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Abstract 
An airborne ground looking radar sensor’s 
performance may be enhanced by selecting and 
modifying algorithms adaptively as the environment 
changes. A brief presentation of an airborne intelligent 
radar system (AIRS) is provided. A description of the 
knowledge based tracker portion of AIRS is 
emphasized. Many tracking algorithms discard all 
information about a track once a track is dropped. Our 
approach maintains this information to enhance the 
algorithm’s learning ability.  

Introduction 

The desire to anticipate, find, fix, track, target, engage, 
and assess, anything, anytime, anywhere (AF2T2EA4) 
by the US Air Force (USAF) will require changes to 
how we modify, build, and deploy radar and sensor 
systems. The US Air Force Research Laboratory 
(AFRL) is attacking these issues from a sensor and 
information perspective and has generated a way 
forward in their defining of layered sensing [1].  
 

How can the US Air Force system of the future 
detect and identify threats and meet the implicit 
requirements of this scenario in a timely manner?  We 
must, as a first step to full automation, implement the 
following ground breaking changes: place more 
compute intensive resources closer to sources of the 
information gathering – e.g. assign tasks to sensors to 
look for “triggers” created from intelligence 
surveillance and reconnaissance (ISR) sources, 
provide for the analysis of  intelligence data 
automatically and without human involvement, move 
the human sensor operator from managing data - to 
managing actionable knowledge and sensor 
aggregation, and develop these “triggers” and rules for 
automatic assignment and management of 
heterogeneous sensors to meet dynamic and abstract 
requirements. This paper will address an airborne 
ground looking radar and how to use artificial 
intelligence (AI) to enhance its tracking performance.    

 
Sensor performance may be enhanced by 

selecting algorithms adaptively as the environment 
changes. It has been shown [2-12], that if an airborne 
radar system uses prior knowledge concerning certain 
features of the earth (e.g. land-sea interfaces) 
intelligently, then performance in the filtering, 
detection and tracking stages of a radar processing 
chain improves dramatically. As an example the 

performance of an intelligent radar can be increased if 
the characteristics and location of electromagnetic 
interference, terrain features [9], mountainous terrain 
[10], and weather conditions are known. The Sensors 
Directorate of the USAF Research Laboratory 
conducted and sponsored research and development in 
the use of prior knowledge for enhancing radar 
performance, as did the Defense Advanced Research 
Project Agency (DARPA) under the Knowledge 
Aided Sensor Signal Processing Expert Reasoning 
(KASSPER) program. 

 
One design of an intelligent radar system that 

processes information from the filter, detector, and 
tracker stages of a surveillance radar, investigated by 
the USAF and under the KASSPER program, was 
specifically designed for an Airborne Intelligent Radar 
System (AIRS). Futuristic advanced intelligent radar 
systems will cooperatively perform signal and data 
processing within and between sensors and 
communications systems while utilizing waveform 
diversity and performing multi-sensor processing, for 
reconnaissance, surveillance, imaging and 
communications within the same radar system. A high 
level description of AIRS is shown in Figure 1 and is 
described in detail, [8, 11], in the literature. This work 
has been extended to include metacognition and is 
illustrated in Figure 2. See [13, 14] for a more detailed 
description. 

 

 
 

Fig.1. Airborne Intelligent Radar System (AIRS) 



 

 
 

Fig. 2 Cognitive Radar Software Architecture 

 
In this paper we wish to investigate the tracking 
portion of AIRS. See Figure 1. In [13] we addressed 
the filter and detector portions. This paper will extend 
our work of an AIRS architecture. We will present a 
AI overview of this tracking algorithm and some of its 
AI rules e.g. maneuver or obstacle rules and shadow 
rules.  An AI logic structure for implementing these 
rules is discussed next and some additional rules for 
our AIRS design are provided.   
 
The logic structure is independent of any tracking 
algorithm and can address aircraft or ground moving 
targets.  It is compatible with the overall AIRS design 
and is modifiable.  The thrust of this logic structure is 
to utilize as much auxiliary data (e.g. maps, other 
sensors, target kinematics, and radar platform 
characteristics) as possible to maintain individual 
identifiable tracks.  With today's tracking algorithms 
if a track is dropped and another track is formed there 
is minimum effort expended to determine if the two 
tracks were formed from the same target.  If a track is 
dropped algorithms, for the most part, do not 
investigate why and then use this information in 
enhancing the overall signal processing performance.  
Algorithms do not learn based upon their previous 
performances.  They are memoryless once a track is 
dropped.  The proposed logic structure presented 
herein addresses these issues and investigates the 
potential for building an AI based tracking algorithm.      
 
Our current tracking algorithm has three separate 
instantiations.  There is an uncoupled two state alpha 
beta filter with position and velocity component 
states, an uncoupled three state Kalman filter with 
position, velocity, and acceleration component states, 
and an extended four state Kalman filter with both x 
and y position and velocity component states.  The 
tracker gathers reports, evaluates the reports and 
correlates them with known tracks, forms a 

correlation matrix and distance matrix, performs an 
association logic based upon nearest neighbor and 
oldest track, and performs track maintenance i.e. 
update extant track states, spawn new tentative tracks 
with unused reports and drops tracks with a state 
value of zero.  A diagram illustrating the state logic is 
shown in Figure 3.  A new tentative track is given a 
state of 1.  If its projected position is detected again 
on the next coherent processing interval (CPI) it is 
given a state of 2, and so on.  Once the target is in 
state 4 it is considered in a firm state as long as it is 
still detected for each subsequent CPI.  Once in the 
firm state, if there are four consecutive CPIs in which 
the target is not detected (i.e. a Miss) then the track is 
dropped.  It is our contention that once a tentative 
track exists then we should maintain its history even if 
it receives one or more misses.  This is important in 
order to correlate false or dropped tracks with roads, 
or jammers, discretes, shadow regions, etc.  This 
information is needed to feed back to the Knowledge 
Base Controller (KBC) shown in Figure 1.   
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Figure 3. Integrating AI Rules 

 
The following is a preliminary design of a logical 
structure to capture AI rules for the tracking portion 
of AIRS.  It is by no means complete and does not 
address each of the numerous attributes for tracking 
any specific type of target (e.g. aircraft, Unattended 
Air Systems (UAS), ground vehicles, missiles) for all 
its possible scenarios embedded in all possible 
environments or clutter.  It is constructed to work 
with a radar tracking filter such as alpha beta or 
Kalman.  The logical structure is shown in Figure 4.  
It is an abstract model and will require numerous 
detail level designs before it can be coded and tested.  
The logic is described using alpha characters to 
indicate where in the structure we are referring.  
Throughout the description the use of outside data 
sources is illustrated and the addition or verification 
of data sources is presented. 
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Figure 4. Logical Structure 

 
Section A 

Within this decision block (A) we are asking whether 
a detected target is within the gate of a known and 
therefore projected track.  If the answer is yes then we 
simply update the track using the tracking filter of 
choice (e.g. Kalman).  If however a target is detected 
and it is not within any projected track's gate (i.e. an 
unused report) then we need to determine whether it 
lies in a larger AI computed gate. The idea of using 
more than one size or variable size gate is discussed 
in the literature.  Skolnik [15] suggests "The size of 
the small gate would be determined by the accuracy 
of the track.  When a target does not appear in the 
small gate, a larger gate would be used whose search 
area is determined by the maximum acceleration 
expected of the target during turns."  Brookner [16] 
states while discussing the g-h filter   
 
"However, aircraft targets generally go in straight 
lines, rarely doing a maneuver.  Hence, what one 
would like to do is use a Kalman filter when the target 
maneuvers, which is rarely, and to use a simple 
constant g-h filter when the target is not maneuvering.  
This can be done if a means is provided for detecting 
when a target is maneuvering.  In the literature this 
has been done by noting the tracking-filter residual 
error, that is, the difference between the target 
predicted position and the measured position on the 
nth observation.  The detection of the presence of a 
maneuver could be based either on the last residual 
error or some function of the last m residual errors.  
An alternative approach is to switch when a maneuver 
is detected from a steady-state g-h filter with modest 
or low g and h values to a g-h filter with high g and h 
values, similar for track initiation.  This type of 
approach was employed by Lincoln Laboratory for its 
netted ground surveillance radar system.  They used 

two prediction windows to detect a target maneuver.  
If the target was detected in the smaller window, then 
it was assumed that the target had not maneuvered 
and the values of g and h used were kept ... If the 
target fell outside of this smaller 3 sigma window but 
inside the larger window called the maneuver 
window, the target was assumed to have 
maneuvered." 
 

Section B 
These references were provided to indicate that the 
radar community has tried different approaches for 
varying the gate sizes for tracking maneuvering 
targets.  The Kalman filter is more suited for 
maneuvering targets.  However, a universal method 
for choosing a larger gate size because of a maneuver 
is not well established.  If the larger gate is too large 
then multiple targets may occur within them.  The 
maneuverability of a target is target dependent and 
may be human dependent and very unpredictable.  
What we are proposing is that the larger gate be built 
using AI techniques.  Let the history of the target's 
flight and a priori knowledge about a potential target 
dictate how to compute the larger AI gate, e.g. a UAS 
versus a B-52 aircraft. 
 
Since we are building an intelligent surveillance 
system we will have data obtained from sources 
outside our radar system, e.g. map data, intelligence 
data, and other sensors.  We can assume we know 
what type of targets we are tracking, such as 
helicopters, tanks, scud launchers, surveillance 
aircraft, fighter aircraft, and missiles.  If so then we 
know something about their kinematics, i.e. their 
minimum, maximum and average velocities for 
different altitudes, their maximum gravitational (G) 
force turn they can withstand and at what radius, and 
their maximum acceleration.  Using these data we can 
construct rules that will compute the larger size gate 
based upon a degree of belief given the type of target, 
e.g. helicopter or a fighter aircraft.  This degree of 
belief can be computed using information from 
outside data sources, its previous kinematics data 
(velocity, location, etc.), radar cross section, and 
altitude amongst other factors such as the type of 
mission, its position in the scene, and sensitive 
locations or targets. 
 
A simple rule is to take the maximum velocity for the 
target type that has the highest belief and compute the 
maximum distance it could have traveled from the 
previous position on the last CPI.  This allows us to 
compute a semi-circle around the vector the target 
was heading.  See Figure 5.  This approach may be 
fine for a target like a surveillance aircraft, but not for 
a tank or track vehicle or scud launcher.  For example, 



a tank which can easily turn 180 degrees, a circle may 
have to be drawn with radius equal to the maximum 
distance that can be traveled within the time between 
CPIs.  The more we know about the targets we are 
tracking the more intelligent we can be in designing 
our rules and estimate our gate sizes. 
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Figure 5. Example AI Computed Gate 

 
Section C 

If the target is detected in the larger gate then we need 
to adjust the weights of our tracking filter.  Indicated 
in block C we can adjust the weights with rules based 
upon position, velocity and acceleration.  These rules 
can be simple, e.g. if the target was detected in the 
larger gate then set the weights for the next CPI as if 
the target were detected the first time.  This will 
eliminate any memory or smoothing that the filter had 
performed and start off with a larger gate size.  More 
sophisticated rules can be employed and should be 
investigated further, dependent upon the tracking 
filter used. 

 
Section D 

If the target was not found in the smaller or the larger 
gate then we need to determine if it is being shadowed 
from our radar, possibly by terrain.  Our logic is 
assuming that the radar system has a priori data that 
are available such as terrain data containing elevation 
attributes, roads, and bridges.  With this information 
we can compute whether or not given the elevation of 
the radar and the last position of the track if there is 
terrain obstructing the radar's illumination of the 
target.  If there is an obstruction then we should be 
able to project, given the last known velocity of the 
track and the changing position of the radar, how 
many CPIs the track will be obstructed.  Based upon 
these computations we can then coast the track until 
the next CPI.  For each coasted CPI we should also 
look for new unused reports that can occur due to our 
coasted track changing its projected velocity while it 
is being obscured.  See Figure 6.  If this does occur 
and a new track is initiated we should "flag" this track 
that it may be the coasted track.  Once we compute 
when or which CPI the original track should be 
visible and if it isn't, even after two additional CPIs, 

we should then revisit the new track.  During this 
revisit we need to compute whether or not the 
dynamics of the target/track were capable of 
maneuvering to the position that the radar detected the 
target.  (See paragraphs F and G for more details.)  If 
it is shown possible, then the new track should be 
updated as being the old track with some degree of 
belief.  If however, the original track is detected after 
it has moved beyond the obstruction then we should 
go back to the new track that was initiated and 
remove the "flag" indicating the possibility that this 
was a firm track that was coasted. 
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Figure 6. Track Obstruction 

 
Section F 

If the target is not in either gate and it is not shadowed 
then maybe the target is out of range.  This is easy to 
compute given its last position relative to the radar.  If 
it is out of range then we should pass this information 
to another sensor platform along with the track data 
we have acquired.  The knowledge of when a target is 
going to reach this point can be predicted earlier than 
the last CPI.  However, the point in space when a 
target will be out of range is a variable dependent 
upon the radar and the target’s movements.   
 
The information that can be passed to the other 
platform can contain the time of the first acquisition, 
its history path, velocity range, hypothesis of type of 
target, and any other kinematics or knowledge that 
has been gathered throughout its track.  This data can 
be used by the message receiving platform in 
assigning degrees of belief about the target's 
maneuverability, type of target, and identification. 
 

Section F 
If the target is not in either gate, not shadowed, and 
not out of range then what happened to it?  Maybe our 
knowledge about its kinematics was incorrect?  
Maybe our sensor and filtering model has more error 
variation than we thought?  Maybe the target 



maneuvered and its radar cross section (RCS) is too 
low and therefore not detected.  Maybe the clutter is 
too large and we can't detect the target?   
 
What we can do is determine if there are any unused 
reports.  If unused reports exist then maybe one of 
these are our target.  First we need to perform a quick 
culling to determine if at maximum velocity (Vmax) 
our target could have traveled from where we last 
detected it to where the unused report was detected, a 
distance of D.  If Vmax times T (time between the 
two detections) is less than D then this unused report 
can't possibly be due to the same track.  If all unused 
reports result in the same finding then we conclude 
that there are no unused reports that may be due to our 
track.  If however, one or more computations show 
that the distance to the possible reports could have 
been traveled by the target then we need to compute 
its possibility and assign a degree of belief to each 
report. 
 

Section G 
A simple algorithm for computing the possibility of 
an A/C maneuverability is illustrated in Figure 7.  D is 
the distance between the last detection and the 
position of an unused report.  The different radii (R1 
and R2) represent the different radius that one can 
construct that can pass a circle or arc through the two 
end points of the chord of length D.  If we assume that 
the acceleration is a maximum then we can assume 
that the velocity is our last estimated velocity or its 
maximum velocity.  Each assumption has a certain 
amount of error.  We can compute different values of 
R by the following: 
 
Rest = (Vlast)2/Accmax, 
 
Rmax = (Vmax)2/Accmax. 
 
For different values of R and D we can compute the 
distance of the arc connecting the end points of the 
chord D.  It can be shown from Figure 7 that: 
 
Theta = 2(arcsin((D/2)/Rest)) or 
Theta = 2(arcsin((D/2)/Rmax)). 
 
The distance along the arc is 2*Pi*Rest/(Theta/360) = 
Darcest.  Therefore if at (Vlast)*T is less than Darcest 
then the maneuver is not possible.  Similarly if 
(Vmax)*T is less than Darcmax then the maneuver is 
not possible. 
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Figure 7. Maneuver Possibilities 

 
Similar rules can be developed for different targets 
and their kinematics to determine the best rules for 
each.  The developed rules can be verified and 
modified by consulting with experts who are aware of 
a target’s kinematics. 
 

Section H 
If the target is not in either gate, not shadowed, not 
out of range, and our kinematics is verified then what 
happened to the target?  It may have maneuvered such 
that its RCS decreased.  If it’s a ground slow moving 
target it may have stopped.  It may be hidden by a 
tunnel.  The level of detail for examining why a target 
track is undetectable needs to be perused dependent 
upon the target, the environment, the amount of detail 
a priori data available, and the scenario under 
investigation.  For this iteration of our AI logic 
structure we have elected to halt our level of 
investigation and to coast the target.  The algorithm 
would request the KBC to reduce the detection level 
for the location which we lost the target and the 
locations where we project the track to be for the next 
four CPIs.  We should identify that the track is 
potentially dropped and treat the track as a coasted 
track.  If after four CPIs it cannot be correlated with a 
detection then the tracking filter will drop the track. 
 

Summary 
 
This paper has provided a brief overview of a 
hypothesized integrated end-to-end radar signal and 
data processing chain.  The majority of the paper 
described a tracking algorithm and proposed an AI 
logic structure for incorporating rules for different 
targets, environments, and scenarios.  The driving 
force of this logic structure is to use AI to learn about 
each track and to analyze each track completely 
before it is dropped.  The logic structure is 
independent of any tracking algorithm, environment, 
target type, or scenario.   



 
The AIRS architecture is new and revolutionary.  Its 
potential is great.  It is one element in a bigger 
program dealing with waveform diversity and sensors 
as robots.    
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