
The 2014 International Conference on Internet Computing and Big Data (ICOMP 2014)

Effective Nutrition Label Use on Smartphones

Vladimir Kulyukin

Department of Computer Science

Utah State University

Logan, UT, USA

vladimir.kulyukin@usu.edu

Tanwir Zaman

Department of Computer Science

Utah State University

Logan, UT, USA

tanwir.zaman@aggiemail.usu.edu

Sarat Kiran Andhavarapu

Department of Computer Science

Utah State University

Logan, UT, USA

sarat.kiran@aggiemail.usu.edu

Abstract—Proactive nutrition management is considered by

many nutritionists and dieticians as a key factor in reducing and

controlling cancer, diabetes, and other illnesses related to or

caused by mismanaged diets. As more and more individuals

manage their daily activities with smartphones, smartphones

have the potential to become proactive diet management tools.

Many grocery products sold worldwide have nutrition labels

(NLs). Unfortunately, even highly motivated consumers

sometimes find it difficult to locate or to comprehend them. The

literature on NL use by consumers contains several

recommendations to improve retention and comprehension of

nutrition information: 1) central positions of NLs; 2) nutrients

sorted by health relevance; 3) explanation of nutrients; 4)

reduced visual clutter around NLs; 5) increased visual salience

through contrast and orientation; 6) increased surface size of

NLs. In this paper, a system is presented that satisfies

recommendations 1, 3, 4, and 6. The system’s front end is

implemented as a smartphone application. The smartphone

application runs on the Google Nexus 4 smartphone with

Android 4.3 or 4.4. The system’s back end is currently a four

node Linux cluster used for image recognition and data storage.

The presented system has broader implications for food policy.

The position advocated in this paper argues that the current NL

design on product packages does not necessarily have to change

to make NL use more effective. Rather, consumers can use their

smartphones to design and manipulate their own NL

presentation schemes suitable to their specific nutrition needs

without requiring product manufacturers to change physical

product packages.

Keywords—mobile computing; cloud computing; nutrition label

use; nutrition management; electronic commerce

I. Introduction
U.S. Department of Agriculture estimates that U.S.

residents have increased their caloric intake by 523 calories

per day since 1970 [1]. Mismanaged diets are estimated to

account for 30-35 percent of cancer cases. A leading cause of

mortality in men is prostate cancer. A leading cause of

mortality in women is breast cancer. Approximately

47,000,000 U.S. residents have metabolic syndrome and

diabetes. Diabetes in adults and children appears to be closely

related to increasing obesity levels. It is estimated that by 2030

the prevalence of diabetes in the world will reach 4.4%, which

will equal to approximately 366 million people [2]. Due to the

long-term complications of diabetes, many countries will

likely see an increase in blindness, kidney failures, and

amputations. Many nutritionists and dieticians consider

proactive nutrition management to be a key factor in reducing

and controlling cancer, diabetes, and other illnesses related to

or caused by mismanaged diets.

Many products sold worldwide have nutrition labels (NLs).

In the U.S., the display of nutrition information is mandated

by the Nutrition Education and Labeling Act (NLEA) of 1990

[3]. Similar initiatives or legislative acts (e.g., EU FLABEL

[4]) exist in other countries. Unfortunately, even highly

motivated consumers, who look for NLs to make healthy food

choices, sometimes find it difficult to locate and to

comprehend nutrition information on many products [5].

Recent investigations of NL use by consumers have used

digital cameras to track consumers’ eye movements to better

understand how consumers locate and understand NLs [6].

These studies have identified four key factors that appear to

impede comprehension and retention of nutrition information:

1) label’s location on the package; 2) presentation of

information within the label; 3) label’s surface size; and 4)

surrounding visual clutter. Consumers report that they can

better locate NLs positioned centrally on a side with a small

amount of surrounding visual clutter. Consumers also report

failures to comprehend nutrition terms and to read small font

sizes in NLs [7].

Several recommendations are made in the NL use literature

to improve retention and comprehension of nutrition

information: 1) central positions of NLs; 2) nutrients sorted by

health relevance; 3) explanation of nutrients; 4) reduced visual

clutter around NLs; 5) increased visual salience through

contrast and orientation; 6) increased surface size of NLs [5].

In this paper, a system is presented that satisfies

recommendations 1, 3, 4, and 6. The system’s front end is

implemented as a smartphone application. The application

runs on the Google Nexus 4 smartphone with Android 4.3 or

4.4. The system’s back end is currently a four node Linux

cluster used for image recognition and data storage.

The front end smartphone sends captured frames to the

back end cluster across a wireless data channel (e.g.,

3G/4G/Wi-Fi) where barcodes, both skewed and aligned, are

recognized [10]. Corresponding NLs are retrieved from a

cloud database, where they are stored as HTML documents,

and sent across the wireless data channel back to the

The 2014 International Conference on Internet Computing and Big Data (ICOMP 2014)

smartphone where the HTML documents are displayed on the

touchscreen. Wikipedia links to important nutrition terms are

embedded for better comprehension. Consumers can use

standard touch gestures (e.g., zoom in/out, swipe) available on

mainstream smartphone platforms to manipulate the label’s

surface size. The NL database currently includes 235,000

products compiled from public web sites by a custom crawler.

The remainder of this paper is organized as follows. In

Section II, the system’s overview is presented and vision-

based nutrition extraction methods are discussed to give the

reader a broader background about the front end of the system.

In Section III, the node cluster is described in detail. Section

IV presents several stress test experiments with the system and

discusses the results. Section V presents our conclusions,

outlines the strengths and limitations of our system, and

discusses several implications for proactive nutrition

management and food policy.

II. Related Work

A. Overview

Modern nutrition management systems assume that users
understand how to collect nutritional data and can be triggered
into data collection with digital prompts (e.g., email or SMS)
[7]. Such systems often underperform, because many users
find it difficult to integrate nutrition data collection into their
daily activities due to lack of time, motivation, or training.
Consequently, they eventually turn off or ignore numerous
digital stimuli [8].

To overcome these challenges, we have begun to develop a
Persuasive NUTrition Management System (PNUTS).
PNUTS seeks to shift current research and clinical practices in
nutrition management toward persuasion, automated
nutritional information extraction and processing, and context-
sensitive nutrition decision support.

PNUTS is based on a nutrition management approach
inspired by the Fogg Behavior Model (FBM) [8], which states
that motivation alone may not be insufficient to stimulate
target behaviors such as nutrition intake recording or blood
tests. Even a motivated user must have both the ability to
execute a behavior and a trigger to engage in that behavior at
an appropriate place and time. Many nutrition management
system designers assume that consumers and patients are
either more skilled than they actually are or that they can be
trained to obtain the required skills. Since training is difficult
and time consuming, a more promising path is to make target
behaviors easier and more intuitive to execute.

PNUTS makes proactive nutrition management easier and
more intuitive by utilizing the relative advantages of mobile
and cloud computing to improve nutrition information
comprehension and retention and to automate real-time vision-
based NL analysis and nutrition intake recording [9, 10]. In
this paper, we focus on effective NL use on smartphones that
addresses four out of six major factors that impede nutrition
information retention and comprehension by consumers.
While vision-based nutrition intake recording is beyond the
scope of this paper, we give a sketchy overview of how it
works to give the reader a broader background on the system.

B. Barcode Scanning

In PNUTS, there are two kinds of nutrition information
extraction algorithms: barcode localization and scanning and
nutrition information extraction from NLs. In this section, we
give a sketchy overview of both algorithms. Interested readers
are referred to [9] and [10] for technical details and
experiments.

Recognized barcodes are used to retrieve NLs from a

database of NLs. In our previous research [11], we presented

an eyes-free algorithm for vision-based localization and

decoding of aligned barcodes. The algorithm was based on the

assumption that simple and efficient vision techniques, when

augmented with interactive user interfaces, ensure that the

smartphone camera is horizontally or vertically aligned with

the surface on which a barcode is sought.

In [10], we presented two algorithms that relaxed the

horizontal or vertical alignment constraints, which may not

always hold, to localize skewed barcodes in frames captured

by the smartphone’s camera, as shown in Figures 1 and 2. The

first algorithm localizes skewed barcodes in captured frames

by computing dominant orientations of gradients (DOGs) of

image segments and collecting smaller segments with similar

DOGs into larger connected components.

The second algorithm localizes skewed barcodes by

growing edge alignment trees (EATs) on binary images with

detected edges. Since our experiments showed that the DOG

algorithm outperformed the EAT algorithm [9], the current

version of PNUTS uses the DOG algorithm for barcode

Figure 1. Skewed barcode

Figure 2. Localized skewed barcode

The 2014 International Conference on Internet Computing and Big Data (ICOMP 2014)

localization. The localized barcodes are scanned without any

image rotation. Our current barcode scanning algorithm

handles both UPC and EAN formats. Unlike other barcode

scanning solutions (e.g., https://github.com/zxing/zxing,

http://redlaser.com), our algorithm does not require the user to

align the smartphone’s camera with the barcode and can detect

skewed or aligned barcodes anywhere in the image.

C. Nutrition Label Segmentation

We have also been working on a vision-based algorithm to

localize NLs on grocery product packages and to segment

them into text chunks for subsequent optical character

recognition (OCR) [9]. The algorithm captures frames in video

mode from the smartphone’s camera, localizes horizontally or

vertically aligned NLs (see Figure 3), and segments the NLs

into single- or multi-line text chunks, as shown in Figure 4

(right). Each text chunk is given to an OCR engine. While we

have been using free open source GOCR

(jocr.sourceforge.net) and Tesseract

(http://code.google.com/p/tesseract-ocr/) engines, other OCR

engines can be used as well.

Images captured from the smartphone’s video stream can

be divided into foreground and background pixels. In general,

foreground pixels are defined as content-bearing units in a

domain-dependent manner. For example, content can be

defined as black pixels, white pixels, pixels with specific

luminosity levels, specific neighborhood connection patterns

(e.g., 4-connected, 8-connetected), etc. Background pixels are

those that are not foreground.

The horizontal projection of an image (HP) is a sequence

of foreground pixel counts for each image row. The vertical

projection of an image (VP) is a sequence of foreground pixel

counts for each column in an image. Figure 4 shows the

vertical projection of an NL image after edge detection, which

is done in our system with the Canny Edge detector [11].

In detecting NL boundaries, three assumptions are

currently made: 1) an NL is present in the image; 2) the NL

present in the image is not cropped; and 3) the NL is

horizontally or vertically aligned. The detection of NL

boundaries proceeds in three stages. Firstly, the first

approximation of the vertical table boundaries is computed.

Secondly, the vertical boundaries computed in the first stage

are extended to the left and to the right. Thirdly, the upper and

lower horizontal boundaries are computed.

The objective of the first stage is to detect the approximate

location of the NL along the horizontal axis. This

approximation starts with the detection of horizontal lines in

the image, which is accomplished with a horizontal line

detection kernel (HLDK) that we developed in our previous

research and described in our previous publications [12, 13]. It

should be noted that other line detection techniques (e.g.,

Hough transform [14]) can be used for this purpose. Our

HLDK is designed to detect large horizontal lines in images to

maximize computational efficiency.

Let HLFI be a horizontally line filtered image, i.e., the

image put through the HLDK filter or some other line

detection filter (see Figure 4 left). The projections of white

pixels can then be computed for each column of HLFI. The

right image in Figure 4 shows the vertical projection of the

HLFI on the left. A threshold is chosen, which in our

application is set to the mean count of the white foreground

pixels in columns. In Figure 4 (right), the threshold is shown

by a red line. It can be observed that the foreground pixel

counts in the columns of the image region with the NL are

greater than the threshold.

The vertical boundaries of an NL are computed as follows.

Firstly, the left boundary is extended to the first column to the

left of the current left boundary, for which the projection is at

or above the threshold, whereas the right boundary is extended

to the first column to the right of the current right boundary,

for which the vertical projection is at or above the threshold.

A typical NL includes text chunks with various types of

caloric and ingredient information, e.g., “Total Fat 2g 3%.” To

optimize the performance of subsequent OCR, which is

beyond the scope of this paper, these text chunks are

segmented from localized NLs (see Figure 4). This approach

is flexible in that segmented text chunks can be wirelessly

transmitted to multiple cloud servers for parallel OCR. As can

be seen in Figure 5 (left), text chunks are separated by black

colored separators. Formally, text chunks are defined as image

segments separated by horizontal black separator lines. The

chunking algorithm detects such separators as well as areas

with high concentration of corners between the separators, the

theory being that text segments are areas with higher

concentrations of corners. Figure 5 (right) shows text chunks

detected in the localized NL shown in Figure 5 (left). These

chunks are subsequently sent to an OCR engine [13].

D. Nutrition Label Crawler

Our original intention was to use only computer vision to

extract NLs to populate the NL database. Both the localization

and text chunking procedures outlined in the previous section

showed robust performance levels in our experiments [13].

Unfortunately, when these techniques were coupled with open

source OCR engines such as GOCR (jocr.sourceforge.net) and

Tesseract (http://code.google.com/p/tesseract-ocr/), the

number of OCR errors was high.

The crawler module was implemented to compensate for

low OCR rates. We hope that, as OCR rates improve, the need

Figure 3. Horizontally and vertically aligned NLs

https://github.com/zxing/zxing
http://redlaser.com/
http://code.google.com/p/tesseract-ocr/
http://code.google.com/p/tesseract-ocr/

The 2014 International Conference on Internet Computing and Big Data (ICOMP 2014)

for the crawler component will become less significant,

because NL databases will be populated with computer vision.

Another reason that we are currently working to improve OCR

rates is that web site scraping may be unreliable in the long

term in that a site that currently permits robots may prohibit

them in the future. Additionally, some sites may contain

inaccurate or obsolete nutrition information.

Figure 4. Edges detected in NL (left) and its vertical projection

(right)

Figure 5. Segmented NL (left) and its text chunks (right)

The current version of the crawler scrapes three public web

sites dedicated to nutrition, which we found helpful in our

background research on public nutrition information sites:

www.directionsforme.org, www.smithsfoodanddrug.com,

www.digit-eyes.com. As we find other helpful public sites, we

may add them to the crawler’s list in the future. Permissions

are verified for each web site before it is scraped.

Each URL is parsed with the Python BeautifulSoup library

(http://www.crummy.com/software/BeautifulSoup/) which is

implemented on top of the popular Python XML and HTML

parsers LXML (lxml.de) and HTML5LIB

(http://code.google.com/p/html5lib/) . Each URL is parsed to

obtain the NL, ingredients, warnings, and categories. When

this information is extracted, a new HTML document is

generated that contains not only the extracted information but

also embedded Wikipedia links to all nutrition terms used in

the tabular part of the NL. A path to this HTML document is

saved in a database under a specific barcode. The NL database

currently includes 200,000 products compiled from public

web sites by the crawler.

Figure 6. Upper part of NL with embedded Wiki links

Figure 7. Lower part of NL with embedded Wiki links

http://www.crummy.com/software/BeautifulSoup/
http://code.google.com/p/html5lib/

The 2014 International Conference on Internet Computing and Big Data (ICOMP 2014)

E. Nutrition Label Display

When a barcode is recognized at the back end in an image

sent to it from the smartphone, its HTML document (if there is

one) is sent back to the smartphone and displayed on the

touchscreen, as shown in Figure 6.

Consumers can use standard touch gestures (e.g., zoom

in/out, swipe) for manipulating the label’s surface size or

browsing its contents. For example, Figure 7 shows the lower

part of the NL displayed in Figure 6 after the user does a down

swipe on the touchscreen. When the user clicks on an

embedded link, a Wiki page for that nutrient is displayed, as

shown in Figure 8.

This presentation method satisfies four out of the six

recommendations made in the NL use literature to improve

nutrition information retention and comprehension. As stated

in Section I, there are six recommendations: 1) central

positions of NLs; 2) nutrients sorted by health relevance; 3)

explanation of nutrients; 4) reduced visual clutter around NLs;

5) increased visual salience through contrast and orientation;

6) increased surface size of NLs.

Figure 8. Wiki page of a nutrient (Vitamin A)

This presentation addresses the first recommendation by

positioning NLs centrally on the touchscreen, as shown in

Figures 6 and 7. The third recommendation is addressed

through embedded Wiki links to the nutrients in the tabular

component of each NL, as shown in Figure 8. The fourth

recommendation is completely satisfied, because there is no

visual clutter on the touchscreen around the displayed NL. The

sixth recommendation is also addressed, because the user can

use standard touch gestures to increase or decrease the actual

size of the NL, which can be beneficial not only for regular

users but also for low vision ones.

III. Linux Node Cluster

 To implement the back end of our system, we have built a
Linux cluster out of four Dell computers for cloud-based
computer vision and data storage. Each computer has an Intel
Core i5-650 3.2 GHz dual-core processor that supports 64-bit
computing. The processors have 3MB of cache memory. The
machines are equipped with 6GB DDR3 SDRAM and have
Intel integrated GMA 4500 Dynamic Video Memory
Technology 5.0. All machines have 320 GB of hard disk
space. Ubuntu 12.04 LTS was installed on each machine.
 We used JBoss (http://www.jboss.org) to build and
configure the cluster and the Apache mod_cluster module
(http://www.jboss.org/mod_cluster) to configure the cluster
for load balancing. Our cluster has one master node and three
slaves. The master node is the domain controller. The master
node also runs mod_cluster and httpd. All four machines are
part of a local area network and have hi-speed Internet
connectivity. We have installed JDK 7 in each node.

The JBoss Application Server (JBoss AS) is a free open-
source Java EE-based application server. In addition to
providing a full implementation of a Java application server, it
also implements the Java EE part of Java. The JBoss AS is
maintained by jboss.org, a community that provides free
support for the server. JBoss is licensed under the GNU
Lesser General Public License (LGPL).

The Apache mod_cluster module is an httpd-based load
balancer. The module is implemented with httpd as a set of
modules for httpd with mod_proxy enabled. This module uses
a communication channel to send requests from httpd to a set
of designated application server nodes. An additional
communication channel is established between the server
nodes and httpd. The nodes use the additional channel to
transmit server-side load balance factors and lifecycle events
back to httpd via a custom set of HTTP methods collectively
referred to as the Mod-Cluster Management Protocol
(MCMP).

The mod_cluster module provides dynamic configuration
of httpd workers. The proxy's configuration is on the
application servers. The application server sends lifecycle
events to the proxies, which enables the proxies to
auto-configure themselves. The mod_cluster module provides
accurate load metrics, because the load balance factors are
calculated by the application servers, not the proxies.

All nodes in our cluster run JBoss AS 7. Jboss AS 7.1.1 is
the version of the application server installed on the cluster.
Apache httpd runs on the master with the mod_cluster-1.2.0
module enabled. The Jboss AS 7.1.1 on the master and the
slaves are discovered by httpd.

A Java servlet for image recognition is deployed on the
master node as a web archive file. The servlet’s URL is
hardcoded in every front end smartphone. The servlet receives
images uploaded with http post requests, recognizes barcodes,
and sends the appropriate HTML pages back to front end
smartphones. The HTML files generated by the crawler are
stored on the cloud via a shared directory implemented as a
Network File System (NFS) on the cluster. No data caching is
currently done on the servlet or the front end smartphones.

http://www.jboss.org/
http://www.jboss.org/mod_cluster

The 2014 International Conference on Internet Computing and Big Data (ICOMP 2014)

IV. Experiments and Results

We tested the robustness of the node cluster in a series of

stress test experiments. The objective was to check the

accuracy of our cluster configuration and load balancing. We

took eight Google Nexus 4 smartphones from our laboratory

running Android 4.3 or 4.4 and deployed a node cluster stress

tester application on each of them.

The application would start a background service at

startup. The background service would download a random

1024 x 1024 barcode image from an http server, upload it to

the node cluster, and display the node cluster’s response at the

smartphone’s action bar.

Figure 9. Node cluster request-response pairs

The applications on both smartphones were executed for
ten sessions of 3,000 request-response pairs each and the
average request-response time for each session was calculated.
Figure 9 gives the graph of the node cluster’s request-response
times. The lowest average was 282 milliseconds; the highest
average was 481 milliseconds.

Additional node cluster testing was done in an
undergraduate mobile application development class taught by
the first author at Utah State University in the fall 2013
semester. One of the assignments asked the students to write
an image uploader application to stress test the node cluster.
Specifically, fourteen students, each of whom had an Android
smartphone, implemented and deployed this application on
their smartphones and ran it for one week. Each application
would submit three images per second for a total of forty
images per second. Thus, during this week, the node cluster
was tested with eight lab smartphones and fourteen student
smartphones and received a total of sixty six 1024 x 1024
images per second (twenty four images from the lab
smartphones and forty two images from the students’
smartphones). The node cluster did not experience any failures
and was able to handle and balance the load.

V. Conclusions

The R&D literature on NL use by consumers contains
several recommendations for improving nutrition information

retention and comprehension: 1) central positions of NLs; 2)
sorting of nutrients by health relevance; 3) explanation of
nutrients; 4) reduced visual clutter around NLs; 5) increased
visual salience through contrast and orientation; and 6)
increased surface size of NLs.

In this paper, we presented how our system, called
PNUTS, addresses recommendations 1, 3, 4, and 6 to increase
the effectiveness of NL use on smartphones. The system
leverages vision-based barcode recognition to retrieve NLs for
specific barcodes. Wikipedia links to important nutrition
terms are embedded in NLs positioned centrally on the
smartphone’s touch screen. The user can follow the links to
improve comprehension and retention of nutrition information.
The system leverages the standard touch gestures (e.g., zoom
in/out, swipe) to enable the user to manipulate the label’s
surface size and browse NLs. The NL database currently
includes 230,000 products compiled from public web sites by
a custom crawler.

PNUTS currently does not address recommendations 2 and
5. To address recommendation 2, user profiles will have to be
added to the system. For example, if a user has Type II
diabetes, the system can automatically sort the nutrients in
each NL according to some relevancy taxonomy worked out in
collaboration with a dietician. Alternatively, a smartphone UI
can be designed to enable the user to specify the health
relevance of nutrients for subsequent display.

A similar approach may turn out successful in addressing
recommendation 5. For example, visual salience of displayed
NLs can be increased by coding important NL components
(e.g., carbohydrates, dietary fiber, sugar, etc.) with different
colors or display them in a pie chart. It should also be possible
to enable the user to choose a visual salience enhancement
pattern at configuration time.

The average request-response time between the front end
and the back end was three seconds. We expect additional
reductions in request-response times to come from faster data
communication plans (e.g., 4G) and adding additional nodes to
the cluster. Additional time reductions will come from data
caching both on the front end and the back end. In the current
version of the system, no data caching is currently done on the
node cluster or the smartphones. The smartphones can, for
example, maintain a local cache of barcodes and retrieved NLs
and display NLs without receiving them from the node cluster.

The presented system has an important implication for
proactive nutrition management and food processing industry.
A major implication for proactive nutrition management is
that PNUTS enhances the user’s ability to record and
comprehend nutritional intake. The user is no longer required
to manually enter either names or barcodes of consumed
products. In the future, we plan to extract caloric information
from NL HTML files or, in the longer term, from captured
images automatically.

Our system also has implications for broader food policy.
The recommendations for improving NL use appear to focus
on product manufacturers. The central theme of these
recommendations appears to be that the product manufacturers
should be rationally or legislatively persuaded to change the
NL design on product packages. However, in order to change
the NL design on a physical package, the manufacturer must
bear many costs such as disruptions in product recognition

The 2014 International Conference on Internet Computing and Big Data (ICOMP 2014)

and, quite possibly, reduced advertisement space on the
package. Moreover, even if product manufacturers adopt a
different NL design, there is no guarantee that the one-size-
fits-all approach will succeed with all consumers. There will
always be consumers who may not like the new design and
may prefer additional or different design customization.

The approach presented and advocated in this paper argues
that the current NL design on product packages does not
necessarily have to change to make NL use more effective.
Rather, the strengths of mobile and cloud computing can be
leveraged to increase the effectiveness of NL use. Consumers
can use their smartphones to design their own NL presentation
schemes suitable to their specific nutrition needs without
requiring product manufacturers to change physical product
packages. While it remains to be seen which of these two
approaches will be more successful in the long run, the wide
adoption of smartphones and cloud services by the public at
large is an indicator that the approach presented in this paper
has potential.

References

[1] World Health Organization. "Annual World Health

Statistics.” Avail. at
http://www.who.int/gho/publications/world_health_statist
ics/en/.

[2] Rubin, A. L. Diabetes for Dummies. 3
rd

 Edition, Wiley,
Publishing, Inc. Hoboken, New Jersey, 2008.

[3] Nutrition Labeling and Education Action of 1990. Avail.
at
http://en.wikipedia.org/wiki/Nutrition_Labeling_and_Edu
cation_Act_of_1990.

[4] Food Labelling to Advance Better Education for Life.
Avail. at www.flabel.org/en.

[5] Graham, D. J., Orquin, J. L., and Visshers, V. H. M. “Eye
tracking and nutritional label use: a review of the
literature and recommendations for label enhancement,”
Food Policy, vol. 32, pp. 378-382, 2012.

[6] Graham, D.J. and Jeffery, R.W. “Location, location,
location: eye tracking evidence that consumers
preferentially view prominently positioned nutrition
information,” J. Am. Diet. Assoc., vol. 111, pp. 1704–
1711, 2011.

[7] Årsand, E., Tatara, N., Østengen, G., and Hartvigsen, G.
2010. Mobile Phone-Based Self-Management Tools for
Type 2 Diabetes: The Few Touch Application. Journal of
Diabetes Science and Technology, 4, 2 (March 2010), pp.
328-336.

[8] B. J. Fog. “A behavior model for persuasive design,” In
Proc. 4th International Conference on Persuasive
Technology, Article 40, ACM, New York, USA, 2009.

[9] Kulyukin, V., Kutiyanawala, A., Zaman, T., and Clyde, S.
“Vision-based localization and text chunking of nutrition
fact tables on android smartphones,” In Proc.
International Conference on Image Processing, Computer
Vision, and Pattern Recognition (IPCV 2013), pp. 314-
320, ISBN 1-60132-252-6, CSREA Press, Las Vegas,
NV, USA, 2013.

[10] Kulyukin, V. and Zaman, T. “Vision-based localization of
skewed upc barcodes on smartphones,” In Proc.
International Conference on Image Processing, Computer
Vision, and Pattern Recognition (IPCV 2013), pp. 344-
350, pp. 314-320, ISBN 1-60132-252-6, CSREA Press,
Las Vegas, NV, USA, 2013.

[11] Canny, J.F. “A Computational approach to edge
detection.” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 8, 1986, pp. 679-698.

[12] Kulyukin, V., Kutiyanawala, A., and Zaman, T. “Eyes-
free barcode detection on smartphones with niblack's
binarization and support vector machines,” In Proc. 16-
th International Conference on Image Processing,
Computer Vision, and Pattern Recognition (IPCV 2012),
vol. I, pp. 284-290, CSREA Press, July 16-19, 2012, Las
Vegas, Nevada, USA, (pdf); ISBN: 1-60132-223-2, 1-
60132-224-0Y, 2012.

[13] Kulyukin, V., Vanka, A., and Wang, W. “Skip trie
matching: a greedy algorithm for real-time ocr error
correction on smartphones,” International Journal of
Digital Information and Wireless Communication
(IJDIWC), vol 3(3), pp. 56-65, ISSN: 2225-658X, 2013.

[14] Duda, R. O. and Hart, P. E. "Use of the hough
transformation to detect lines and curves in pictures,"
Comm. ACM, vol. 15, pp. 11–15, January, 1972.

http://www.who.int/gho/publications/world_health_statistics/en/
http://www.who.int/gho/publications/world_health_statistics/en/
http://en.wikipedia.org/wiki/Nutrition_Labeling_and_Education_Act_of_1990
http://en.wikipedia.org/wiki/Nutrition_Labeling_and_Education_Act_of_1990
http://www.flabel.org/en

