
Processing of ICARTT Data Files Using Fuzzy Matching and
Parser Combinators

Matthew T. Rutherford1, Nathan D. Typanski2, Dali Wang3, Gao Chen4

1,2,3 Department of Physics, Computer Science & Engineering,
Christopher Newport University, Newport News, VA, United States
4 Science Directorate, NASA Langley, Hampton, VA, United States

Abstract— In this paper, the task of parsing and matching
inconsistent, poorly formed text data through the use of parser
combinators and fuzzy matching is discussed. An object-
oriented implementation of the parser combinator technique
is used to allow for a relatively simple interface for adapting
base parsers. For matching tasks, a fuzzy matching algorithm
using Levenshtein distance calculations is implemented to
match string pairs, which are otherwise difficult to match due
to the aforementioned irregularities and errors in one or both
pair members. Used in concert, the two techniques allow
parsing and matching operations to be performed which had
previously only been done manually.

Keywords: fuzzy matching, Levenshtein distance, parser combi-
nator

1. Introduction
Enabling a computer to recognize and parse irregular

and poorly formatted data can be handled in multiple
ways. Many traditional parsing approaches include an initial
lexical analysis phase, in which a given character sequence
is tokenized, followed by a parse phase [1], [2]. These
techniques suffice for compilers and other common parsing
applications, but when faced with inputs in which unique
edge cases are common, the grammar and parse rules must be
adapted often in order to properly handle this kind of input.
We found the lexxer-parser combination approach sluggish
and cumbersome when novel errors in the input were arising
frequently throughout the parsing process.

Parser combinators offered a viable solution, allowing the
consolidation of multiple simple parsers to form a series of
conglomerate parsers, which are then able to collectively
address irregular, complex input. For our purposes, the
combinator approach proved faster compared to frequently
writing and rewriting lexxers and parsers when our program
encountered input that would not parse properly. We could
write a parser quickly, test it on the new input, and rewrite
it as needed.

In order to produce the intended output, our program
needed to reference an external knowledge base. However,
this knowledge base was not guaranteed to correspond
perfectly with the input data. Due to this varying degree of
correspondence, fuzzy matching was used in multiple stages

of this process to determine which portions of the knowledge
base apply. The program had to ensure that no overlapping
matches occurred: it needed a way to perform imperfect
string matching such that the best one-to-one mapping with
the knowledge base could be found.

1.1 The Extended ICARTT Data Format Stan-
dard

The International Consortium for Atmospheric on Trans-
port and Transformation (ICARTT), a scientific airborne
research group, created the Extended ICARTT Data Format
Standard [3] in 2004 to provide a well-defined, text-based file
format for atmospheric data to help ensure consistency across
the several hundred files produced per data collection mission.
ICARTT files are broken into two main sections: a data
section and a corresponding metadata section. The metadata
section is where all contextual information corresponding to
the data section is given. This portion of the file is made up
of several subsections. The data section is where the actual
data recorded by the various aircraft-mounted instruments
as well the corresponding time data are given. Raw data
are given as either comma delimited or space delimited
columns of decimal values. Each data column corresponds
to a variable given in the above metadata section and can be
several hundred to several thousand lines long, depending
on the length of the data collection period for a given file.

1.2 Purpose of Research
The decentralized structure of the ICARTT data collection

campaigns resulted in errors and inconsistencies—some quite
subtle—among data files. Thousands of raw data files have
been produced, which need to be edited and reformatted in
order to meet the Extended ICARTT File Format Standard
before being added to the central Toolset for Airborne Data
(TAD) archive.

In the past, reformatting of ICARTT files had been done
manually, file by file. The purpose of the program described
here is to automate this process as much as possible in order
to quickly reformat large sets of raw ICARTT files with little-
to-no manual effort or editing. To this end, the aforementioned
parser combinator and fuzzy matching algorithms were
implemented.



Fig. 1: Outline showing the process of converting a distributed
set of raw ICARTT data files to the extended format standard.
The role of our program is enclosed within the dotted box.

2. Related Literature
2.1 A Flexible Parser with Backtracking

In his 1963 paper [4], E.T. Irons describes his concept
of an adaptive parsing schema, which could be used for
pattern recognition as well as computer code correction
and optimization. He points out weaknesses of the parsers
in ALGOL and FORTRAN compilers at that time. Weak
error handling being his main concern, he cites the frequent
inability of compilers to correct and move past errors,
specifically flawed object strings in the code. The schema
he proposes would be capable of working through errors by
using a more dynamic parsing structure.

He presents an approach which uses a slightly simplified
equivalent of Backus-Naur Form (BNF) to describe the strings
handled by the parser. Based on this pre-defined BNF-like
grammar, the parser would work through and correct strings.
When the parser encounters a string object where multiple
parse sequences are applicable, it would attempt all possible
sequences until one worked, and then move on to the next
string. If, however, none of the attempted sequences work,
the parser would backtrack to a previous point in the parsing
sequence. This process of attempting different parse paths
repeats until the parser works its way through the input.

Despite the age of Irons’ paper, it is quite relevant to
our chosen approach. He discusses an early conception of
a recursive descent parser. Our program’s parsing schema
derives much of its functionality from recursive descent
parsers, using varying combinations of parsers to work
through the input.

2.2 USGS Metadata Pre-Parser
Peter N. Schweitzer of the United States Geological Survey

addresses a somewhat similar parsing problem to our own
with his Chew and Spit (cns) program [5]. The cns module
precedes the primary parser module, mp [5], in cases where
the input, a metadata file, is initially too poorly formatted to
be parsed by mp.

When working through a metadata file, cns forms a parse
tree, which it populates with parsed metadata elements

based on user-defined element aliases as well as its own
inference. These aliases are held in the alias file, which cns
uses as a simple expert system. This alias file performs a
somewhat similar role to that of the Extended Variable Map
(see Section 3.2) in our program’s parse and match system.

3. Description of Methodology
Our chosen approach had two distinct phases: 1. parsing

and correcting raw file metadata contents based on the
Extended ICARTT Data Format Standard, and 2. using fuzzy
matching to properly identify and define variables from raw
data files based on a corresponding variable map. We built
the program in Python 3, which has multiple robust artificial
intelligence libraries [6], [7] and parsing libraries [8], [9]
available.

3.1 Using Parser Combinators
Due to the often irregular and poorly structured data found

in many raw ICARTT files, a consistent, static grammar was
impossible to define from the specification alone. Writing a
parser capable of understanding the majority of these files
required fast, iterative development. The maintenance costs of
a separate lexical phase or library of dense regular expressions
were unacceptable.

Ideally, we wanted a library that offered one of the
benefits of monadic parsers [10], [11]: sufficient parser
combinators that eliminate the need for a separate lexical
phase. Pyparsing [8] is one such library. It approximates
the compositional nature of monadic parsers in an object-
oriented context. For example, many1 from [11] corre-
sponds with OneOrMore() in Pyparsing, sepby1 with
delimitedList(), and so forth for a number of other
useful combinators.

The Pyparsing ParseResults object [8] offers a versatile
data structure for the output of the parsing process, as it can
be treated as a either a list or a dictionary containing parsed
strings. These features gave our program the necessary level
of flexibility to handle poorly formatted, inconsistent input
from the raw ICARTT files. After a file has been parsed,
it is rebuilt according to the specifications in the Extended
ICARTT File Format Standard. For some parts of the file,
this process is straightforward; though in other places, like
the variable mapping described in Section 3.2, complicated
inference techniques and the ability to reference a knowledge
base is necessary.

3.2 Variable Mapping with Fuzzy Matching
The metadata subsection containing variables adheres to

different specifications for content and formatting than the
other metadata subsections. ICARTT variables proved to be
particularly difficult to parse, as they were prone to subtle
and irregular errors, and required our program to reference an
external knowledge base for verification of content. As such,



Fig. 2: Common input sequences for the “PI Names” field.
These inputs can be automatically parsed and converted into
a standardized format.

the implementation of a more intelligent, adaptable algorithm
to properly handle the variable subsection was required.

ICARTT files contain two distinct variable types: time
variables and dependent variables. Ideally, both have certain
discernible traits denoting their type, but this is often not
the case with raw files. In order to separate time variables
from dependent variables, we use a configuration file against
which fuzzy matching is performed to categorize the variable.

A corresponding Extended Variable Map was created
as the aforementioned knowledge base for each of the
ICARTT mission file sets. These maps contained all the
information a human would normally need to correct the
dependent variables in a file. All time variables are considered
“independent variables” for these purposes and thus not
included in the maps. Each row in an Extended Variable
Map corresponds one-to-one to a variable in an ICARTT
file, but both the raw files and the Variable Maps were
created manually, resulting in irregularities stemming from
human error. For example: the extended map and variable
information lines often contained different names for the
same variable, but the extended map would only list one of
the two, or might not perfectly match either—perhaps using
underscores where there could be hyphens, or zeros (“0”)
where there should be the letter “O”. Thus, the information
lines had to be matched to column headers before the
extended map could be applied.

3.2.1 Fuzzy Match Pairing Algorithm
The Fuzzywuzzy Python library [6] gave our program the

necessary matching capabilities to make it far more sensitive
to subtle and odd edge cases resulting from human error.
The library centers its operations around a fairly simple
implementation of Levenshtein distance [12] to find the
closest matches between pairs of strings.

Fig. 3: Column header/variable info pairing, first pass.
Confidence is shown to the left of variable info. Note
contention for NO_1sigma.

Fig. 4: NO_sig steals ownership of NO_1sigma because it
has a greater confidence rating.

The following algorithm is used to find the optimal one-
to-one fuzzy matching between two lists (“left” and “right”)
of strings:

1) If the right list is empty, pair each element in the left
list with the null element.

2) For each element in the left list, find its best confidence
match in the right list.

3) If any two or more elements in the left list matched to
the same element in the right list, then choose the one
with the greater confidence.

4) If an element in the right list only has one match in
the left list, then pair those two elements.

5) If there are remaining elements that are unmatched in
the left list, then recursively repeat this procedure on
those lists.

Figures 3–5 illustrate the matching algorithm.

Fig. 5: Final step. The fuzzy match algorithm gets called
again this time. Even though the confidence is low, this is the
only match left—and it happens to be the right one. This is
the recursive step. In this case the recursive step just instantly
hits a base case. In more complex matches it might recurse
a few times.



3.3 Results
Out of the 723 ICARTT files to be processed from the

INTEX-A mission, our program was able to successfully
parse and automate most of the formatting cleanup of 706
of them. Success in variable mapping varied depending on
the quality of the variable names chosen. In cases where the
name listed as the raw file’s variable name, the variable info
name, and its corresponding header name were all somewhat
similar, the fuzzy matcher had little problem matching all
of these together. In some cases, adding information to our
knowledge base, e.g., a new line in the extended map or a
“time variable name” listing in the configuration files, could be
enough for the rest of the file cleanup to be fully automated.

These results are extremely promising, and a huge ad-
vantage over the previous manual cleanup of data files.
Automated matching of variables, thanks to the fuzzy
matching algorithms and a sufficiently advanced parser, meant
even complex pairings of variables and column headers like
“Carbon dioxide mixing ratio (ppmv)” and “CO2(ppmv)”
could be performed automatically. Where this was not the
case, and some manual editing was needed to guide the
code toward the correct output, the speed benefits were still
substantial compared to doing the same task by hand.

Overall, the program serves as an example of how artifi-
cial intelligence techniques and somewhat modern parsing
techniques can automate a real, practical process previously
performed only by manual human work.

4. Discussion and Future Work
Our program has successfully processed nearly 1,500

raw ICARTT data files with relatively little manual editing
needed. Moving forward, we plan to continue enhancing
the parsing and matching functionality for progressively
increased automation and reliability in order to further
minimize the need manual editing of raw files. Along with
the continued ICARTT file conversion effort, we plan on
exploring automation techniques for producing the knowledge
base used here as well.

5. Acknowledgements
The authors would like to thank Lindsay Parker,

Amanda Benson, and Aubrey Beach at NASA Langley

Research Center, as well as Elliot Rieflin, Antonio Siochi,
Clare Maliniak, and Anton Riedl at Christopher Newport
University for their contributions, feedback, and support
throughout the project.

References
[1] M. E. Lesk and E. Schmidt, Lex: A Lexical Analyzer

Generator, 1975.
[2] S. C. Johnson, Yacc: Yet Another Compiler Compiler.

Bell Laboratories Murray Hill, NJ, 1975, vol. 32.
[3] A. Aknan, G. Chen, J. Crawford, and E. Williams,

ICARTT File Format Standards V1.1, 2013.
[4] E. T. Irons, “An error-correcting parse algorithm,”

Communications of the ACM, vol. 6, no. 11, pp. 669–
673, 1963.

[5] P. E. Schweitzer, A Pre-parser for Formal Metadata,
2012. [Online]. Available: http : / / geology .
usgs.gov/tools/metadata/tools/doc/
cns.html.

[6] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al., “Scikit-learn: machine
learning in python,” The Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[7] A. Cohen, Fuzzy String Matching in Python, 2014.
[Online]. Available: https : / / github . com /
seatgeek/fuzzywuzzy/.

[8] P. McGuire, Getting Started with Pyparsing. O’Reilly
Media, Inc., 2007.

[9] A. Vlasovskikh, Funcparserlib: Recursive Descent
Parsing Library for Python Based on Functional
Combinators, 2013. [Online]. Available: http://
code.google.com/p/funcparserlib/.

[10] G. Hutton and E. Meijer, “Functional pearl: monadic
parsing in haskel,” Journal of Functional Programming,
vol. 8, no. 4, pp. 437–444, 1998.

[11] D. Leijen and E. Meijer, “Parsec: direct style monadic
parser combinators for the real world,” Technical
Report UU-CS-2001-27, Department of Computer
Science, Universiteit Utrecht, Tech. Rep., 2001.

[12] V. I. Levenshtein, “Binary codes capable of correcting
deletions, insertions and reversals,” in Soviet Physics
Doklady, vol. 10, 1966, p. 707.

http://geology.usgs.gov/tools/metadata/tools/doc/cns.html
http://geology.usgs.gov/tools/metadata/tools/doc/cns.html
http://geology.usgs.gov/tools/metadata/tools/doc/cns.html
https://github.com/seatgeek/fuzzywuzzy/
https://github.com/seatgeek/fuzzywuzzy/
http://code.google.com/p/funcparserlib/
http://code.google.com/p/funcparserlib/

	Introduction
	The Extended ICARTT Data Format Standard
	Purpose of Research

	Related Literature
	A Flexible Parser with Backtracking
	USGS Metadata Pre-Parser

	Description of Methodology
	Using Parser Combinators
	Variable Mapping with Fuzzy Matching
	Fuzzy Match Pairing Algorithm

	Results

	Discussion and Future Work
	Acknowledgements

