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Abstract 

 

In practice, many things can affect the verdict in a trial, including the testimony of eyewitnesses.  Eyewitnesses are 

generally regarded as questionable sources of information in a trial setting:  cases that turn on the testimony of a 

single eyewitness almost never result in a guilty verdict.  Multiple eyewitnesses can, under some circumstances, 

collectively exhibit more robust behavior than any witness individually does.  But how reliable, exactly, are multiple 

eyewitnesses?  The legal literature on the subject tends to be qualitative.  Here I describe a highly idealized 

Bayesian network model of the relation between eyewitness behavior and trial verdict.  In a companion paper, I 

describe a more refined Bayesian model of the same setting. It turns out that the highly idealized model provides 

nearly as much information as the more refined one does. 
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1.0  Introduction 
 
In practice, many things can affect the verdict in 

a trial -- procedural conventions, material 

evidence, the psychology of the jurors, the 

persuasive power of the attorneys, and often, the 

testimony of eyewitnesses.  Eyewitnesses are 

generally regarded as questionable sources of 

information in a trial setting ([3]):  cases that 

turn on the testimony of a single eyewitness 

almost never result in a guilty verdict and are 

rarely brought to trial. 

 

Multiple eyewitnesses can, under some 

circumstances, collectively exhibit more robust 

behavior than any witness individually does.  

But how reliable, exactly, are multiple 

eyewitnesses?  The outcome of the recent trial of 

George Zimmerman, accused of second-degree 

murder or manslaughter of a teenager, rested 

heavily on the answer to this question ([10]). 

The legal literature on the subject tends to be 

qualitative (see, for example, [3]).  A 

quantitative model is required. 

 

Throughout, I will use the term correct verdict 

to mean a verdict that agrees with what actually 

happened, independently of the trial.    I will use 

the term verdict-determining-event (VDE) to 

mean an event that could be witnessed by an 

eyewitness or that could contribute to a verdict. 

 



2.0   A highly idealized Bayesian 

model 
 
There is some correlation between whether a 

correct verdict is reached and whether witnesses 

correctly observe a VDE.  If the witnesses 

accurately observe the VDE, the probability of a 

correct verdict is generally higher than if they 

don't observe the VDE accurately. Various 

estimates of the ratios of the probabilities in 

these two cases range from 2:1 to 3:1 ([3]).    

 

A distinguishing feature of the relationship 

between the probability of a correct verdict and 

the accuracy of observation of the witnesses is 

that the probability of a correct verdict depends 

on the accuracy of the observation of the VDE.   

 

This tells us that conditionality ([4], p. 23)  is in 

play.  In probability theory, conditionality can be 

captured as a conditional probability.  A 

conditional probability, P(X|Y), "the probability 

of X, given Y" is a probability measure defined 

by ([4], Section 9.1) 

 

 P(X|Y) = P(X ∩Y) / P(Y)                         

   Eq. 1 

 

where 

 

 X and Y are sets 

 ∩ is set intersection. 

 

 

We can model this problem in a simple Bayesian 

network (BN, [2]).  The heart of a BN is Bayes 

Theorem ([4], p. 320), derivable from the 

probability axioms ([4], p. 23).  In its simplest 

form, Bayes Theorem is 

 

 P(A|B) = P(B|A) x P(A)  / P(B)                                      

 Eq. 2 

 

where 

 

 P(A) is the probability of A 

 P(B) is the probability of B 

 P(A|B) is the probability of A, given B 

 P(B|A) is the probability of B, given A 

 

 

Bayesians view probability as degree of belief, 

and regard Eq. 1 as a statement about the 

relationship between the degree of belief in a 

hypothesis (A) and the degree of belief in 

evidence (B).  In this view, the left-hand-side of  

Eq. 1 is the degree of belief in hypothesis A, 

given evidence B.  P(B|A), to Bayesians, 

denotes the degree of belief in the evidence B, 

given the hypothesis and call P(B|A) in Eq. 1 a 

"prior probability", or more briefly, a "prior".     

I will use the term "prior" to denote the 

uninterpreted term P(B|A) in Eq. 1, but 

remaining agnostic about the Bayesian claim 

that probability is a measure of degree of belief. 

 

We need only any three of the quantities in Eq. 1 

to determine the remainder.  For example, if we 

have values for each of 

 

 P(A) = unconditional probability of a 

correct verdict 

 P(B) = unconditional probability of an 

accurate observation 

 P(B|A) =  the probability of an accurate 

observation, given a correct verdict 

 

we can calculate P(A|B), the probability of a 

correct verdict, given an accurate observation. 

 

 

A BN is a system of conditional probabilities 

conforming to Eq. 2, mapped onto a directed 

graph ([5]) of whose nodes represent random 

variables ([4], Section 3.1). A possible value of a 

random variable X is called a state of X.   An 

edge between a node A and a node B means that 

the distribution of possible values (states) of B 

depends probabilistically on the distribution of 

possible values (states) of A.   

 

For the sake of discussion, let's assume a highly 

idealized model of the relationship between 

eyewitness and verdict in which:  

 

(SC) 

 the verdict is determined solely by the 

testimony of three independent 

eyewitnesses who observe a VDE  



 in the case of a correct verdict, each 

eyewitness has a probability of only 

0.75 of correctly observing the VDE  

 in the case of  an incorrect verdict, each 

eyewitness has a probability of 0.25 of 

correctly observing the VDE 

 in the absence of any observation, the 

probability of a correct verdict is 0.5 

 

 

Figure 1 shows a graphical user-view of  a BN, 

SimpleThreeWitness (STW), that satisfies (SC) 

and is implemented in [1].   

 

Each box in Figure 1 represents a random 

variable of a system.  An arrow from a box A to 

a box B signifies that the distribution of the 

values of B depends probabilistically depends on 

the distribution of the values of A (and by Eq. 2, 

conversely).  Thus, for example, in Figure 1 the 

probability that Witness3 correctly observed a 

VDE depends probabilistically on whether a 

correct verdict was delivered. 

 

The prior probabilities of STW are defined in 

tables (not shown) to be the probabilities in the 

(SC). 

 

Each box in Figure 1 has three regions, 

delimited by horizontal borders.   

 

The top region of a box contains the name of a 

(random) variable of interest, e.g., Correct 

Verdict.   

 

The middle region of a box consists of three 

elements (read horizontally):  

 

 i.   a textual value-range for the random 

variable named in the top region of the box.  For 

                  example, the top  box in Figure 1 

represents the random variable Correct Verdict. 

 

 ii.  to the right of (i), a numerical literal 

(expressed as a percentage) indicating the 

                  probability that the variable of 

interest has a value lying in the value-range.  For 

                  example, in Figure 1, the variable 

Correct Verdict has a probability of 96.4% of 

                  being  true. 

 

 iii. to the right of (ii) a (segment of a) a 

histogram representation of 

                  the probability  that the variable of  

interest has a value lying in the 

                  value-range denoted by (ii).  Taken 

as a whole, the  histogram spanning the middle 

                  region of the box represents the 

probability distribution for the variable named in 

(i),  

                  conditional on the variables at the 

tails of the arrows whose heads touch the box.   

 

In Figure 1,  the "Correct Verdict?" box has a 

pink background; the bottom row of boxes, a 

grey background.   A box with a grey 

background means the variable corresponding to 

that box is intended as an "input" (also called an 

"asserted-value" or "finding") variable. Input 

variables represent information that is posited as 

given.   A box with a pink background means 

the variable corresponding to that box is 

intended as an "output" (also called a 

"calculated") variable.   

 

In STW, a variable can be toggled between a 

finding and a calculated value by a mouse-click. 

 



 
 
Figure 1.  User-view of STW, assuming all three witnesses correctly observe a VDE.  In the 

configuration, the probability of a correct verdict is 0.96. 

 

 
In this example, if all three witnesses correctly observe the VDE, then the probability of a correct verdict 

is 0.96, even though the prior probability of any single eyewitness correctly observing the VDE is no 

greater than 0.5. 

 

What happens in STW if only two of the three witnesses correctly observe the VDE?  Figure 2 shows that 

the probability of a correct verdict is 0.75 -- even though the probability that any particular witness 

correctly observes the VDE ranges from 0.25 - 0.6. 

 

 



 
 

Figure 2.  User-view of STW when only  two witnesses observe the VDE correctly.  The probability 

of a correct verdict is 0.75.    

 

 

How sensitive is STW to the particular choice of priors?  In general, answering this question requires 

analyzing a large set of cases.  The case in which the probability of accurate observation is the same 

whether a correct verdict is achieved turns out to be especially interesting.  In particular, let's assume the 

conditions of STW, but assume that probability of a witness accurately observing the VDE is 0.75 

regardless of whether the verdict is correct.  In such a case, we expect the probability of a correct verdict, 

given accurate observations by the witnesses, to be the same. 

 



 
 

Figure 3.  User-view of STW, assuming all witnesses correctly observed the VDE. 

 

 

As expected, STW_Equal predicts the same 

distribution of probabilities for Correct Verdict 

if none of the witnesses correctly observe the 

VDE (Figure 3). 

 

 

3.0  Discussion 
 
The analysis above motivates several 

observations: 

 

 1.  The technique shown here can be 

extend to an arbitrary number of witnesses, 

although the effect of more than three correctly 

observing witnesses contributes little. 

  

 2.  The effect of one inaccurate witness 

is significantly mitigated by at least two accurate 

witnesses of a VDE.  Adding the testimony of 

more than two accurate witnesses has decreasing 

returns.  In addition, adding witnesses always 

runs the risk of introducing a witness whose 

testimony could raise doubt about the testimony 

of the rest.  From the prosecution's point of 

view,  this risk may not be  negligible. 

 

 3.  A companion paper describes a more 

refined model that shows the predictions of the 

model described in this paper are surprisingly 

informative. 
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