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Abstract - Research for the development of credible 

solutions within the Information Continuum has been 

a 17 year journey that began in the mid 1990’s when 

the we were designing new ways to perform data 

capture, processing, analysis, and dissemination of 

high volume, high data rate, streams of information 

(what today would be called a “big data” problem). 

Hence, data analysis and lack of quality user 

interaction within that process are not a new 

problem. Users have continued to be challenged with 

keeping up with the vast volumes and multiple 

streams of data that have had to be analyzed.  By the 

time a user had grabbed a time-slice of data, plotted 

it, and analyzed it, 100’s of Gigabytes of data had 

passed through the system.  In order to provide some 

semblance of rational attack against the onslaught of 

data we created what could be likened to a virtual 

window into the system that allowed the analysts to 

“walk into the middle” of the data and look at it as it 

flowed through the system.  Analysts could reach out 

and grab a set of data, rotate it through its axes, and 

perform automated analysis on the data while 

remaining within the system data flow. This way 

analysts could intelligently and rapidly hop between 

portions of data within multiple data streams to gain 

pattern and association awareness. 
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1. Introduction 
Our work in data representation and visualization 

resulted in a realization that each point in time 

within the rapid data flow was an independent 

and discrete information continuum with specific 

and qualitative state. Subsequently, analogous 

thoughts began to emerge from research in 

artificial intelligence and artificially cognitive 

system theory [6]. Envisioned was a virtual view 

within a portion of the human brain where one 

could view a given neural node, or a given 

neuron, and subsequently view data flow as 

data/information traveled in and out of the 

neuron [4]. Once gathered, a hypothesis emerged 

that the analysis of brain locale, data, and study 

of brain processes through this type of virtual 

environment, could lead to important 

understanding of learning, inferring, storing, and 

retrieving (reconstruction) and/or all aspects of 

human neural processing [1].  This led to the 

possibility of a theoretical Neural Information 

Continuum (NIC) [5].  

   

2. Information Flow within a Synthetic 

Continuum 
One of the first areas that must be investigated 

when considering an Artificially Intelligent 

System (AIS) is the flow of information.  

Humans take in ~200,000 pieces of sensory 

information each and every second of every day 

of our lives.  Our senses (see, hear, smell , touch, 

etc.) are constantly receiving and processing 

information, correlating it, reasoning about it, 

assimilating it with what we already know, and 

finally leading to decision making  based upon 

what was learned.  For a system to become  

dynamic, self-evolving and ultimately 

autonomous, we propose to provide these same 

abilities; although the sensors and sensory 

perception systems may be synthetic and 

different, sensing a variety of information types 

that humans can’t sense (e.g., infrared or RF 

information), the processes for autonomy, which 

correlate, learn, infer and make decisions, are the 

same.  Besides receiving information from a 

variety of sources and types (e.g., auditory, 

visual, textual, etc.), another important aspect of 

information, is that the content is received at 

different times and at a variety of latencies 

(temporal differences between information).  

Additional characteristics include, a variety of 



associations between the information received 

and information the system may have already 

learned, or information about subjects never 

encountered. Therefore, these information 

characteristics and the challenging real-time 

processing required for proper humanistic 

assimilation, help us form the theory of the 

Autonomic Information Continuum (AIC). One 

of the first steps in developing our theory of 

synthetic autonomic hypotheses is 

observing/understanding the information 

continuum and the associated characteristics and 

operational relationships within the human brain. 

Hence, as we develop understanding of 

information flows into and out of neural nodes, 

types of information, processing mechanisms, 

distributions of information, enable us to 

establish foundational mathematical 

representations of these characteristics and 

relationships. 

 

Processing, fusing, interpreting, and ultimately 

learning about and from received information 

requires taking into account a host of factors 

related to each piece or fragment of information.  

These include [7]: 

 

• Information Types 

• Information Latencies 

• Information Associations e.g.: 

o Time, State, Strength, Relationship 

Type, Source, Format etc. 

• Information Value 

• Information Context 

 

Mathematically modeling the information 

continuum field surrounding a node within our 

synthetic AIC, is accomplished via inclusion of 

each discrete association for any node u, takes 

the form shown in the following equation: 

 

 

 

 

 

 

where: 

u represents the unit node of the system,  

x represents the preprocessed input to node u,  

y represents the output from node u,  

w represents the relative contextual information 

threads and association weight of u with its 

surrounding nodes, including a decay factor for 

each relative information thread that describes 

the relative contextual decay over time, where: 

 

 
where: 

 

T represents the Contextual Information Thread j 

derived from Fuzzy, Self-Organizing Contextual 

Topical Maps 

KD represents Knowledge Density j of 

Information Thread T 

W represents Weighting for Contextual Thread j, 

and: 
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I represents the processing activity for node u,  

z represents the learning functionality for node u,  

1/R represents the decay rate for node u
1
, and  

C represents the capacity of node u. 

 

This information field continuum equation 

allows us to analyze the equilibrium of nodal 

states within the AIC and to continuously assess 

the interactions and growth of independent 

information fragments within the system.  Even 

in the most dense, most complex, cluttered 

information environments, each fragment of 

information and each action within the AIC is 

entropically captured explicitly and implicitly 

within Information Continuum Equation (ICE).  

This equation is the entropic engine which 

                                                 
1
 In this case, the decay represents the information’s 

relative value over time. 
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provides the ongoing analysis and virtual view 

into a synthetic AIC. Equation 2-1 enables us to 

assess the performance and quality of processing 

and to understand the capacities, information 

flows, associations, and interactions of 

knowledge and memories within the system, as 

well as, supporting analysis and inherent 

understanding of real-time system behavior.  The 

variables in ICE can be interpreted as the average 

values in a heterogeneous assembly of 

information nodes, where ICE describes the 

behaviors of the interactions among n node 

assemblies within a synthetic AIC processing 

system. The objective is to have the ability to 

measure, monitor, and assess multi-level states 

and behaviors, and how and what kinds of 

associative patterns are generated relative to the 

external inputs received by an AIC system.  ICE 

provides the analysis needed to understand the 

AIS’s ability for processing external content 

within an AIC.  Hence, real-time assessment and 

monitoring, and subsequent appropriate control, 

are expected to allow us to avoid developing a 

rogue AIC, much to the chagrin of Hollywood 

script writers. 

 

3. Information Processing Models 
Establishing a hierarchy of information flow 

within an AIC is a key objective for development 

of synthetic autonomic characteristics (e.g. 

cognition, thinking, reasoning, and learning).  An 

AIC will need to be able to ingest and process a 

variety of inputs from many diverse information 

sources, dissect the information into its 

individual information fragments, fuse the 

information, and then turn this information into a 

formation which can be used to determine action- 

actionable intelligence. An AIC system must be 

able to assess situations previously not 

encountered, and then decide on a course of 

actions, based on its goals, missions, and prior 

foundational collected knowledge pedigree.   

 

The underlying issues and challenges facing 

Artificially Intelligent systems today are not new.  

Information processing and dissemination within 

these types of systems have generally been   

expensive to create, operate and maintain.  Other 

artificially intelligent system challenges involve 

information flow throughout the system. If flow 

is not designed carefully and purposefully, the 

flood of information via messages within these 

systems and between their software and 

hardware components can cause delays in 

information transfer, delaying or stunting of the 

learning process which can result in incorrect or 

catastrophic decisions.   

 

Therefore, real-time decision making processes 

must be supported by sensory information and 

knowledge continuously derived from all 

cognitive processes within the system 

simultaneously, in a collectively uniform and 

cooperative model.  Additionally, transformation 

from information to knowledge within an AIC 

system requires new, revolutionary changes to 

the way information is represented, fused, 

refined, presented, and disseminated.  Like the 

human brain, the cognitive processes within an 

AIC  must form a cognitive ecosystem that 

allows self-learning, self-assessment, self-healing 

and sharing of information across its cognitive 

sub-processes, such that information is robustly 

learned and rapidly reusable..  This AIC 

ecosystem involves inductive, deductive, 

experimental, and abductive thinking in order to 

provide a complete Data-to-Information-to-

Knowledge process explained in detail 

throughout the rest of the book.  At a high-level, 

we are applying the theory of AIC and applying 

the constructs to the development of humanistic 

analogous AIS. The AIS human brain analogy 

provides two-main layers of processing, a 

Deductive Process and an Investigative Process.  

The Deductive Process is utilized for assembling 

information that has been previously learned and 

stored in memories (deductive and inductive 

logic), whereas the Investigative Process looks 

for patterns and associations that have not been 

seen before (abductive and experimental logic) 

[2].  Figure 1 illustrates the differences between 



deductive, inductive, abductive, and 

experimental inferences [8]. 

 

 
 

Figure 1 - Differences between Logical 

Inference Systems 
 

Inductive Reasoning: Inductive reasoning 

involves concluding after evaluating facts; 

reasoning from specific facts to a general 

conclusion and allowing for inferencing.  It also 

requires human experience to validate 

conclusions.  An example might be:  Zebras at 

the zoo have stripes; therefore all zebras have 

stripes [10].   

 

Deductive Reasoning: Deductive reasoning is 

just the opposite.  Deductive reasoning moves 

from general principle to specificity.  This type 

of reasoning is based upon accepted truths.  An 

example of deductive reasoning might be: I know 

that all zebras have stripes therefore when I go to 

the zoo, if I see a zebra, it will have stripes.  

 

Abductive Reasoning: Abductive reasoning 

allows for explanatory hypothesis generation or 

generating ideas outside of the given facts to 

explain something that has no immediate 

satisfactory explanation.  

 

There are a number of ways in which people 

reason, but most human reasoning follows one of 

these three reasoning systems.  Other ways that 

humans’ reason includes cause and effect 

reasoning where causes and after effects are 

considered.  Analogical reasoning is a way of 

relating things to other novel situations.  

Comparative reasoning as it implies involves 

comparing things. Still another reasoning method 

is conditional or if/then reasoning.  Many of us 

have used the pros and cons methods of 

reasoning as well. Systemic reasoning involves 

thinking that the whole is greater than the sum of 

its parts, and finally reasoning by using examples 

or analogies.  Hence, there are numerous logical 

ways in which people reason about events and 

situations. An autonomous artificially intelligent 

system must be able to employ these same 

reasoning methods in order to interact with a 

random and often chaotic world. 

 

4. Discussion 
If we desire to create an Artificial Cognitive 

Architecture that encompasses the AIC discussed 

above, in order to create a system that can truly 

think, reason, learn, utilizing the inferences 

shown in Figure 1, we must consider the overall 

implications of such a system, including the 

psychological impacts and considerations both 

for humans and for the system itself [9].  Further 

research is needed to understand the 

psychological effects of not only real human-AI 

interaction, but also the effect of human 

interaction on AIC learning and self-evolving 

[3].  Sometimes learning from humans is a 

dangerous thing. 
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