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Abstract - This paper presents an alternative approach to 

intelligent agent development in video games through the use 

of the Neuronal Network Model (NNM). The NNM is an 

integrated network of multiple networks of neurons capable of 

learning from and adapting to its environment. The pong 

game is simulated to evaluate the feasibility of implementing 

the NNM as an agent controller. The goal of the controller is 

to place the agent which is the paddle, in the correct position 

to return the pong ball. The learning process of the model is 

based solely on its failures in predicting the correct motor 

actions to return the pong ball. Experimental results show 

that the NNM is capable of acting as an intelligent agent 

controller. 
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1 Introduction 

  Today, there is a huge market for the video games 

industry. In the United States alone, it was reported that 

consumers spent US$20.77 billion in 2012 [1] on video 

games, hardware and gaming accessories. Of these sales, 40 

percent of them were purchases of digital content, which 

includes games, add-on content, mobile apps, subscriptions 

and social networking games. Video games are going through 

massive enhancements and changes driven by technology 

advancements. At present, games can be played on a variety 

of media such as dedicated consoles, personal computers, 

handheld devices and smartphones. At the same time, the 

demand for realistic gaming experiences has also increased. 

Players today expect games to be intelligent as well as 

engaging. It is only through such experience that a player’s 

interest in the games can be continuously piqued and 

sustained.  

 In the pioneering stages of the video games industry, 

the agent or opponent in a game is often a preset computer 

program with finite strategies. Once these strategies have 

been discovered, the players can respond to them. As such, 

games begin to lose their appeal. Furthermore, if the 

difficulty in games is increased, the number and complexity 

of strategies may increase as well. Encoding strategies into 

these games can thus prove to be a daunting task. 

 On the other hand, when a game is played against 

another person, the games are more interactive and 

entertaining. Therefore, efforts have been made to develop 

believable, intelligent games. The advent of artificial 

intelligence (AI) technology provides solutions to this 

challenge. AI methods such as neural networks, Bayesian 

models and behaviour trees have been used in many ways to 

enhance a player’s satisfaction in terms of gaming experience 

and entertainment value.  

 One such usage is the simulation of human-like 

intelligence and behaviour in an agent or non-player 

character (NPC). An NPC is an entity or character that is not 

controlled by a player in a game, such as the hostile entities 

in Far Cry 3 [2]. Far Cry 3 is a first-person shooter (FPS) 

game, wherein a player needs to combat numerous 

mercenaries. In this game, AI is programmed into the 

enemies so that they can react in many situations adaptively. 

For example, if the enemy is injured, he can shout for help or 

release emotional distress. Another example is the Drivatar 

opponent drivers in Forza Motorsport [3]. Drivatar employs 

neural networks to control drivers. Each driver is assigned a 

different neural network. As such, each driver has different 

skill levels and driving tendencies, such as how they 

approach a particular corner or how aggressively they try to 

overtake. 

 Matchmaking in online gaming is another example of 

the usage of AI in games. In Ghost Recon Online [4], an FPS 

game, a neural network has been used to select players from 

a pool of players with matching skills in a multiplayer online 

match. TrueSkill [5], which is based on Bayesian networks, 

has been developed by Microsoft for the Xbox Live online 

gaming for the same purpose as well. The matching is done 

by considering each player’s profile, which includes 

information about the player’s behaviour and personal 

preference. The information on players is derived from 

historical data, taking into account both previous match 

results and player attributes collected by tracking the players’ 

behaviour over time. Neural networks make it easy to include 

additional parameters, and allow for continuous updating of 

the model in real time as new data is collected. A good 

matchmaking process can increase the chance of players 

having fun together, thus improving player retention.  

 AI can also be used to plan the path of agents in a game 

environment, such as in real time strategy (RTS) games [6], 

[7]. RTS games usually require positioning and movement of 

units and structures to secure game areas. When deciding the 

movement of units, the complexity of the terrain and 

obstacles may be taken into account by AI to decide future 

courses of action.  



 

 

 In recent years, game-AI contests such as Unreal 

Tournament [8] and StarCraft [9], have been held to apply 

artificial intelligence algorithms on commercial gaming 

platforms. Such contests offer researchers and developers a 

platform to evaluate their AI algorithms in robust game 

environments. For example, in the AIIDE (AAAI Conference 

on Artificial Intelligence and Interactive Digital 

Entertainment) StarCraft AI tournament, AI approaches such 

as finite state machines (FSM), decision trees and 

probabilistic inferences have been employed for 

micromanagement and/ or macromanagement of agents in the 

game [10], [11]. 

 Numerous researches on the development and 

application of artificial intelligence for games can be found in 

many publications. For example, Kotrajaras and 

Kumnoonsate presented a tool that uses genetic algorithms 

and steepest ascent hill-climbing to learn and adjust map 

properties [12]. In [13], Recio et al. have developed a generic 

framework based on swarm intelligence, specifically ant 

colony optimisation for controlling agents in a dynamic 

environment. These show that research on artificial 

intelligence in games is gaining momentum. Moreover, game 

environments provide a range of excellent platforms for 

fundamental AI research.  

 In this paper, the Neuronal Network Model (NNM) is 

introduced as an intelligent agent’s controller in games. The 

NNM is a data structure consisting of interconnected nodes in 

a multi-level network. A group of networks in the model can 

be interconnected to perform a task. In this work, the 

feasibility of the NNM is demonstrated by its application in a 

simulated pong game. The objective of the NNM in the game 

is to predict the trajectory of the pong ball, and to actuate the 

paddle to the predicted final position that will result in the 

ball being returned successfully. The NNM is implemented in 

the NeuraBase toolbox, which can be downloaded at [14]. 

 The remainder of the paper is organised as follows:   

Section 2 describes the fundamental design of NNM, 

followed by the description of the pong game and its NNM 

controller designs in Section 3.  In Section 4, the learning 

algorithm of the model is presented. Section 5 analyses and 

discusses the experimental results. Finally, Section 6 presents 

conclusions and future work to be done.  

2 Neuronal network model 

 The NNM is a multi-node, multi-level, and multi-

network neuronal network which is based on a concept of 

how the human brain may work. The basic node in the 

network is termed an elementary neuron, which represents an 

event. A couple of elementary neurons can be associated 

temporally or spatially to form a sequence of events, such as 

shown in Fig. 1. A detailed description of the NNM is 

available in [15]. 

   

 
Figure 1.  The NNM fundamental design 

 Generally, neurons can be classified into three 

categories: sensory neurons, motor neurons and controller 

neurons. Sensory neurons represent the data acquired by 

sensors, whereas motor neurons represent the motor actions 

that are performed in response to the sensory stimuli. 

Controller neurons associate a sensory neuron sequence to a 

motor neuron action.  

 A group of sensory or motor neurons can be associated 

in a multi-level network, and form a network of sensory or 

motor event sequences respectively. These networks 

represent sequences of events. In other words, a history of 

events is stored in the NNM. As for the controller neurons, 

they are grouped in a network known as an interneuronal 

network. The relationship between all the networks is 

illustrated in Fig. 2, which shows the general architecture of 

NNM. This general architecture has been applied in the 

balancing of an inverted pendulum [16], navigational control 

of an unmanned aerial vehicle [17] and control of an 

antagonistic muscle actuated manipulator [18]. 

 

Figure 2.  The NNM architecture 

 A detailed description of how the general NNM 

architecture applied in the pong game is presented in Section 3. 

3 Pong game and NNM controller model 

 This section describes the design of the pong game, and 

more essentially the design of the NNM controller.  

3.1 Pong game design 

 A pong game environment is simulated with the 2D 

robotics simulation platform, Stage [19], [20], as shown in 

Fig. 3. The blue rectangular object is the simulated paddle, 

and the red spherical object is the pong ball. The green area is 

the playable area, which is the table for the game. The paddle 



 

 

is only allowed to move horizontally, while the ball is 

allowed to move anywhere within the table area, in a linear 

fashion. 

 

Figure 3.  Simulated pong game in Stage 

 In this application, the blue paddle is controlled by the 

NNM. Its opponent is a preset computer program, which 

returns the ball in random directions from the other end of the 

table. In this simulation, the ball can start from any of 15 

given positions at the top of the table. The ball can move at 

any angle, between 21 to 159 degrees. The NNM will learn to 

position the paddle at the correct position at the bottom of the 

table in order to return the ball successfully. The paddle can 

be placed at 14 possible horizontal positions. The 

discrepancy between the ranges of the paddle (14 discrete 

values) and pong (15 discrete values) positions is due to the 

size and shape of the objects. These attributes determine the 

ranges of the objects. The ranges should confine the 

movement of the objects within the table area. 

 The deflection of the ball at the sides of the table is 

simulated as a perfect-reflection. However, the deflection of 

the ball at the paddle and at the top of the table need not be of 

perfect-reflection, but can be anywhere between 21 to 159 

degrees. 

3.2 Pong game NNM architecture 

 The structure of the NNM in this pong game is shown 

in Fig. 4. It is a 4-network-NNM architecture (denoted by 4 

different colours), which is based on the general 3-network-

NNM architecture in Fig. 2. The sensory events of the pong 

game are the ball positions on the pong table, in terms of 

chessboard-based coordinate system (x and y axis, as column 

and row respectively). These events are captured in a 

network known as a sensory network. On the other hand, the 

positions of the NNM controlled paddle are the motor events 

in the model. These paddle positions are stored in another 

network, known as motor network. A sensory event and a 

motor event are associated through a controller event in 

another network defined as an interneuronal network. 

 

Figure 4.  The NNM architecture of pong controller 

 Fig. 5 shows the coordinate system of the pong table. 

The range of x axis is of lower case alphabets: {a, b, c, …, n, 

o, p}, while the y axis is of upper case alphabets: {A, B, C, …, 

W, X, Y}. So, the positions of the ball and paddle in the figure 

are (b, B) and (h, Y) respectively. 

 

Figure 5.  Grid map of simulated pong game 

3.2.1 Sensory network 

 The coordinates of the pong ball are sampled at 5 pre-

defined positions on the y axis. The five y positions are {D, F, 

I, N, V}, wherein each position comes after another position 

in a sequence heading towards the NNM-controlled paddle’s 



 

 

end. When the ball has reached the defined y positions, the 

coordinate is taken and stored in the NNM.  

 The first two coordinates acquired by the sensor provide 

the information on the initial trajectory of the ball. The next 

three coordinates refine the trajectory of the initial 

information, as the ball trajectory will be changed if it hits 

the sides of the table. 

 The sensory events are defined by two stacked sensory 

networks, such as shown in Fig. 4. One of the sensory 

networks, Sensory Network A builds the coordinates from a 

set of pre-defined elementary sensory neurons. The 

elementary sensory neurons contain the basic representations 

to define the coordinates. Based on the possible squares on 

the x and y axes, there are only 21 elementary sensory 

neurons (16 x squares + 5 y squares). 

 Sensory Network A captures the coordinates at interval 

y axis squares that the ball has “glided over” when the game 

is running. Therefore, there are only 2 levels in this network. 

The first level contains the elementary neurons, and the 

second level stores the coordinates. This network will serve 

as the basis to build the sequences of ball positions in the 

other sensory network, Sensory Network B. 

 Sensory Network B has only 4 levels of neurons. This is 

because there are only 5 coordinates from the start of the ball 

at the opponent’s end to the NNM’s end. Two coordinates are 

required to form a sequence in the first level neuron of this 

network. Hence, only 4 levels of neurons exist. 

3.2.2 Motor network 

 In the motor network, there are 14 basic motor events: 

{b, c, d, …, m, n, o}. Hence, there are only 14 elementary 

motor neurons. The motor event, which is also known as 

motor action, is the position of the paddle. The position 

corresponds to the x axis squares where the paddle can be 

placed, while being fixed at the bottom of y = Y (y axis 

square). The range is set between b and o because the length 

of the paddle is of 3 units, and the need of keeping the paddle 

within the table.  

 The motor actions are stored in a single level in the 

network. Each motor action is associated with at least a 

controller event. 

3.2.3 Interneuronal network 

 The relationship between a motor action and a sensory 

event is defined by a controller event in the controller 

interneuronal network, through a controller neuron. A 

sensory event can have multiple controller events, wherein 

each controller event is associated with a different possible 

motor action.  

 The strength of the relationship between a sensory event 

sequence and a motor action is weighted in terms of being the 

correct action. By using the frequency attribute to define this, 

correct motor actions can be predicted for a sensory event. 

4 Learning algorithm 

 The overall learning model of the NNM controller is 

depicted in Fig. 6. The learning starts when the pong ball has 

been hit by the opponent, and on its way towards the NNM’s 

end of the table. The coordinate of the ball is acquired 

sequentially at a series of y axis squares. 

 

Figure 6.  The overall learning process flow 

4.1 Prediction 

 The prediction starts when the third coordinate in the y 

axis series is acquired. The prediction does not begin from 

the first two coordinates because at least two coordinates are 

required to gauge the direction of the pong ball. Therefore, it 

is reasonable to begin the prediction at the third coordinate. 

Furthermore, at the third coordinate, the ball is still within the 

opponent’s area (about a quarter way of the pong table). 

 The NNM controller will attempt to return the pong ball 

based on the sequence of sensory events received. A 

matching sensory event is searched within its network. If a 

match is not found, it means that the event is a new sensory 

event. The new event will be encoded into the NeuraBase 

sensory networks; and a random motor action to position the 

paddle is executed.  

 On the other hand, if a match is found, a number of 

potential motor actions will be given through the related 

controller neurons. The controller neuron has to meet a 



 

 

certain prediction threshold before the corresponding motor 

action is considered for execution. In this model, the 

prediction threshold, which is the frequency of the controller 

neuron, has to be equal or greater than five (≥ 5).  

 The controller neurons which have met the threshold 

will be processed with the weighted average method to 

predict the most sensible motor action. If none of the 

controller neurons related to the sensory event has met the 

threshold condition, a random motor action will be executed. 

4.2 Feedback 

 Once the recommended motor action is given, the 

paddle is moved accordingly to position. When the paddle is 

in position, feedback is provided to the controller for 

learning. Fig. 7 shows the feedback learning process of the 

model. If the pong ball has not reached the paddle y axis 

position, which is also the end point, learning is not required 

on the feedback since the pong ball is still moving forward.  

 

Figure 7.  The feedback process flow 

 When the pong ball has reached the end point, the 

feedback is analysed. In this model, the NNM is learning 

from its failures to predict correctly. If the ball is returned 

successfully, nothing is updated in the NeuraBase and the 

game continues. However, if the paddle misses the ball, the 

final position of the ball is taken into consideration for 

learning. The final position is treated as the expected position 

of the paddle if given the same sensory sequence in future, 

subject to meeting threshold requirements.  

 NeuraBase registers this knowledge by creating or 

updating a controller neuron. If the controller neuron has 

already been registered, the corresponding controller neuron 

is updated instead. With this, knowledge is reinforced. A 

reward is given to the associated controller neuron through 

the increment of the frequency attribute. In this case, the 

reward is 5. 

 When learning is based on failed predictions, the 

previous failures in prediction are corrected by creating or 

updating the correct controller neuron. In this case, the 

frequency of the erroneous controller neurons is not 

penalised. Instead, the correct controller neuron’s frequency 

is increased.  

 As such, the problem of overfitting is minimised or 

avoided altogether. Overfitting may occur in the pong game 

when the high number of successful returns may be 

misconstrued as good prediction, even though it is actually 

not.  

5 Experimental results 

 The pong game was started with only the elementary 

sensory and motor neurons defined in NeuraBase, and run for 

10000 trials. Each trial begins with the ball at a random 

position from the opponent’s end, with a random angle as the 

trajectory. The trial ends when the NNM-controlled paddle 

misses the pong ball. Fig. 8 shows the number of times the 

ball was returned by the NeuraBase-controlled paddle in each 

trial. 

 

Figure 8.  Frequency of pong ball returns per trial 

 A 100-trial moving average trend line of the frequency 

of ball returns per trial is shown in Fig. 9. As observed in the 

figure, the learning process is on an uptrend, and begins to 

show saturation at around 6000 trials, between 125 and 200 

returns.  

 Fig. 10 shows the total number of neurons used in 

NeuraBase after 10000 trials. Altogether, 30341 neurons 

were created in the NeuraBase. This requires approximately 

1.3 Mbytes of physical memory as each neuron uses 40 bytes 

of memory. Out of these neurons, 16401 neurons are built in 

the extended sensory network, 14 neurons in the motor 

network and 13926 neurons in the controller interneuronal 

network. 



 

 

 

Figure 9.  Moving average of frequency of pong ball returns per trial 

 

 

Figure 10.  Neuron statistics in NeuraBase 

 Initially, the number of neurons in the sensory and 

controller networks is growing in a steep slope because of the 

high occurrence of new sensory events or experience. This 

growth eventually approaches saturation as the number of 

new sensory events decreases. The number of controller 

network neurons is lower than sensory network neurons all 

the time; as the links between sensory network neurons and 

motor network neurons are only created by learning the final 

pong ball position when it is missed. Therefore, only the 

correct motor actions are associated with sensory neurons. 

However, each sensory neuron can possibly have a few 

correct motor actions due to the variation of pong ball 

trajectories in a square.  

 Another experiment was the study of the failure of 

prediction from NeuraBase. In the failure study, a hundred 

trials were run with the NeuraBase that has been trained 

earlier with 10000 trials. As each trial ends with a miss, 

hence, there are 100 failures. Suppose that an instance is a 

series of predictions from NeuraBase to prevent an 

opponent’s attempt to score. Overall, 15584 such instances of 

prediction were performed. So, the failures occurred at 

0.6417% (99.3583% successes) of the time. Out of the 100 

trials, 45 trials failed because the predictions were still 

random, indicating that there is still room for NeuraBase to 

learn. Therefore, only 0.3529% of instances are actually 

failures from NeuraBase’s predictions.  

 One reason found for the failures in NeuraBase’s 

predictions is the approximation of the ball position to a 

square on the pong table. The ball can be in any position in a 

square. As such, a square may consist of a number of 

different paths, even if the trajectory angles may be the same. 

This may result in a miss because the predicted motor action 

may only tolerate a certain variance in the path. Even if 

another motor action is considered, it may fail again as the 

variance may have just shifted.  

 Table I shows how the path can be different for the 

same sensory event, (b, V) square. In the x axis, any value 

between -6 and -7 is considered as b. As for the y axis, any 

value between -8 and -9 is mapped to V. As depicted in the 

table, there are multiple ball coordinates corresponding to the 

same square. The predicted motor action, which is d, is 

positive for most coordinates, except for an anomaly in the 

first row (negative feedback).    

TABLE I 

PATH OF PONG BALL AND SENSORY DATA REPRESENTATION 

x 
Axis 

Sensory 
X 

y 
Axis 

Sensory 
Y 

Trajectory 
Angle 

Feedback 

-6.09 b -8.15 V -45 NEG- 

-6.62 b -8.31 V -129 POS+ 

-6.66 b -8.31 V -129 POS+ 

-6.64 b -8.29 V -129 POS+ 

-6.22 b -8.18 V -45 POS+ 

-6.16 b -8.21 V -45 POS+ 

-6.18 b -8.23 V -45 POS+ 

 

 In addition, failure may also be caused by the fact that 

the paddle is sometimes slow in moving towards the 

predicted position. The pong ball may have a shorter distance 

towards the end of the table; and the paddle may coincidently 

be further away from the point that it is supposed to be. So, 

the ball might reach the end before the paddle is in its final 

position. However, the chances of this happening are small, 

and are based on the Stage simulation model specified for 

velocity control of the paddle.  

 The causes of failures described above may be solved 

by having more sensory information, for example by having 

extra angles allowed to be travelled by the ball. Or, an extra 

coordinate in addition to the five already in the series. Speed 

may be also factored into the NeuraBase design so that the 

paddle can move with variable speeds.  

6 Conclusions 

 The research described in this paper has demonstrated 

that the Neuronal Network Model performs well as a 

controller in a game environment. The high percentage of 

successful predictions is a testimony to this. The 



 

 

experimental results also show that the total amount of 

required memory is small.  

 As future work, more parameters such as velocity and 

acceleration can be incorporated into the controller of the 

pong ball. Besides that, a 3-dimensional model of the pong 

game could be developed to examine how the model 

performs in a more complex environment. Two independent 

NeuraBases could be created for a two-player game as well. 
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