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Abstract. This paper describes a case-study where we 

built and exercised a cloud computing framework with 

machine learning (ML) algorithms to improve the 

accuracy of Auxiliary Power Units (APU) health 

monitoring. An APU is a small turbo machine that 

flies on all commercial transport airplanes. The paper 

describes the objective of our study, sources of 

available data, the ETL scripts to populate the 

underlying HBase tables and two examples.  In one 

example machine learning algorithms operating on 

multiple data sources produce useful insights to 

increase our ability to predict APU wear from 39% to 

56%. In the second example, it increased our ability to 

predict shutdown events from 19% to 60%.  This case-

study illustrates the effectiveness of big data analytics 

and tools to discover additional insights that can 

further reduce operational interrupts arising from 

airborne equipment problems. 
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1 Introduction 
In recent years, the aviation industry has witnessed a 

steady increase in more data being collected by 

Aircraft Condition Monitoring Systems (ACMS). 

Data volumes ranging from 5 ~ 10 megabytes per 

flight hour (each aircraft) are routinely collected by 

onboard recorders and sent directly over airport Wi-

Fi and GSM wireless networks without incurring the 

costs associated with ACARS messaging. Advances 

in IT and software that allow secure movement of 

data from airplanes provide an ideal framework for 

embedding statistical machine learning algorithms 

that can discover sweet-spots in global operations can 

feedback into day-to-day actions. This cloud 

computing based information network created by 

these connected aircrafts (a part of Industrial Internet) 

hold the potential of providing valuable knowledge 

needed to maintain profitability in an economically 

challenged civil aviation industry. 

Technically, one of our study areas that can benefit 

most from current big data analytics is to reduce 

maintenance cost of high-value aerospace assets. For 

example, a recent GE article estimates a $250M 

savings in engine maintenance cost [1] is possible 

using insights gained from machine learning (ML), 

data mining and knowledge discovery. While the 

actual savings depend on specific aftermarket 

business policies, such case studies have been widely 

reported, clearly indicating the potential of data 

mining methods for discovering useful business 

insights from big data. In this paper, we describe our 

approach to data mining using data collected from 

auxiliary power units (APUs).  

Our primary objective is to develop Predictive 

analytics. Specifically predict events and failures in an 

APU before they cause an operational interrupt. Our 

approach is to analyze past historic data available from 

two distinct sources: data collected while the APU is 

operational and data when the APU is being repaired. 

Currently these data sources are separated and in many 

cases, the design schemas within these databases are 

poorly documented. Further, the schema is not 

uniform when dealing with different APU makes – 

since these products were introduced at different time 

periods. The repair records are aggregated by three 

global centers—each of which uses different tools that 

introduces site-specific biases. The challenge lies in 

making multiple queries, retrieving the correlated data 

and developing predictive analytics. Data quality 

(missing and incorrect entries) makes this problem 

difficult—using a common APU serial number and 

timestamp is not sufficient. It is this problem statement 

we try to address using big data tools. 

This paper is organized as follows: Sections 2 

introduces the problem along with a brief description 

of the APU. Section 3 describes our cloud-based ML 

framework and its key components. Section 4 

describes the Parser used for data ETL to populate 

data into our HBase and HDFS. Analysis and results 

are presented in Section 5. Conclusions and 

significance of this work is presented in Section 6.  

2 Problem Statement 
An auxiliary power unit (APU) is a small gas turbine 

engine that provides pneumatic and electrical power 

to the airplane. The main functions of an APU are 

listed below: 



1. High pressure bleed air for starting the main 

propulsion engines  

2. Provide air to the environmental control system 

and cabin pressurization 

3. Drive a generator to provide electric power for 

the airplane  

Though an APU does not provide propulsion, the 

internals are as complex as large jet engines. A 

typical APU for commercial transport aircraft is 

broken up into three main sections – the power 

section, the load compressor and the gearbox.  

Two ongoing programs within Honeywell are 

relevant to the discussion presented in this paper.  

1) Predictive Trend Monitoring and Diagnostic 

(PTMD) program which reports data from APUs 

while they are operational 

2) Product In-Service Performance (PIPS) program 

which reports data from APUs after they are 

removed from the airplane and sent to the repair 

shop.  

Honeywell‘s Predictive Trend Monitoring and 

Diagnostic (PTMD) services provide APU usage and 

sensory data downloaded through the Aircraft 

Communication and Addressing Reporting System 

(ACARS). Stated simply, it provides sensory data 

while the APU is operational and installed on the 

aircraft.  

The general description of PTMD is given in [7]. 

However it suffices to mention the following three 

key outputs from the PTMD system:  

A. AHRS: This is called the APU usage hours or 

AHRS. This is similar to the odometer reading in 

a car, albeit it measures the cumulative ―time 

duration‖ rather than distance.  

B. EGT margin. Within the APU fuel is converted 

to mechanical energy. The exhaust gas from the 

APU is the energy that is not converted to useful 

work. EGT margin measured in degree Celsius is 

a measure of the thermodynamic efficiency of 

the APU.  

C. PB margin. In order to start the main propulsion 

engine, bleed air provided by the APU must  

meet certain pressure and flow conditions. The 

bleed margin (abbreviated as PB margin) 

measures the APU‘s ability to meet these 

constraints.     

As the APU ages, both the EGT and PB margin 

decreases steadily with AHRS and at some point, the 

APU operation is no longer economically viable and 

hence it is removed from the aircraft and sent to the 

repair shop for repairs.   

When the APU is received at the repair shop, 

Honeywell‘s Product In-Service Performance System 

(PIPS) captures actions performed at the repair shop. 

The general description of PIPS is outside the scope of 

this paper. However it suffices to mention the 

following two three annotations from the PIPS:  

a) Symptom: This is an enumerated text describing 

the reason for removing an APU, typically 

provided by the airline operator. Examples 

include: no-start (APU is not able to start), auto-

shutdown (the APU is shutting down due to some 

internal problem), and high-wear (the APU 

efficiency has decreased beyond its economic 

threshold.   

b) Description. This is a free-form text provided as a 

summary of the repairs performed on the APU. It 

includes parts replaced, damage observed, and 

possible primary cause and secondary effects. 

 

Our primary objective is to develop analytics aimed 

at predicting (1) severe wear, and (2) erratic behavior 

arising from auto-shutdowns (the APU switches itself 

off to protect internal damage). Figure 1 summarizes 

our problem statement.  

 

 

Figure 1: Summary of data available for applying 

ML methods and mining 

Next we briefly describe the cloud-based ML 

framework used to develop these predictive analytics.  

 

3 Cloud-based ML Framework 
Details of the cloud-based ML framework are 

described in [2]. Here we present a short description. 

The cloud is a Hadoop cluster of Linux machines. 

Salient features shown in Figure 2 are described 

below. Additional details are provided in [2].  

1. Our data storage strategy uses HDFS—distributed 

file system built on top of Hadoop 

2. Mahout provides machine learning algorithms for 

clustering, classification tasks. The list also 



includes algorithms classifying textual repair 

descriptions.  

3. The HBase has two technical components: (a) 

Convenient base classes that support Hadoop 

MapReduce jobs and functions with HBase 

tables; and (b) Query predicate pushes down via 

server side scan and gets filters that will select 

related data for track management systems.  

4. A user can plug-in algorithms based on domain 

knowledge. Our initial focus is on algorithms 

developed in Mathwork‘s Matlab and the R 

language. 

 

Information from the two sources (PTMD and PIPS) 

arrives as reports. We considered two aspects while 

arriving at the storage strategy needed for analytics: 

(1) Reports need to be logically grouped, based on 

typical access pattern, (2) File should also be 

organized in a way to support efficient map reduce 

jobs. When we initially stored our reports in native 

report format, map reduce jobs took more time than 

the desktop execution. The reason for this behavior is 

as follows: map-reduce jobs are efficient in handling 

files smaller than the HDFS block size. We found 

typical report size (from both PTMD and PIPS) was 

less than few MBs while the HDFS block size is 

64MB. This not only slows down map reduce jobs, it 

is also not good for HDFS.  

 
Figure 2: 

Architecture and Components of the Cloud-based ML Framework 

 

Honeywell has been supplying APU for the 

commercial aerospace industry for several decades. 

As a result a large amount of legacy data was 

available for predictive analytics development. 

Organizing this legacy data was an important step in 

our process. The legacy data ETL is described in the 

next section.  

 

4 Data ETL to HBase and 

HDFS Using Parser 
 

An important first step in our process was to import 

legacy APU reports. The format of these reports 

range from comma-separated-values ASCII text files 

to binary files with specific encoding. The import 

process into HBase and HDFS is carried out using 

our Python package (*importer*.py). The importer 

module is a script with a number of different options 

to control the source of input data (SQL database, 

CSV files, etc.), its specific format and the 

destination for the data. This information is supplied 

in a configuration file. The HappyBase library [3] is 

used for access to HBase (via the Python Thrift 

gateway) and the Pydoop package [4] is used for 

access to HDFS. Our importer script has a valuable 

debugging feature that allows us to see exactly what 

would be added to any HBase table without 

committing any changes. Figure 3 shows the screen 

shot illustrating the usage of this script for importing 

legacy data from the PIPS source.  

The destination for the imported data extracted from 

legacy reports are a series of HBase tables. The HBase 

table design is described next.  



 

Figure 3:  

A Screenshot of importing PIPS data into our HBase and HDFS 
 

An important consideration in HBase table design is 

row key design. Each row in HBase table is identified 

by a random unique key. Best practice is to make this 

key a composite key matching the querying pattern. 

A composite key is created by adding multiple 

attributes of data stored in the row. In our case, users 

would search reports based on the asset model, serial 

number and operator. They would then filter the 

reports based on a time range. So row key we chose 

had the following format:  

<model>:<serial>:<operator>:<timestamp> 

To keep the row key unique, random characters are 

appended to the row key. With this row key format, a 

scan can be done with a row key filter. Row key filter 

based scan just looks up the row keys and hence it is 

faster. Random characters appended to the key also 

help in avoiding region server hotspotting. Region 

server hotspotting is a case when more data is 

accumulated in one region server when the row keys 

are logographically closer. This overloads one region 

server when the other region server is underutilized. 

The other aspect of HBase table design is the column 

and column family design. In our case, for all the 

report tables, we have two column families. One 

stores the report data and other stores the asset 

details. The column name for these families is listed 

in Figure 4.  

 

Figure 4: A Screenshot of the column families 
 

The next section describes the analysis and the results 

obtained by applying ML methods.  
 

5 Analysis and Results 
As stated earlier our objective was to explore ML 

methods that could discover (1) factors that indicated 

severe wear on the APU, and (2) factors that have led 

to an auto-shutdown event. The end goal of this 

exercise was to encode the resulting understanding as 

a predictive analytic algorithm for continuous 

monitoring of APU health. The analysis performed 

on the large volume and variety of data being 

collected by the PTMD and the PIPS program. Our 

intent in this section is to summarize the 

effectiveness of the ML methods.  

A fundamental concept in our analysis is called a 

lifecycle point (LCP). LCP for an APU is the time 

interval between its  repair shop visit and the 

 repair shop visit.  is a special case 

when the APU leaves the manufacturing shop and 

enters the operating fleet for the first time. The LCP is 

explained pictorially in Figure 5. 

 
Figure 5: LifeCyclePoint is the ‗atomic unit‘ for 

applying ML methods 
 

The primary indicators available for ML analysis 

while the APU is in the repair shop are the symptoms 

and free-form text description of maintainer actions 

and observations.  The free-form text was processed 

using a combination of Bayesian and Regression text-

mining methods to produce target categories/classes 

that summarized airline operator describing the reason 

for removing the APU and the repair performed. Two 

specific categories of interest in this study were those 

related to severe wear and auto-shutdown.  
 

In section 2 we described the three primary indicators 

available for ML analysis while the APU is 

operational. These are: EGT margin, PB Margin and 



Usage Hours (AHRS). As the APU ages, the both the 

EGT and PB margin decreases steadily with AHRS. 

Typical trend of EGT Margin within a lifecycle point 

is shown in Figure 6.  

It is well known in the industry that the EGT Margin 

is a good indicator of APU general wear [5]. The 

margin becomes smaller (approaches zero) as the 

APU wears and becomes negative as the APU wears 

severely. Further, an APU that has been operating 

longer is more likely to develop internal faults and 

hence more likely to exhibit auto-shutdowns. In 

addition to the numeric values of EGT and PB 

margin at specific AHRS values, we pre-processed 

the trend lines to retain the following features.  

1. Slope – this measured the rate at which the EGT 

and PB margins changed with respect to AHRS 

2. Jumps – this measured large changes in the EGT 

and PB margins between two consecutive flights 

3. Slope changes – this measured inflexion points 

in the EGT and PB trend line where the slope 

changed values.    

 

Figure 6: EGT margin as a function of APU usage. 

A total of  features were available for 

the clustering and classification ML algorithms.  

Both the PTMD and the PIPS programs have been 

tracking APU lifecycles for several years. They span 

three APU models used by more than 100 global 

airline operators.  Lifecycle points available for ML 

are summarized in Table 1.  

Table 1 : Scope of ML analysis 

APU  # of Lifecycle 

points 

Features per 

lifecycle point 

Model A  1001 9 

Model B  764 9 

Model C  629 9 

 

We applied three ML classification methods—

Random Forest (decision trees), Support Vector 

Machine and Naïve Bayes. We assume the reader is 

familiar with three standard ML algorithms. The 

choice of these methods was motivated by the fact that 

they represent non-overlapping approaches for 

capturing the decision boundaries. We used a uniform 

weighted averaging (weight = 1/3) to fuse the output 

generated from each of the method. In addition to 

quantifying the accuracy of detection, we were also 

interested in understanding how much each of the nine 

features contributed to our ability to predict severe 

wear and auto-shutdown events.  

Figure 7 shows the results for the severe wear 

category. It is well known in the industry that the EGT 

Margin is a good indicator overall APU wear [5]. 

However, as shown in Figure 7, it can only predict he 

severe wear event only 39-out-100 times. The ML 

methods discovered three additional features that can 

increase the effectiveness in predicting APU severe 

wear from 0.39 to 0.56. These additional features 

were: (1) the slope of the EGT margin trend, (2) the 

slope of the PB margin, and (3) jumps in the EGT 

trend line.  

 

Figure 7: New features discovered by the Cloud-

computing ML framework for predicting APU wear. 

 

 

Figure 8:  Features discovered by the Cloud ML 

framework for predicting APU auto-shutdown. 
 

Figure 8 shows the results for the second example—

predicting APU auto-shutdown events. While the 

APU age characterized by the AHRS can only 



provide 17% prediction accuracy, the framework 

discovered three new features that increased the 

accuracy to 60%. As shown in Figure 8 these features 

were: (1) EGT margins becoming negative, (2) jumps 

in the PB trend line, and (3) inflexions in the EGT 

margin trend line.  

 

6 Conclusions 
In this paper, we described the analysis and the 

results we obtained using our cloud-based ML 

framework. Specifically we described the use-case 

where we used the framework to gain additional 

insights for improving the accuracy of Auxiliary 

Power Units (APUs) health monitoring. The paper 

described the Honeywell‘s‘ data source we used, and 

the customization of our previously developed cloud-

computing framework [2] with respect to data ETL 

and the HBase table design. Among various ML 

algorithms, we selected three algorithms to 

investigate how big data analytics can be scaled and 

applied to solve real aviation industrial problems. 

We illustrated the effectiveness of the cloud 

computing ML framework using two examples aimed 

at predicting (1) severe wear, and (2) erratic behavior 

arising from auto-shutdowns.  In the wear example, 

the ML framework discovered three new insights that 

can increase the accuracy from 30% to 56%. In the 

auto-shutdown case, the ML framework discovered 

three insights that improved the accuracy from 19% 

to 60%.  

Both these examples clearly illustrate the value-

provided cloud computing tools and big data 

analytics can provide to the aerospace industry. For 

example, insights gained by analyzing decades of 

historical data can be converted into predictive 

analytics for system health monitoring. The resulting 

service would provide alerts to an airline maintainer 

and minimize operational interrupt. This analysis can 

be done in real-time using streaming data from more 

connected airplanes. 

Our future work will focus on expanding our big data 

analytics for developing data-driven predictive 

analytics for other aerospace assets.  
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