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Abstract - This paper presents an alternative approach for 

controlling the walking and balancing of a bipedal robot. The 

proposed method uses a neuronal network to learn the sensor 

events obtained via the force sensors and accelerometer and to 

control the motor events of Bioloid’s Dynamixel motors, to 

walk and balance the bipedal robot. A neuron layer called the 

controller network links the sensor neuron events to the motor 

neurons. The proposed neuronal network model (NNM) has 

demonstrated its ability to successfully control the walking and 

balancing of a bipedal robot, in the absence of a dynamic 

model and theoretical control methods. 

Keywords: Neuronal network, bipedal robot, balancing, 

control 

 

1 Introduction 

  Research in the field of humanoid robotics has received 

great attention during recent years. Apart from their potential 

use in the development of prosthetics and rehabilitation 

devices, humanoid robotics is also being studied with the 

intention of creating humanoid robots which are able to 

interact with humans and assist them in everyday tasks. One of 

the advantages of humanoid robots lie in their human-like 

structures which allow them to move in areas that are 

normally inaccessible to wheeled robots, such as stairs, 

making them suitable for assisting the sick and elderly, as well 

as aiding humans in dangerous tasks and exploration missions. 

As such, much focus has been placed on the study of bipedal 

walking robots.  

 The motion of a bipedal walking robot can be 

categorized into the single support phase (with one foot on the 

ground), double support phase (with two feet on the ground) 

and the transition phase. In ordinary human gait, the length of 

the double support phase lasts for approximately only 20% of 

the step cycle [1], hence there exists a major challenge in 

generating a stable bipedal gait to prevent the humanoid robot 

from falling. In general, there are two types of bipedal gaits: 

static and dynamic walking. Static walking assumes that all 

dynamic forces produced by the motion of the robot limbs are 

negligible compared to the gravitational forces on the robot, 

therefore although it is easier to implement, the resulting gait 

can be unacceptably slow, with individual steps taking several 

seconds [2]. In dynamic walking, posture control based on 

dynamic generalizations of the concept of center of mass 

(CoM), such as the zero moment point (ZMP) [3], center of 

pressure (CoP) and the FRI [4], are used for generating stable 

bipedal gaits. The ZMP, originally introduced in published 

literature [5], is defined as the point on the ground where the 

total moment generated due to gravity and inertia equals zero. 

The ZMP is calculated and manipulated so that it remains in 

the support polygon in order for the robot to be dynamically 

stable and not fall. For stable walking, the ZMP of the robot 

must follow the desired ZMP trajectory estimated based on the 

desired configuration of the robot. A similar concept, the CoP, 

defines the point on the ground where the resultant ground-

reaction forces act. Likewise, it is calculated and manipulated 

so that it does not reach the edge of the support polygon (or 

foot, in the case of the single support phase) to prevent the 

bipedal robot from falling. ZMP and CoP points have been 

shown to coincide despite the difference in their core 

definitions [4, 6], as long as all the contact points occur on a 

single plane. 

 The ZMP is prominently used for gait planning of 

bipedal humanoid robots, and it is the stability control used in 

ASIMO [3], a 26-DOF humanoid robot developed by Honda 

Motor Company in 2000. In addition to [3], there are many 

other researchers such as Vukobratovic et al. [7], Shih et al. 

[8], and Dasgupta and Nakamura [9] who proposed methods 

for robot walking pattern synthesis based on the ZMP, and 

they have all successfully demonstrated walking motions 

either using real robots or simulations. The importance of 

coordination between the hips and ankles for balancing have 

also been highlighted in [10,11], where the hip-ankle strategy 

was demonstrated to exhibit better balancing performance 

compared to the algorithms employing only the ankle strategy 

(rotating the ankles while locking the knee and hip joints) for 

push recovery [12,13]. 

 In terms of intelligent control methods, many methods 

have been proposed and published. In [14], researchers have 

proposed a genetic-fuzzy controller for biped robots in which 

the dynamic stability of two-legged robots climbing staircases 

is simulated. Researchers [15] have also employed fuzzy logic 

to determine effective walking control of biped robots where 

two different fuzzy controllers for the support leg and the 

swing leg are described. The other noteworthy published 

works involve the application of a neuro-fuzzy algorithm [16], 

adaptive neuro-fuzzy algorithm [17], supervised learning 

using neural network [18] and a back-propagation artificial 

neural network as the learning scheme in [19]. The neural 

network with back propagation [19], neuro-fuzzy [20], and 

SVM [21] methods are popular in this research discipline 

because they can perform regression between the input and the 



 

 

 

output (error between measured ZMP and ZMP trajectory) in 

the supervised learning manner. The RNN [22] and CMAC 

[23] methods have showed that unsupervised learning can be 

applied in a bipedal walking robot, but these methods are 

typically used as part of a hybrid controller together with a 

compensated torque controller (PID type), and are aimed at 

modeling and then compensating the system’s faults, 

uncertainties or environmental disturbances. 

2 Neuronal Network Model 

 The Neuronal Network Model (NNM) is a multi-node, 

multi-level, and multi-network neuronal network which is 

based on the concept of how the brain is thought to work [24]. 

The basic unit in a network is an elementary neuron, which 

represents a sensor or motor event. These neurons can be 

associated spatially or temporally to represent sequences of 

sensor or motor events. The NNM concept has been applied in 

the balancing control of an inverted pendulum [25,26], 

trajectory control of a muscle-actuated manipulator [27] as 

well as the navigation control of a UAV [28]. A software 

implementation of the NNM, the NeuraBASE toolbox, is 

available for download at [29]. 

 The proposed NNM controller for the bipedal walking 

robot consists of three distinct and fundamental network types, 

namely a) sensor neurons and events - inputs to the system 

(CoP values for the feet, bipedal tilt direction, observed joint 

angles); b) motor neurons - outputs from the system (joint 

rotations); c) interneurons - association between two sensor 

events (to form a linked sensor neuron), or between a sensor 

event and a motor action (to form a controller neuron). Each 

type of event builds up an association of events in their 

respective network. The sensor network and motor network 

store sensor neurons and events, motor neurons and events, 

and interneurons associations respectively. A simplified data 

structure of the neurons used in the NNM is described in Table 

1. More detailed descriptions of the sensor, motor and 

controller neurons are provided in Section 3. 

 

3 Experimental Setup 

 The bipedal walking robot system hardware is made up 

of multiple joint structures, which imitate the motion of 

human legs whereby each joint is controlled by a Dynamixel 

servomotor. The current angular position and speed of the 

Dynamixel motor are accessible via the CM501 controller that 

comes with the Bioloid Robot Kit. Figure 1 depicts the 

partially assembled Bioloid robot. Each foot of the robot is 

attached to a force pad sensor, which measures the CoP 

(center-of-pressure) point. An accelerometer is also attached 

to the torso of the Bioloid to detect the falling state. 

 
 The walking gait cycle is a sequence of postures that 

describes how the bipedal robot should walk (see Table 2). 

The ideal posture for a stable walking gait of the bipedal robot 

has been developed as a reference for training. In this work, 

the NNM controller only controls selected motors throughout 

the gait cycle of the bipedal robot. The joint assignments for 

the Bioloid are shown in Table 3. 

 
Walking is a repetitive motion consisting of the following 

basic phases that alternate on each leg: 

 Dual Support (Weight Shifting): In this phase, both 

feet must be on the ground while the ankle and hip 

joints will move in a parallelogram configuration to 

shift the weight of the biped sideways until the body 

weight is concentrated on one foot. 

 Single support (Balancing): Only one foot is in full 

contact with the ground and this foot will support the 

full weight of the bipedal robot. While the other leg is 

lifted off the ground, the supporting leg needs to 

ensure the stability of the structure. 

Table 1: Data Structure of a Neuron (basic) 

Field Data Type 

Head unsigned int 
Tail unsigned int 

Successor unsigned int 

Frequency/ Weight* signed int  
Next 

Overshoot/Undershoot Flags* 

unsigned int 

unsigned short 

* Denotes Fields only applicable to the Controller Neuron 

 

 

 

Figure 1: The partially assembled Bioloid Robot and its 

mechatronic components. 

 

Fig. 2. The fundamental architecture of the network of NeuraBase used in 
the trajectory control of the muscle manipulator. 

 

 

 

 

Table 2: Walking gait of the Bioloid 
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 Linear Extension: Once the biped has successfully 

lifted its foot and tilted forward, its knee needs to be 

extended a certain amount to return the structure to a 

parallelogram state, thus preparing it for the start of a 

new walking cycle. 

 

 
 There are six main sub-steps/postures involved in the 

balancing process, and they are weight shifting processes (sub-

steps 1, 2, 4 and 5) on single planes and linear extend process 

(sub-steps 3 and 6). During each step, the NNM controller will 

control specific sets of motors, and the other motors will be set 

with ideal pre-set angular positions. 

3.1 Training Controller 

 The controller program for Bioloid training acquires the 

input value from three sensors: readings from the two force 

pad sensors and readings from the accelerometer. The output 

of the controller program is the angular increment of the 

Dynamixel motor, which can be retrieved, via the NNM 

controller’s prediction or by using a pre-set value. The 

program also includes the graphical user interface (GUI) to 

monitor the input signal from the sensors throughout the 

training session. The readings from the force pad sensors are 

used to compute the CoP values and the readings from the 

accelerometer will be used to detect the falling state of the 

bipedal robot. While the controller program is executing the 

gait cycle, the NNM controller will save the sequence of CoP 

values and return the angular increment to the respective 

motors as the executed output. The controller program was 

designed using a multithreaded programming method as 

timing is very crucial for the control system.  

 Figure 2 shows the data flow in the controller program 

code. Each sensor has its own thread where each thread will 

request six sets of 2-byte data from its respective sensor 

device at every ~5ms interval and then segment it accordingly 

for future use in the program. Then, the sensor sequence 

refresh thread will update all segmented sensor values from 

the sensor thread and rearrange the sensor sequence for the 

NNM controller every 50ms. The main thread will also take 

the sensor values from the sensor thread for data monitoring 

and plotting purposes. The training thread will activate the 

NNM controller thread which will update its own sensor 

sequence at its chosen time interval, evaluate the sensor 

sequence and then give predictions in the form of serial 

commands to specific Dynamixel motors controlled by its 

network. 

 

3.2 NNM Controller 

 The neuronal network architecture of the robot’s weight-

shifting phase is depicted in Figure 3. There are three sensor 

networks: two for building/storing the sequence of CoP values 

and the bipedal robot’s tilt direction, and a third network for 

the CoP target. The events of these sensor networks are 

connected in the interneuron networks, which act as the head 

of the controller neurons. The CoP sensor networks A and B 

keep the sensor events, which are the observable variables 

while the target CoP network keeps the sensor events that 

represent the target positions of the CoP value. The network 

that connects these sensor networks together and provides the 

sensor neuron to the controller network is called the CoP-state 

Interneuron network. 

 

 In the motor layer, the angle increment network will keep 

the motor events that respond to the observed sensor events and 

required target positions. The motor neurons consist of angular 

Table 3: Joint assignments for the Bioloid 
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Figure 2: System data flow chart 
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Figure 3: The neuronal network architecture for the weight 

shifting phase 
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increments ranging from -99 units to 99 degree units, and the 

frequency/strength of controller neurons is capped at 10 and       

-10. However, an additional network of angle boundary 

controls the selection of the motor neuron. The angle boundary 

network keeps the maximum and minimum angle limit of the 

respective group of motors that will be updated only when the 

biped falls. The falling event of the biped may result from the 

extreme angle issued to the motor that is unsuitable for the 

balancing process. Thus, elimination of the extreme angle in 

the movement’s history buffer will help to keep the biped 

within an acceptable angle range instead of executing 

excessive turns. The controller layer maintains the controller 

events connecting the sensor events to the motor events. 

  
 For the linear extension phase as referred to in Figure 4, 

the network architecture is much simpler, given that the target 

is to merely extend the leg fully. The controller event will 

connect the sensor event of current joint angle and the motor 

event of angle increment needed in order to extend the lifted 

leg. Eventually, the biped will know how much extension is 

required to straighten the leg given the initial position of the 

leg in order to touch the ground before the start of the next 

phase, which is the weight shifting phase. 

 All NNM controllers have near-identical algorithms, and 

the only difference between them is the choice of sensors, the 

complexity of the NNM network (see Tables 4 and 5), and the 

activation duration which solely depends on the phase of the 

walking cycle. Each phase will activate its own NNM 

controller(s) which will process their respective sensor inputs 

and issue their angle increment commands as outputs of the 

controller. 

 After the initialization of the neuronal networks that will 

be used in that particular controller thread, the program will 

execute a loop of prediction and feedback processes (see 

Figure 5). However, the loop will only proceed to the 

prediction process if the controller status is active, meaning it 

is in the correct walking phase and the prediction status is idle. 

When both conditions are satisfied, it will refresh its target 

sensor value, and get the current sensor sequence and current 

angular position and polarity of its respective Dynamixel 

motor. The current CoP sequence will then be evaluated with 

respect to the target CoP position to determine if the motor 

requires a prediction value to move. If the average of the CoP 

sequence is not within the target position, the prediction 

process will be executed, in which it searches for the longest 

match sensor neuron and its respective controller neuron, in 

order to get the controller neuron with the highest frequency 

and retrieve the motor neuron for the predicted angle 

increment value. However, the increment value will undergo a 

process of verification within the angle boundary network.

 Increments resulting in an angle exceeding the angle 

limits will not be issued, in which case the angle increment 

will be saturated. If there is no suitable controller neuron 

above the threshold, a new random value will be generated 

and issued to the respective motors. 

 

 
 Once the angle increment has been issued, the controller 

thread will awaken at an interval of 50ms to check the status 

of the execution. The feedback process will only be executed 

if the biped has stopped moving or the sensor values have 

stopped oscillating due to mechanical vibrations. No feedback 

is given if the target has not been reached but the biped does 

not fall. A positive feedback will be given if it reaches the 

target CoP region, whereas a negative feedback will be given 

when the biped falls. 

Table 4: NNM Controller I/O for the Weight Shifting 

Controller 

Input(s) Output 

CoP sequence (historical) Angle increment for joint 

group 1 (joints 9,10,17,18) Current parallelogram tilt direction 

Target CoP 

 

 

 

Figure 4: The neuronal network architecture for the linear 

extension phase 

Table 5: NNM Controller I/O for the Linear Extension 

Controller 

Input(s) Output 

Current hip joint angle Angle increment for joint group 

2 (joints 11,13,15) / joint group 

3 (joints 12,14,16) 
Target extension state (0 or 1) 

 

 

Figure 5: The general flow chart for each NNM Controller 
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 During the feedback process, the actual motor neuron 

from the prediction process may not be rewarded/penalized; 

instead a motor neuron representing the difference between the 

current motor angle and the motor angle when the prediction 

was first executed will be linked to the sensor neuron. 

However, it is noted that since the motor’s speeds will be 

adjusted according to its angle increment bracket, therefore by 

learning these motor events, the NNM controllers will 

eventually begin to issue smaller motor commands when the 

sensor values are close to the target, leading to less oscillations 

in the biped’s movements. 

 Referring to Figure 6, a reward or penalty will only be 

given when the average CoP value has reached the target 

region or when the biped falls. All of the sensor neurons in the 

storage buffer will be connected to the motor neuron that 

represents the angle difference between the current angle and 

its angle before the prediction. 

 

 

4 Experimental Results 

4.1 Experimental Setup 

 The biped is trained to maintain its balance while 

walking by targeting different Center-of-Pressure points 

(CoPs) at different sub-steps. The forward motion (along the 

y-axis) is preset, whereas the process of balancing and weight 

shifting along the x-axis are controlled using the NNM 

controller. The reward/penalty system for all controller 

neurons is designed as shown in Table 6.  The different NNM 

controllers activated during different points of a walking cycle 

(Figure 7) are shown in Table 7. Note that sub-steps 1 and 7 

have identical targets, and differ only in the biped’s initial 

pose, where the biped stands upright at the beginning of sub-

step 1 (at the start of the training program) whereas it is 

greatly tilted towards its right side at the beginning of sub-step 

7 (at the end of sub-step 6). 

 As all the controllers in Table 7 give predictions in the 

form of angle increments, this could lead to continuous 

increment recommendations in case of improper foot 

placements which may possibly affect the force sensor 

readings, resulting in final joint angles that may cause the 

structure to topple over. Therefore, additional NNM 

controllers have also been added for each of the three support 

phase controllers (Single Support (Left), Single Support 

(Right), and Double Support Controllers) to control the 

absolute joint limits, and any angle increment 

recommendations commanding the joints to rotate beyond 

these limits will then be capped accordingly. Since the biped’s 

joint angles are acquired every ~50ms, this allows the current 

motor prediction to be overridden in case the target CoP has 

been overshot. However, as the joint servos have been 

programmed to slow down when the observed joint angle is 

close to the commanded joint angle, a mere change in 

direction may result in heavy oscillations or failure, thereby 

resulting in longer training times. Therefore, the role of the 

NNM controller would be to recommend smaller angle 

increments in order to prevent these overshoots. In order to 

speed up training, biased random predictions will now be 

given, whereby a random angle increment will be 

recommended according to the target CoP relative to the 

current CoP, as opposed to giving random predictions in either 

direction. Training was conducted for approximately 200 

walking trials (~7 hours) and was terminated after the biped 

managed to take 20 steps (10 walking cycles) without falling. 

 

 

4.2 Results and Discussion 

 Performance of the controllers is gauged by the NNM 

controllers’ ability to learn the correct Δθ increments to 

achieve the desired CoP while learning the joint limits to 

prevent the biped from falling down during the process. 

Consequently, the success of training is determined as follows: 

the biped should be able to maintain its balance while moving 

forward for longer durations. Due to table size limitations, the 

maximum number of steps allowed was capped at 20 steps. 

Each step covers the time from when the biped needs to shift 

its weight in the double support phase up to the point when it 

puts its foot back down on the surface, e.g. sub-steps 1/7-3b 

and sub-steps 4-6b. 

 Referring to Figure 8, we observed that the average 

number of completed steps taken by the bipedal robot 

increased with training; a video is available online [30]. 

However, there are still some instances where the biped is 

unable to reach the targeted 20 forward steps, and occasionally 

fell during the first step. While the biped is expected to 

balance itself indefinitely, this does not appear to be the case.  

Figure 6: NNM Controller feedback reward/penalty 

concept 

Table 6: The reward and penalty system for all Controller 

Neurons 

Type Reward/Penalty 

Success (on target) +3 

Partial success (within 

tolerance limit) 

+1 

Failure (biped falls) -2 

 

  

Figure 7: Flowchart showing the sub-step transitions of the 

training program. 



 

 

 

 This is attributed to new CoP sequence combinations 

caused by either new CoP transitions arising from previous 

motor actions, or sensor noise from the force pads due to 

mechanical vibrations during the walking process. Apart from 

those, this could also be caused by the imperfect walking gait 

programmed into the system. 

 As shown in Table 8, the neuron usage curves for each 

controller is observed to have begun plateauing (with the 

exception of the double support phase controller), with a total 

neuron count of ~21,500 at the end of training. As expected, 

the single and double support controllers recorded the highest 

neuron consumption due to there being many CoP sequence 

permutations for training. 

Table 7: Table detailing the active NNM controllers, preset motions and their respective controlled joints during each sub-step 

in the bipedal’s walking cycle 
Sub-Step 1 and 7 2 2b 3 3b 

Description Shift weight to the left Lift right foot while 

maintaining balance 

Maintain balance 

while keeping right 

foot up 

Tilt body forward Put right foot down 

NB Controller (1) Double Support 

Controller 

Single Support Controller 

(Left) 

Single Support 

Controller (Left) 

Single Support Controller 

(Left) 

Linear Extension Controller (Left) 

NB Controller (1) 

Target 

CoP within range of 

[+1 +2] 

Left foot CoP >= 0 Left foot CoP within 

range of [-1 0] 

Left foot CoP within 

range of [-1 0] 

Full extension of right leg. Does not 

use any CoP values for prediction or 

feedback. 

Joints involved 9,10,17,18 9,10,17,18 9,10,17,18 9,10,17,18 11,13,15 

NB Controller (2)     Single Support Controller (Left) 

NB Controller (2) 

Target 

    Left foot CoP within range of  [-1 1] 

Joints involved     9,10,17,18 

Preset motion  Foot lifting  Forward tilt  

Joints involved  11,13,15  11,12,15,16  

 

Sub-Step 4 5 5b 6 6b 

Description Shift weight to the right Lift left foot while maintaining 

balance 

Maintain balance 

while keeping left 

foot up 

Tilt body forward Put left foot down 

NB Controller (1) Double Support 

Controller 

Single Support Controller 

(Right) 

Single Support 

Controller (Right) 

Single Support Controller 

(Right) 

Linear Extension Controller (Right) 

NB Controller (1) 

Target 

CoP within range of [-2 

-1] 

Right foot CoP <= 0 Right foot CoP within 

range of [0 +1] 

Right foot CoP within 

range of [0 +1] 

Full extension of left leg. Does not 

use any CoP values for prediction or 

feedback. 

Joints involved 9,10,17,18 9,10,17,18 9,10,17,18 9,10,17,18 12,14,16 

NB Controller (2)     Single Support Controller (Right) 

NB Controller (2) 

Target 

    Right foot CoP within range of  [-1 

1] 

Joints involved     9,10,17,18 

Preset motion  Foot lifting  Forward tilt  

Joints involved  12,14,16  11,12,15,16  

 
Table  8: Total Neuron Consumption vs. Number of Motor Events for Each NNM Controller in the Bipedal Walking System 

Neuron Usage 

Single Support (Left) Single Support (Right) Double Support Joint Limits  

(Double Support) 

    

Joint Limits  

(Single Support Left) 

Joint Limits  

(Single Support Right) 

Linear Extension (Left) Linear Extension (Right) 

    
 



 

 

 

 

5 Conclusion 

 The NNM controller model presented in this paper is a 

proof of concept that the NNM can be adapted to control the 

walking and balancing of a bipedal robot in the absence of 

dynamical models, where learning is evidenced by the 

increase in the number of steps successfully taken with 

training. However, it is also noted that this controller model is 

still in its early stages, and the walking gait presented in this 

paper is a slow and relatively stable one. Future work involves 

enhancing the controller model to also handle velocity-based 

stability control in order to make faster walking possible.  
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