

 

Figure 9. Node cluster request-response pairs 

 
 

The applications on both smartphones were executed for 
ten sessions of 3,000 request-response pairs each and the 
average request-response time for each session was calculated. 
Figure 9 gives the graph of the node cluster’s request-response 
times. The lowest average was 282 milliseconds; the highest 
average was 481 milliseconds. 

Additional node cluster testing was done in an 
undergraduate mobile application development class taught by 
the first author at Utah State University in the fall 2013 
semester. One of the assignments asked the students to write 
an image uploader application to stress test the node cluster. 
Specifically, fourteen students, each of whom had an Android 
smartphone, implemented and deployed this application on 
their smartphones and ran it for one week. Each application 
would submit three images per second for a total of forty 
images per second. Thus, during this week, the node cluster 
was tested with eight lab smartphones and fourteen student 
smartphones and received a total of sixty six 1024 x 1024 
images per second (twenty four images from the lab 
smartphones and forty two images from the students’ 
smartphones). The node cluster did not experience any failures 
and was able to handle and balance the load. 

V. Conclusions 

The R&D literature on NL use by consumers contains 
several recommendations for improving nutrition information 

retention and comprehension: 1) central positions of NLs; 2) 
sorting of nutrients by health relevance; 3) explanation of 
nutrients; 4) reduced visual clutter around NLs; 5) increased 
visual salience through contrast and orientation; and 6) 
increased surface size of NLs. 

In this paper, we presented how our system, called 
PNUTS, addresses recommendations 1, 3, 4, and 6 to increase 
the effectiveness of NL use on smartphones. The system 
leverages vision-based barcode recognition to retrieve NLs for 
specific barcodes.  Wikipedia links to important nutrition 
terms are embedded in NLs positioned centrally on the 
smartphone’s touch screen. The user can follow the links to 
improve comprehension and retention of nutrition information. 
The system leverages the standard touch gestures (e.g., zoom 
in/out, swipe) to enable the user to manipulate the label’s 
surface size and browse NLs. The NL database currently 
includes 230,000 products compiled from public web sites by 
a custom crawler. 

PNUTS currently does not address recommendations 2 and 
5. To address recommendation 2, user profiles will have to be 
added to the system. For example, if a user has Type II 
diabetes, the system can automatically sort the nutrients in 
each NL according to some relevancy taxonomy worked out in 
collaboration with a dietician. Alternatively, a smartphone UI 
can be designed to enable the user to specify the health 
relevance of nutrients for subsequent display.  

A similar approach may turn out successful in addressing 
recommendation 5. For example, visual salience of displayed 
NLs can be increased by coding important NL components 
(e.g., carbohydrates, dietary fiber, sugar, etc.) with different 
colors or display them in a pie chart. It should also be possible 
to enable the user to choose a visual salience enhancement 
pattern at configuration time. 

The average request-response time between the front end 
and the back end was three seconds. We expect additional 
reductions in request-response times to come from faster data 
communication plans (e.g., 4G) and adding additional nodes to 
the cluster. Additional time reductions will come from data 
caching both on the front end and the back end. In the current 
version of the system, no data caching is currently done on the 
node cluster or the smartphones. The smartphones can, for 
example, maintain a local cache of barcodes and retrieved NLs 
and display NLs without receiving them from the node cluster. 

The presented system has an important implication for 
proactive nutrition management and food processing industry. 
A major implication for proactive nutrition management is 
that PNUTS enhances the user’s ability to record and 
comprehend nutritional intake. The user is no longer required 
to manually enter either names or barcodes of consumed 
products. In the future, we plan to extract caloric information 
from NL HTML files or, in the longer term, from captured 
images automatically.  

Our system also has implications for broader food policy. 
The recommendations for improving NL use appear to focus 
on product manufacturers. The central theme of these 
recommendations appears to be that the product manufacturers 
should be rationally or legislatively persuaded to change the 
NL design on product packages. However, in order to change 
the NL design on a physical package, the manufacturer must 
bear many costs such as disruptions in product recognition 
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and, quite possibly, reduced advertisement space on the 
package. Moreover, even if product manufacturers adopt a 
different NL design, there is no guarantee that the one-size-
fits-all approach will succeed with all consumers. There will 
always be consumers who may not like the new design and 
may prefer additional or different design customization.  

The approach presented and advocated in this paper argues 
that the current NL design on product packages does not 
necessarily have to change to make NL use more effective. 
Rather, the strengths of mobile and cloud computing can be 
leveraged to increase the effectiveness of NL use. Consumers 
can use their smartphones to design their own NL presentation 
schemes suitable to their specific nutrition needs without 
requiring product manufacturers to change physical product 
packages. While it remains to be seen which of these two 
approaches will be more successful in the long run, the wide 
adoption of smartphones and cloud services by the public at 
large is an indicator that the approach presented in this paper 
has potential. 
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