
Using an Inference Engine for AI in the  

Office Tactics Video Game 
 

Arturo I Concepcion1, Edward Munoz2, Matthew Hawkins3, and Diane Balane4 
1School of Computer Science & Engineering, California State University, San Bernardino, CA, United States 

2iMedRis Data Corp., Redlands, CA, United States 
3School of Computer Science & Engineering, California State University, San Bernardino, CA, United States 

4Department of Art, California State University, San Bernardino, CA, United States 
 

Abstract - FSM (or its improvements) is the most common 
method employed when implementing AI on video games. Its 
major advantages are its simplicity and the ease of 
implementation but its greatest disadvantage is the 
predictability of the next state, which could lead to the player 
predicting the next step the game will take. Although there are 
some improvements done in FSM to alleviate this 
predictability, the inference engine allows a reasoning process 
and could come up with a strategy or move that the player 
might not be expecting. The inference engine consists of three 
parts: the knowledge base, the agenda, and the working 
memory. This paper developed an inference engine using the 
scripting language of UDK and applied to a video game, 
OfficeTactics. The resulting AI is very diverse and provides a 
lot of options that makes the game more exciting and 
enjoyable to play. 

Keywords: expert system, inference engine, knowledge-
base, AI agents, and video game. 

 

1 Introduction 
Office Tactics is a video game designed by Danny Vargas 

when he was an undergraduate student in the School of 
Computer Science & Engineering, California State University, 
San Bernardino, in 2011. The game is a turn-based strategy 
and involves office workers who were laid off from their jobs 
causing them to retaliate in rebellion against management.  
The paper describes the use of an inference engine to 
implement the AI of the enemy and friendly NPCs in the 
video game. Finite-state machines are the most common 
structures that are used for AI because of its simplicity and 
ease of implementation that produces good results. In spite of 
its advantages, FSM has many disadvantages: subject to 
unbounded growth of states, hard to maintain, and 
predictability of actions by the NPCs.  
  There were extensions made to FSM to overcome the 
disadvantages mentioned above. One is extending the states to 
offer Enter/Exit blocks and allowing event notifications to 
produce random or probabilistic transitions. Another is to 

allow FSM to have a stack-based history to track past states 
[6]. This was also extended to allow a state to transition to an 
entirely new FSM, making the FSM hierarchical. Even with 
these extensions, FSMs cannot perform pathfinding, reasoning 
or learning and so we propose the use of inference engines to 
overcome these deficiencies [7].	
  
 

2 Office Tactics Video Game 
 
2.1 Story 

Office Tactics is a game that circles around the conflict of 
choosing between human and machine labor. The story starts 
off with three of our main characters, the Friendlies: the 
corporate employees who serve as our protagonists as well as 
your playable characters in the game. The three Friendlies are 
called into a conference meeting, where it is announced by the 
Boss that they are all fired (Figure 1). 
	
  

 
Figure 1. The corporate boss announces to the 

Friendlies that they are fired. 
 

In a state of shock, the Friendlies are speechless as the Boss 
welcomes into the room their new replacements. To more of 
the Friendlies’ shocks, they find that their replacements are, in 
fact, exact copies of themselves but in robotic form. The Boss 



gladly explains to the Friendlies that the Robots are beneficial 
to both him and the company since they are more reliable, 
productive, obedient, and extremely cheap (Figure 2). 
	
  

	
  
Figure 2. The corporate boss explains the advantages of 

having robotic employees versus human 
 

Infuriated, one of the Friendlies, Joe Bob, stands up against 
this proposal and is challenged by the boss to stop him, thus 
forcing Joe Bob and his partners to fight for their right to 
voice against this decision as well as for the sake of keeping 
their job (Figure 3). 

 

	
  
Figure 3. The Friendlies stand up to the corporate boss, 

opposing his plans 
	
  
The game takes you through three levels, and in each level 

you play as the Friendlies, battling the Robots with each 
Friendly’s different abilities. Some of the characters include: 
 

• Joe Bob (Brown hair, blue tie) A regular employee 
that is also the most dedicated employee to the 
company. His abilities include Bash, Rush, Self 
Motivation, and Genuflect. 

• Slick Back (Black Hair, green tie) A young man who 
is only interning for the company. Due to his young 
age and minor attachment to the company, he can 
come across as naïve or even irresponsible at times. 
His abilities include Bear Trap, Poison Dart, 
FlashBang, and Brain Drain. 

• John Doe (Black hair, glasses) Although often picked 
on by other employees, John Doe is the IT Nerd as 
well as the brain of the company. The company 
would be nothing without his technical knowledge 
and skills and the employees know it. His abilities 
include Focused Shot, Rush, Self Motivation, and 
Genuflect. 

 
 Right after the final boss battle, the game switches to a cut 
scene of the infuriated, beaten Boss kicking the Friendlies out 
of his office. As the Friendlies stumble out of the office, the 
John Doe’s glasses are knocked off onto the floor. His vision 
extremely blurred, John Doe drops down to his knees to look 
for the glasses, only to stumble upon the handle of a hidden 
file cabinet. The Friendlies gather together to force open the 
cabinet where they find what looks like a steering wheel to a 
ship. After the Boss leaves his office for a bathroom break, the 
Friendlies sneak into the office to figure out where the 
steering wheel belongs. Slick Back finds its rightful place by 
accidently locking the steering wheel into the Boss’s desk. 
The Friendlies gather around to find out what it does by 
turning the wheel, which causes the building break off the 
ground and levitate into the distance, ending the game. 
	
  

2.2 Game Design 

 Office Tactics is a turn-based strategy game for Windows 
PCs, similar to other games such as Ogre Battle and Final 
Fantasy Tactics. It is designed as a single player game 
centered around unit management and strategy. The game is 
built using the public version of Unreal Engine 3. Office 
Tactics challenges the player’s ability to use a limited number 
of units to beat the ten planned levels of the game. Each of the 
player’s units will level with each map completed and each 
enemy they defeat, but are gone for good when taken out by 
an enemy, making it so that the player has to be careful with 
how they deploy their units and how they approach each 
situation. There are six different unit types, with the AI having 
access to special Boss types as well. The player has a choice 
between either a melee or ranged physical type, a direct 
damage or control ‘magic’ type, and a healer or a buff/debuff 
type. The player starts with one of each, along with an extra 
ranged and melee character, though they cannot use all of 
them at once. Each level has a set limit on how many 
characters a player can have, determined by the cost of the 
units and the cap on spending for each level; typically around 
2500 with each unit being 500. 



 Each level has a different mix of enemy units based on both 
the classes that the player can use, and Boss enemies that are 
either a combination of 2 of two class types, or a unique NPC 
that has a whole different move set from a normal class. The 
maps themselves are designed around a cartoony image of an 
office in chaos, with cover and obstacles based on cubicle 
walls and other things that may be found in an office, or 
whatever odd ball thing that might seem interesting or comical 
from a visual standpoint. 
 The characters are based on different character tropes and 
archetypes that would be found in something like Office Space 
or The Office, while the main antagonist can best be described 
as Gordon Gekko-1000. Enemies are designed to look like 
mechanical versions of the base classes, but as if built by a 
modern tech company; sleek, smooth, and cheaply made. 
 All the in-game audio and music is completely original, 
created specifically for the game. The music is meant to be 
light and comedic, with 5 unique tracks that play over each 
map, with a specific song for certain unique events like the 
tutorial and the final boss battle. The audio includes the 
effects that play with each unit’s actions, and different office 
ambiance cues as the player looks around the map. 
 

2.3 Game Mechanics 
Mechanically the game is a turn-based system where, 

starting with the human player, each side takes turns 
controlling their units. On that player’s turn, each unit may 
move and perform up to one action in any order. The game is 
played on a grid board, with the size based on the size of the 
map; the average map is a 64x64 sized grid, with each square 
being a 1 unit by 1 unit square in Unreal. At the start of a 
game, the player selects the units they wish to use from a list 
that lets them see their stats and abilities, along with the costs 
of each unit and the limit they have on that map. Units are 
deployed one at a time, until the player has spent the amount 
of points they want up to the cap. 
 Every unit has a set of seven stats that determine their 
effectiveness in combat. These stats are their Hit Points (HP), 
Ability Points (AP), Physical Power/Defense, Ability 
Power/Defense, and Movement speed. Each of these except 
for Movement is determined by a unit’s class and level, with a 
unit’s level determined by how much Experience it has 
gained. Ability Points (AP) are spent in units to use their 
special attacks, which are different depending on the unit 
using them, and any effect they have is based on the unit’s 
Ability Power; if it is an offensive ability, it deals damage 
based on a comparison of the attacker’s Ability Power to the 
defender’s Ability Defense. Every unit has a basic attack that 
is either melee or ranged, depending on the unit, and deals 
damage similar to an Ability, except using the Physical stats. 
Movement speed is what determines how many squares a unit 
can move each turn. Movement can be blocked by other units 

and obstacles, making placement and movement order 
important. 
 Every attack and ability has a set of stats as well that, when 
combined with the each unit’s base stats, determines how 
powerful they are. The stats are Range, Power, Area of Effect, 
which has either a cone, line, or burst shape; and AP cost for 
Abilities. Most units have a basic attack range of one square, 
and can attack in any direction around them in either a 
horizontal or vertical line, but not diagonally. Attacks and 
Abilities that have a range beyond one are targeted in the 
same manner as movement, with the action’s Area of Effect 
shown on the grid. Bursts are centered on the player’s cursor 
and can be centered anywhere in the action’s range; meaning 
that units outside the actual range can be hit if they are still 
within the Area of Effect’s radius. Line and cone actions are 
centered on the unit using it, and fire out in the selected 
direction similar to a Range one attack, but either a line of 
squares in that direction if a Line, or in a cone of squares in 
that direction if a Cone. As an example a basic ranged Attack, 
and certain abilities, is effectively an attack with an Area of 
Effect Burst of zero. 
 When a unit’s HP reaches zero it is considered defeated, 
and if an NPC, the player unit that defeated it gains a set 
amount of Experience determined by the level of the unit 
compared to the type and level of the NPC defeated. When a 
unit gains enough Experience to level, they gain it 
immediately and have their stats recalculated, along with 
regaining health and ability points up to their new maximum 
at that level. 
 Between levels each unit’s HP and AP is replenished, 
however in game each of the caster types has a way to 
replenish AP, and the healer class obviously can restore the 
HP of units on the player’s side; either with a weak Area of 
Effect heal, or a stronger single target heal. 
 Finally, the current goal of each level is to clear it of all 
enemy units, allowing the player to advance to the next level 
of the game. There are plans to include different mission 
types, but those are time dependent. 
 



3 Inference Engine 

 

Figure 4. Architecture of an expert system showing the 
inference engine 

 
An inference engine, see Figure 4, is designed to employ 

methods of plausible reasoning. Indeed when designing an 
inference engine there are many methods that can be 
implemented to perform reasoning, such methods include 
forward chaining, backward chaining, fuzzy logic, and 
bayesian logic, to name a few. 
 

Among the many different methods of reasoning that could 
have been used for Office Tactics, forward chaining stood out 
as being the most practical and easiest method to implement 
into the game. Forward chaining allows for the inference 
engine to make use of the if-then structure of the rule base in 
order to locate justified rules that allow the engine to conclude 
the consequent (Then Clause), as a result new information is 
added to the games working memory [5]. 
 

For example, suppose the goal is determine the best 
possible move that the AI should make based on the following 
rules: 
 

• If Target distance is between 6 and 10 Then Move to 
target 

• If Target is 1 space away Then check Player’s 
available action points 

• If Player’s available action points are less than 10 Then 
perform basic attack 

 
Assuming the following facts: 
 

• Target is 1 space away 
• Player’s available action points is 6 

 

With forward chaining, the inference engine can ascertain 
that the best possible move is to perform a basic attack in 
three steps: 

 
• Target is 1 space away 

Based on that logic, the inference engine is then asked to 
check the Player’s available action points. 

• Player’s available action points is less than 10 
Based on rule 3, the inference engine can derive 

• Perform basic attack 
Just as the name “forward chaining” sounds, it is based on the 
fact that the inference engine starts with data and reasons its 
way to the best possible move.	
  
 

3.1 Knowledge Base 
A knowledge base is comprised of two key components: 

facts, and rules. Facts are assertions that change rapidly 
through the course of a program, and generally represent 
short-term information corresponding to rules that have been 
proven true. Rules form the representation of knowledge that 
originates from an expert on a specific domain. Unlike the 
short-term duration of facts, rules serve as long-term 
information about how to generate new facts. In most expert 
systems, rules are expressed in natural language typically 
following an IF conditional THEN consequent structure, for 
example: 
 
Rule 1 
IF the target is 1 space away, AND available action points is 
less than 10 THEN the AI should perform a basic attack. 
Rule 2 
IF the target is 1 space away, AND available action points is 
greater than or equal to 10 AND the target is below 50% 
health points. THEN the AI should perform a stronger ability. 
 
These rules cannot directly be embedded in program code due 
to the nature of natural language; instead they can be 
represented by decision trees, semantic nets, or predicate 
calculus. 
 

3.2 Agenda 
An Agenda is a prioritized list of rules prepared by the 

inference engine [8]. Rules put onto the agenda are satisfied 
by the facts from working memory. When the inference 
engine locates facts that satisfy the conditional portion of a 
rule it adds the rule to the agenda. In order for a rule to be put 
on the agenda the entire conditional portion of the rule has to 
be proven true, even when there are multiple patterns that 
need to be satisfied, for example: 
 
Rule 2 
IF the target is 1 space away, AND available action points is 
greater than or equal to 10 AND the target is below 50% 
health points. THEN the AI should perform a stronger ability. 
 



In this example, Rule 2 has two conditions: the target has to 
be 1 space away, and available action points need to be 
greater than or equal to 10. If both of these conditions are met 
then this rule gets added to the agenda. When the inference 
engine is ready to fire rules from the agenda there are several 
methods that can be applied, such methods include FIFO 
(First In First Out), precedence, and number of antecedents. 

• First In First Out works by adding rules to the 
agenda in the order in which they were proven true in 
the knowledge base, and the inference engine fires 
those rules in the same order in which they appear in 
the agenda. 

• Precedence is a system in which rules are given 
precedence values, and rules with higher precedence 
are fired first. 

• Number of Antecedents is a system that fires rules 
based on the number of antecedents. According to 
this kind of logic, rules that have more antecedents 
have more requirements, which are likely to be more 
accurate, and more likely to provide the shortest path 
to the goal. 
 

3.3 Working Memory 
Working memory consist of a collection of facts that are 

stored to be used later on by the rules. The inference engine 
uses working memory to retrieve known facts in an attempt to 
satisfy the conditional portion of a rule. Facts that are applied 
to rules generate new facts that are added to the working 
memory forming a continuous cycle. 

 
4 Implementation Using UDK 

 Scripting Language 
All the components of the inference engine used by the 

Office Tactics video game were written in the Unreal 
Development Kit’s native scripting language UnrealScript. 
UnrealScript is used for authoring game code, and game 
events. Similar to high-level programming languages such as 
Java, and C++, UnrealScript is object-oriented. The language 
was designed to be simple, yet powerful enough for high-level 
game programming. 
 
4.1 Working Memory Implementation 

The goal of working memory is to provide new facts that 
have been generated by previous calls to the inference engine. 
The engine constantly updates simple facts, such as an enemy 
units current health, throughout game play. For example, a 
call to working memory is made in the beginning of each of 
the AI unit’s turns. This call is also done before any reference 
to knowledge base to ensure that the facts being retrieved are 
those that have been updated by the previous turn.  
 
var	
  CorPIE_WM	
  WorkingMem;	
  
WorkingMem	
  =	
  new	
  ()	
  	
  	
  class	
  	
  ‘CorpIE_WM’	
  ;	
  
	
  

Figure 5. The above snippet of code illustrates a call to 
working memory in UnrealScript. 

 
Most of the information needed by the working memory is 

data regarding the player units that are targeted by AI units. 
Information such as ability points and health points are of 
primary concern. Before executing any rules in the knowledge 
base calls to working memory are made to retrieve facts 
regarding the AI’s target. Some examples of functions used by 
working memory to retrieve data include: 
 
/	
  /	
  TODO:	
  	
  Get	
  pawn’s	
  hit	
  points	
  accessor	
  function	
  
function	
  int	
  getCurrentHealthPoints	
  (CorpPawn	
  pawn)	
  
{	
  
	
   return	
  pawn.CurrentHealthPoints;	
  
}	
  
 

Figure 6. The above snippet of code is an accessor 
function that returns a pawn’s current health points 

 
 
/ /  TODO:  Get pawn’s ability points functions 
function int getCurrentAbilityPoints (CorpPawn 
pawn) 
{ 
 return pawn.CurrentAbilityPoints; 
} 
 

Figure 7. The above snippet of code is an accessor 
function that returns a pawn’s current ability points 

 
4.2 Knowledge Base Implementation 

The rules in a knowledge base are expressed in natural 
language, but unfortunately computers don’t have the 
capabilities to understand natural language due its ambiguity. 
However natural language is an exceptional start when 
designing the expert rules that will be included into the 
knowledge base. Once a list of expert knowledge has been 
accumulated it is only a matter of translating those rules from 
natural language into high-level computer language such as 
UnrealScript. For example, when determining the actions of a 
support unit, several facts are needed to ascertain the best 
move that should be made. Consider the following rules as an 
example: 
 
Rule 3 
IF the target is 1 space away AND available action points is 
greater than or equal 20, AND the target has 50% or less 
health, AND only allies are in the area. THEN perform a 
Group Heal. 
Rule 4 
IF the target is 1 space away AND available action points is 
greater than or equal to 10, AND the target has 50% or less 
health. THEN perform a heal on target. 
 



Rules 3, and 4 can be translated into UnrealScript, the 
following is an example of the kind of an if-then structure 
taken from the knowledge base. 
 
	
  
If(TargetPawnDistance	
  ==	
  1)	
  
{	
  
	
   if(UnitActionPoints	
  	
  >==	
  20	
  &&	
  

TargetPawnObjective.CurrentHealthPoints	
  	
  
<=	
  	
  (0.50	
  
*float(TargetPawnObjective.MaxHealthPoi
nts))	
  &&	
  	
  
GroupHealArea.Length	
  >	
  1	
  &&	
  
AllyOnlyArea(1))	
  
{	
  
	
   /	
  /GroupHeal	
  
AgendaQueue.AddItem(Ability);	
  
}	
  
else	
  if(UnitActionPoints	
  	
  >=	
  10	
  &&	
  
	
   TargetPawnObjective.CurrentHealthPoin
ts	
  <=	
  (0.50	
  
*float(TargetPawnObjective.MaxHealthPoi
nts)))	
  
{	
  
	
   /	
  /Heal	
  
	
   AgendaQueue.AddItem(Ability0);	
  
}	
  

}	
  
 

Figure 8. The above snippet of code represents rule 3 
and rule 4 in UnrealScript. 

 
Even though the original design for the rules are in natural 

language the statements can easily be expressed through the 
use of comparative operators, variables, and objects in 
UnrealScript. The ‘then’ portion of each rule is equally as 
imperative to the knowledge base as the conditional portion, 
because it is within this block of code that new rules enter the 
life cycle of the game. When a rule has been justified, a 
keyword, or symbol gets pushed onto a data structure for later 
use. For this particular kind of expert system a symbol 
represents various problems concepts, actions, and is used for 
applying strategies to reach a certain conclusion. In 
UnrealScript a symbol is represented as a constant, and stands 
for some concept related to the Office Tactics video game. 
Examples of the symbols used in the Office Tactics video 
game include: 
 

• Ability [0-5]: This symbol is used to represent the 
type of ability a unit should use in a certain situation, 
in which case the AI goes into an Ability Standby 
State. 

• BasicAttack: This symbol is used notify the system 
that a basic attack should be used on a target, in 
which case the AI goes into an Attack Standby State. 

• MoveToTarget: This symbol is used to notify the 
system that the AI should move toward a target, in 
which case the AI goes into a Move Standby State. 

• Wander This symbol is used to flag the system that 
there are no moves to be made, in which case the AI 
is allowed to make to traverse the map randomly. 
 

These symbols were given names that represent the actions 
that they embody. These rules once proven to be true will 
cause symbols to be added onto a data structure that serves as 
the agenda of the inference engine.	
  
 
 
4.3 Agenda Implementation 

The agenda implementation for Office Tactics works a little 
differently than other expert systems. Generally an agenda 
would fire rules base on their precedence level. Rules with 
higher precedence leave the agenda quicker than those that 
have lower precedence. However for Office Tactics the 
agenda works off a FIFO principle. The agenda for this 
implementation is a queue that allows the inference engine to 
fire rules in the same order in which they appear in the 
agenda. A queue based implementation allowed for easier 
manageability, and development. The set of symbols 
representing different rules can be added onto the agenda in 
many different combinations, allowing for the AI to perform 
actions that are less predictable, and more likely to lead to 
greater results than a static finite state machine. 
	
  
Function	
  Agenda	
  ()	
  
{	
  
	
   local	
  int	
  Action;	
  
	
   NumberOfActions	
  =	
  AgendaQueue.Length;	
  
	
   	
  
	
   Foreach	
  AgendaQueue(Action)	
  
	
   {	
  
	
   	
  
	
   	
   if(Action	
  <	
  6)	
  
	
   	
   {	
  
	
   	
   	
   ThisPawn.SetAbility(Action);	
  
	
   	
   	
   If(NumberOfActions	
  ==	
  1)	
  
	
   	
   	
   {	
  
	
   	
   	
   	
   GotoState(‘SpecialAbilityStandby’);	
  
	
   	
   	
   }	
  

}	
  
	
   	
   else	
  if(Action	
  ==	
  6)	
  
	
   	
   {	
  
	
   	
   	
   if(NumberOfActions	
  ==	
  1)	
  
	
   	
   	
   {	
  
	
   	
   	
   	
   GotoState(‘AttackStandby’);	
  
	
   	
   	
   }	
  
	
   	
   }	
  
	
   	
   else	
  if(Action	
  ==	
  7)	
  
	
   	
   {	
  
	
   	
   	
   	
   GotoState(‘Standby’);	
  
	
   	
   }	
  



	
   	
   else	
  if(Action	
  ==	
  8)	
  
	
   	
   {	
  
	
   	
   	
   	
   WanderState();	
  
	
   	
   }	
  
	
   }	
  
	
   	
  
	
   AgendaQueue.Remove(0,	
  AgendaQueue.Length	
  );	
  
}	
  

Figure 9. The above snippet of code represents the 
structure of the agenda used in the Office Tactics video 

game. 
	
  

Based on the order in which the rules are added onto the 
agenda, and the unique constant value that each symbol is 
represented by, the agenda directs the system to the 
appropriate state until all the rules have been fired. 
 
5 Conclusion 

Historically expert systems have been less than 
enthusiastically received by the software engineering 
community [2], and has led many designers to favor finite 
state machine in their designs. However, FSM have their 
limitations such the lack of knowledge manipulation, 
predictability, and rigid design. These pitfalls in FSM are 
generally resolved through the use of Inference logic provided 
by an expert system.  Some notable benefits of expert system 
integration include [1,3,4]: 
 

• Overcoming toy domains: When integrated into 
software the expert system is able to be targeted at 
specific components, therefore, a small scale 
inference engine can make a meaningful contribution 
to large scale projects. 

• Ability to manipulate knowledge: Experts systems 
allow of the manipulation of knowledge, this differs 
from conventional programming that generally only 
manipulates data. 

• Use of symbols: A symbol is simply a string of 
characters that can represent various problem 
concepts that apply to strategies, and heuristics to 
reach a conclusion.  

• Quality of analysis: Due to the fact that an expert 
system’s knowledge base is comprised of 
information from multiple specialists in a specific 
domain it has been proven to perform better than 
their human counterparts. 

• Control: Experts systems allow for improved control 
over various aspects of operations. Through the use 
of symbols to represent facts and ideas, users of the 
system are able to identify and monitor the progress 
of each inference result, which is unlike traditional 
systems that require the backtracking of chained 
events. 
 

Inference engine logic is most effective in applications that 
require vast amount of expert knowledge and in cases where 

the best choice out of many permutations of outcomes is 
required. For these reasons inference logic is most often 
integrated into video game artificial intelligence to handle the 
high demand of possible outcomes that a complex game can 
produce. Such an example includes the application in Chinese 
chess, where the aim of the inference engine is to find the best 
move in the game’s large decision tree. The endgame 
knowledge base for Chinese chess aids in determining 
infrequent winning nodes or inevitable draw nodes, which are 
then removed from consideration. As a result, the chances of 
determining a winning node go up as well as the engines 
chances of finding the best way to win. When dealing with 
large complex systems, it is apparent that FSMs have their 
limitation, as the possible permutation of outcomes become 
too large they become increasingly more difficult to manage. 
For reasons such as this, it is imperative to take advantage of 
the control, and expertise that an inference engine can provide 
for complex game systems. 

 
References : 
[1]	
   Forsyth,	
   R.	
   (1984).	
   Expert	
   Systems	
   Principles	
   and	
   Case	
  
Studies.	
  New	
  	
  	
  	
  York,	
  NY:	
  Chapman	
  and	
  Hall	
  Computing.	
  
	
  
[2]	
  Gillies,	
  A.	
  C.	
  (1991).	
  The	
  Integration	
  of	
  Expert	
  Systems	
  Into	
  
Mainstream	
   Software.	
   New	
   York,	
   NY:	
   Chapman	
   and	
   Hall	
  
Computing.	
  
	
  
[3]	
   Goldenthal,	
   N.	
   (1987).	
   Expert	
   Systems	
   and	
   Artificial	
  
Intelligence.	
  Cleveland,	
  OH:	
  Weber	
  Systems,	
  Inc.	
  
	
  
[4]	
  Laswell,	
  Lawrence.	
  K.	
  (1989).	
  Collision	
  Theory	
  vs.	
  Reality	
  in	
  
Expert	
  Systems.	
  Wellesley,	
  MA:	
  QED	
  Information	
  Science,	
  Inc.	
  
	
  
[5]	
  Robin.	
  “Rule	
  Based	
  Expert	
  Systems.”	
  Artificial	
  Intelligence:	
  
Articles	
   On	
   Artificial	
   Intelligence,	
   November	
   1st,	
   2010.	
  
September	
   29,	
   2013.	
  
<http://intelligence.worldofcomputing.net/expert-­‐systems-­‐
articles/rule-­‐based-­‐expert-­‐systems.html#.Uku-­‐-­‐IashcY>.	
  
	
  
[6]	
   Tozour,	
   Paul,	
   “Stack-­‐Based	
   Finite-­‐State	
   Machines,”	
   AI	
  
Game	
  Programming	
  Wisdom	
  2,	
  Charles	
  River	
  Media,	
  2003.	
  
	
  
[7]	
   “Introduction	
   to	
  Game	
  Development,”	
   2nd	
   Ed.,	
   Edited	
  by	
  
Steve	
  Rabin,	
  	
  Charles	
  River	
  Media,	
  2010.	
  
	
  
[8]	
   “Expert	
   Systems/The	
   Agenda.”	
  Wikibooks,	
   January	
   3rd,	
  
2008.	
   September	
   29,	
   2013.	
  
<http://en.wikibooks.org/wiki/Expert_Systems/The_Agenda>
.	
  
 


