
Embedded Programming for Computer Scientists

Peter M. Maurer
Dept. of Computer Science

Baylor University
Waco Texas, 76798-7356

Abstract – The past two decades have seen an explosion in
embedded programming technology. Embedded controllers are
everywhere, in practically every electronic device. These
controllers, which are essentially computers, have become
increasingly complex, with a corresponding increasing in the
complexity of their programming. Embedded programming is a
tremendous opportunity for computer science students. Here we
give an overview of the three levels of embedded programming,
bare machine, Real Time OS, and conventional OS. We also give
suggestions for projects at each level. The aim is to allow the
reader to construct his or her own course in embedded
programming.

1 Introduction
Imagine yourself teaching Introduction to Computer Science.

It’s the first day and your classroom is filled with eager young
students wanting to learn everything there is to know about computer
programming. You give them their first “confidence builder”
program, and they eagerly run off to the lab do the project (maybe!).
However, the laboratory is not their first encounter with computers
today. The alarm clock that woke them up for class has a computer in
it, the microwave they used to warm their breakfast has a computer in
it, the watch that told them when to leave for class has a computer in
it, the cell phone that they (hopefully) silenced at the start of class has
a computer in it, and if they drove to class, they interacted not with
one computer, but with many. A car’s electronic ignition has a
computer, the automatic transmission has a computer, the anti-lock
brakes have a computer, the intermittent windshield wipers have a
computer, and on and on and on. If they drove a fairly new car, these
computers did not work in isolation, but were consolidated into a
communication network that controls the car as an integrated unit.

So the question is: who programs all of these computers? And
who will program them in the future? Will it be your students? Will
their undergraduate education prepare them to enter a world where
everything they touch contains a computer? Will they understand
even the basics of this type of programming? If yours is a typical
undergraduate program, the answer is probably not.

There was a time when most embedded programming consisted
of a few lines of code that could easily be hacked out by a non-
expert. There are still embedded programs like this, but they are
becoming the exception rather than the rule.

Processors designed for embedded programming are called
“microcontrollers.” A microcontroller is a computer in every sense of
the word, except the name. As I am writing this, I’m looking at a
sales blurb for a 32-bit microcontroller with more than half a
megabyte of internal memory and a 32-megabyte external memory
interface. (Cost: around $10.00 in quantity.) Any application that
needs a device of this complexity also needs expert programming.

Of course, one can learn embedded programming “on the fly.”
One can learn anything “on the fly.” It’s usually better and faster to
learn from a well-designed comprehensive course. Our purpose here
is to discuss the design of such a course. There are, in fact, many
textbooks devoted to embedded programming. Unfortunately, most
of these focus on only one type of embedded programming. My aim

here is to give a more broad-based view that will encompass most of
the important issues. This will enable you to decide which topics are
most important to you, so you can design your own course
effectively.

The good news is that C has become the de-facto standard for
embedded programming, and C++ is usually also available.
Therefore the basic programming skills learned in an introductory
programming course will also be used in embedded programming.
(One can also use assembly language, but it’s probably best to avoid
this.)

There are three main levels of embedded programing. At Level
1, the programmer must write every line of code. There is no
operating system and essentially no C library. The program is boot-
strapped into the memory of a microcontroller, usually by burning it
into non-volatile memory. Execution is initiated by a power-on
interrupt. At Level 2, a miniature operating system (called a Real
Time Operating System or RTOS) is used to assist with multi-tasking
and other housekeeping chores. The RTOS, or portions of it, become
part of the program and are boot-strapped into non-volatile memory
along with the programmer’s code. At Level 3, there is a real
operating system, usually Linux. Special operations must be used to
access the hardware features, but for the most part, you program the
system as if it were an ordinary Linux system. The OS and the
programmer’s code are booted either from non-volatile memory or
from a memory card.

It may be tempting to concentrate on Level 3, because the
environment is familiar and extremely powerful. But this would give
an inaccurate picture of the world of embedded programming. We
recommend that all three levels be taught, with special emphasis on
Level 1.

2 Before We Start
If you are not comfortable constructing simple hardware, or

allowing your students to do so, it is best to cooperate with one or
more colleagues from electrical or computer engineering. Even
though we will focus on programming, the aim is to eventually use
this programming to control special purpose hardware. It is best to
have a number of pre-completed hardware projects available for
students. These projects will have all the necessary hardware
assembled and tested. There will be an empty socket that will
eventually hold a microcontroller programmed with your students’
code. At Level 1, five to seven projects will suffice. At Level 2, two
or three complex projects will be needed. Simple projects at Level 2
can use the Level 1 hardware. At Level 3, one or two trivial projects
should be used to familiarize students with the basic hardware, and
then the sky’s the limit.

If your students are comfortable with designing and building
simple hardware, then they should be allowed to do so. The
microcontrollers discussed here are available in DIP packages that
can be used with standard breadboards. Hardware-capable students
should be encouraged to branch out to more complex projects of their
own devising.

3 Level 1: Bare-Device Programming
At Level 1 there is a small microcontroller, some simple

hardware and virtually nothing else. The procedure for writing
programs is quite different from that used for a typical console-level
program. There is no I/O interface. The objects cin and cout don’t
exist. There is some debugging help available, but usually you will
not be able to debug the program while it is running on the
microcontroller.

First, you must decide which microcontroller to use. PIC [1] is
the most popular, but we have found the AVR [2] 8-bit
microcontrollers easier to work with. These are not the only choices
(there are hundreds), but they are probably the two best options for a
starting point. Another popular choice is the ARM [3] architecture
because it is the architecture found in smart phones and tablets.
However, the ARM architecture requires a substantial investment in
development equipment.

For simplicity, we will describe the tools needed for AVR
development. In our examples we will concentrate on the Atmel
ATTiny85 microcontroller (75 cents in quantity), and will use the
free development system provided by the ATMEL corporation
(Atmel Studio). There are similar tools available for the PIC and
other platforms.

The first concern will be memory management. There are three
types of microcontroller memory, flash RAM, which holds the
program, static RAM which is used for variables and stacks, and
Electrically Erasable Programmable Read-Only Memory
(EEPROM), which holds constant data. Although the EEPROM (and
sometimes the flash RAM) can be written by the program, one needs
to exercise care when doing so. Both EEPROM and flash RAM can
endure only a limited number of write cycles before wearing out
(typically 10,000 to 100,000 writes) so these types of memory must
not be used for program variables. The static RAM can be written an
unlimited number of times, but there is only a limited quantity
available. Deep subroutine nesting will cause problems. Recursive
programs are probably not a good idea. Large arrays probably won’t
work. The ATTtiny85, which we are using for an example, has 8
Kilobytes of flash RAM, 512 bytes of EEPROM, and 512 bytes of
static RAM. The ATTtiny85 is, of course, rather small, but even the
larger 8-bit microcontrollers have strictly limited amounts of
memory.

3.1 Getting Started
To help you understand what embedded programs do, we’ll start

with a simple example. Consider the circuit of Figure 1.

Figure 1. A Simple Circuit.

This circuit has an 8-pin, the TTiny85, three LEDs, and two
buttons. Several programming assignments can be completed with
this hardware. For a first assignment, we’ll flash the LEDs on and off
using the program of Figure 2.The TTiny85 has five general-purpose
I/O pins, which are collectively called I/O PORTB. Each pin can be
configured as an input or an output pin during program initialization.
Programming is accomplished by moving values to memory mapped
registers, which are defined as variables in the “avr/io.h” include file.
These variables are DDRB, which is used to configure ports as input
or output, PORTB, which is used to configure input pins and to set
output pins to specific values, and PINB which is used to read the
values of input pins. We won’t use PINB in Figure 2. The Red,
Yellow, and Green LEDs are attached to pins 2, 1, and 0,
respectively. These pins are controlled by the three low-order bits of
PORTB/DDRB/PINB. The left-hand button is attached to pin 3, and
the right-hand button is attached to pin 4. These pins are controlled
by bits 3 and 4 of PORTB/DDRB/PINB. The bits of each register are
numbered from low order to high order starting with zero.

When setting the direction of a pin, a zero in DDRB indicates an
input pin while a one indicates an output pin. For the input pins, it is
necessary to use PORTB to set the internal pull-up resistors. This
causes the default value of the pin to be 1. If we don’t do this, the
input pins will require extra external hardware to maintain their
default values. A one-bit in PORTB activates the pull-up resistor, a
zero lets the pin float.

#include <avr/io.h>
int main() {

// initialization
// Configure pins 0, 1, and 2 as output pins, 3, and 4 as input
pins
DDRB = 0x07;
// activate the pull-up resistors of ports 3 and 4, setting the
default input to 1
PORTB = 0x18;
// infinite loop
for (;;) {
 PORTB = 0x1C; // turn on the RED LED
 PORTB = 0x18; // turn off the RED LED
 PORTB = 0x1A; // turn on the yellow LED
 PORTB = 0x18; // turn off the yellow LED
 PORTB = 0x19; // turn on the green LED
 PORTB = 0x18; // turn off the green LED } }
Figure 2. Rolling the Red/Yellow/Green LEDs.

Slowing the flashing down to the point where it is visible will be

the student’s first challenge. With the code of Figure 2, the flashing
won’t be visible. All three LEDs will glow dimly. To slow things
down, we need to add a delay between turning the LEDs on and off.
The simplest way to do this is to add a programmed delay as shown
in Figure 3. (Remember that this is an 8-bit microprocessor, hence
the unsigned char variables.) This delay might be enough, but it
probably won’t be. One can add nested loops to increase the delay to
any desired value. Once the lights start blinking at the desired rate,
we could try something fancier, like make the hardware work like a
traffic light: long red, short yellow, long green.

The next challenge is to use the input pins to detect a button-
push. With our sample hardware it will be necessary to debounce the
button. A button does not go from off to on instantly. It goes from
off, to rapidly changing between on and off, to on. When detecting a
change in the button, the microcontroller program must wait a few
milliseconds, and then confirm the status of the button. A change can
be detected by reading a register and testing a bit. Debouncing can
also be done with external hardware, which simplifies the

programming. We will use the left-hand button is attached to pin 3.
Figure 4 shows how to read the state of the button.

#include <avr/io.h>
int main() {
 unsigned char i,j,k;

// initialization
// Configure pins 0, 1, and 2 as output pins, 3, and 4 as input
pins
DDRB = 0x07;
// activate the pull-up resistors of ports 3 and 4, setting the
default input to 1
PORTB = 0x18;
// infinite loop
for (;;) {
 PORTB = 0x1C; // turn on the RED LED
 for (i=255 ; i>0 ; i--);
 PORTB = 0x18; // turn off the RED LED
 for (i=255 ; i>0 ; i--);
 PORTB = 0x1A; // turn on the yellow LED
 for (i=255 ; i>0 ; i--);
 PORTB = 0x18; // turn off the yellow LED
 for (i=255 ; i>0 ; i--);
 PORTB = 0x19; // turn on the green LED
 for (i=255 ; i>0 ; i--);
 PORTB = 0x18; // turn off the green LED
 for (i=255 ; i>0 ; i--); } }

Figure 3. Visibly Rolling the Red/Yellow/Green LEDs.

#include <avr/io.h>
int main() {
 unsigned char i,j,k;

// initialization
// Configure pins 0, 1, and 2 as output pins, 3, and 4 as input pins
DDRB = 0x07;
// activate the pull-up resistors of ports 3 and 4, setting the default
input to 1
// Also, turn on the RED LED
PORTB = 0x1C;
// infinite loop
for (;;) {
 // zero means the button is down
 if ((PINB&0x80) == 0 {
 // wait a bit
 for (i=255 ; i>0 ; i--);
 // is the button still down?
 if ((PINB&0x80) == 0) {
 // code to turn off the current LED
 // and turn on the next one is placed here
 while ((PINB&0x80) == 0) {
 // wait for the button to start back up }
 for (i=255 ; i>0 ; i--); } } } }

Figure 4. Responding to a Button.

Completing these simple assignments will teach the student

some important basic points. In embedded programming, “input”
means reading the status of an input pin, “output” means setting the
value of an output pin, and significant amount of code is required to
configure the microcontroller for different operations.

As the preceding examples show, an embedded program
consists of a set of initializations followed by an infinite loop. Delays
of some sort are almost always necessary. Programmed delays are
conceptually simple, but a better method is to place the
microcontroller in a wait state, using an interrupt from an internal

timer is then used to terminate the delay. This method consumes less
power, because much of the microcontroller’s circuitry will enter a
sleep state during the wait.

3.2 The programming process.
Microcontroller programs must be developed on a standard

platform such as MS Windows and cross-compiled it to produce
microcontroller object code. The object code is then downloaded into
a microcontroller for execution. As mentioned above, we use the free
software from Atmel Corporation for code development and cross-
compilation. The object files are in Intel’s “.hex” format, which can
be downloaded using a free software package called “avrdude” [4].
Figure 5 shows a picture of some sample hardware similar to that of
Figure 1, but without the buttons. The black rectangle in the center is
an 8-bit socket. The black rectangle below it is the microcontroller,
which has been removed from its socket for programming.

Figure 5. Sample Hardware.

Figure 6 shows an inexpensive programmer called the “Pocket

AVR Programmer” [5]. It is about 1x1.5 inches in size and costs
around $15. The gold socket at the top is a mini-USB connecter
which is used to connect to a desktop PC or laptop. The cable at the
bottom goes to a breadboard which is wired to communicate with
several different microcontrollers. Figure 7 shows the breadboard
with the microcontroller in place for programming. The connector to
the programmer is at the far left.

Figure 6. The Pocket AVR Programmer. [5]

Figure 7. The Microcontroller in Place for Programming.

Once the microcontroller is programmed, it is placed back in its
socket and the red and black wires at the lower left of Figure 5 are
attached to a power supply. If one is very lucky, something will
happen. However, in most cases, the program will have to be
debugged before it starts to work properly. Many microcontrollers
have in-place debugging features that can be invoked by a
sophisticated development system, but with hardware shown in
Figure 6, it is necessary to debug the program “offline.” The AVR
software has an offline simulator that can be used to verify program
correctness. It is best to simulate the program before downloading it
for the first time. Once the program is working correctly in the
simulator, it can be downloaded into the real hardware for further
testing.

3.3 Advanced Programming
Additional assignments can explore the input and output

features of the microcontroller as well as some of its internal features.
The logical next step is to replace the programmed delays of Figures
3 and 4 with internal-timer based delays. This will result in an
interrupt-driven program. This style of programming is substantially
different from the examples given in Figures 2-4, but is necessary to
access the more advanced features of the microcontroller.

Some of the additional features which should be explored are
pin-change interrupts, analog input using pin comparators or analog-
to-digital conversion. Analog-to-digital input is often used to
determine the position of a dial attached to a potentiometer, but it
could be used in connection with other features to record analog
signals. Another important feature is analog output using Pulse Width
Modulation (PWM). PWM can be used to vary the intensity of an
LED, or control the speed of an electric motor. Some advanced
microcontrollers provide digital-to-analog output, although this is
rare.

Some microcontrollers provide Universal Serial Asynchronous
Receiver Transmitters (USARTs) that can communicate with the
serial ports of a conventional computer. This port can be read and
written by a terminal program, allowing a user to communicate
directly with the program on the microcontroller.

An increasingly important feature of embedded program is
networking between two or more microcontrollers using either the
Serial Peripheral Interface (SPI) protocol or the Two Wire Interface
(TWI) protocol. These protocols can be explicitly programmed, but
most microcontrollers provide built-in hardware which simplifies the
programming process.

Another important consideration is power management. Certain
features permit unused portions of the microcontroller to be powered
down, and others permit the microcontroller to enter various levels of
sleep modes when waiting for events to occur. These modes of
operation are extremely important for battery-powered circuits, so it
will be beneficial for students to learn about them.

4 Level 2: Real-Time Operating Systems
At level 2 we add an operating system, the main benefit of

which is multi-tasking. Everything we learned at level 1 is still valid.
We do things in much the same way as at level 1, but now we can
control multiple independent devices simultaneously with only
moderate difficulty. There are many microcontroller-based Real
Time Operating Systems (RTOS) available, some of which are free.
One of the most popular is FreeRTOS [6], which is available for a
number of different platforms, including the AVR ATMega series.
Unfortunately, the larger RTOS’s are too large for the smaller
microcontrollers such as the ATTiny85. An even smaller RTOS,
FemtoOS [7], is available for these smaller microcontrollers.

The OS itself is the only new tool needed at this level. Cross-
compiling, simulating, and downloading, are done using precisely the
same tools used in Level 1.

The first step in creating an RTOS-based program is to copy the
OS files into your project. The OS itself becomes the project with
your code consisting of a set of subroutines that are called by the OS
at various times. The main routine will be provided by the OS, but
there will be a primary subroutine for each task. Each task will
consist of an initialization section followed by an infinite loop. Tasks
are pre-emptible via interrupts, and will be scheduled according to a
system of priorities which you can designate using configuration
files. Operating system calls are available for task synchronization,
timed waits, and inter-task communication.

It will generally be necessary to modify the OS source files to
some degree, although these modifications will normally be confined
to the OS configuration files. Because of this it is usually a good idea
to start with a sample project that is as close as possible to the project
you wish to complete. You can then modify the sample project to do
what you want. This saves the trouble of creating configuration files
from scratch.

Figure 8 shows a two-task FemtoOS project using the
ATTMega168 microcontroller. Two pins of the microcontroller are
wired to LEDs, one red and one green. These two pins are controlled
by the two least significant bits of the devLedPORT and
devSwitchPIN registers. The variables devLedPort, and
devSwitchPIN, are mapped to microcontroller registers by the OS
include file. The button is wired to a pin controlled by the third bit of
the devSwitchPIN variable, which is also mapped to a device
register.

The program blinks the two LEDs alternatively, switching from
one the other when the button is pushed. There are two tasks, one to
manage the blinking, and another to watch the button. A global
variable is used for inter-task communication. The programming of
device registers is essentially the same as at level 1. However, delays
are handled through the OS, not by programmed loops.

The two functions “appLoop_LEDtask1” and
“appLoop_DoButton” are the main routines for the LED task and the
Button task respectively. The “TimeToSwitch” variable is used for
task communication. The first loop in the LED task turns on the red
LED, delays 200 milliseconds, then turns off the red LED and delays
another 200 milliseconds. This procedure is repeated until the
“TimeToSwitch” variable is set to true by the Button task. When
“TimeToSwitch” becomes true, the first loop is broken,
“TimeToSwitch” is set back to false, and the second loop is entered.
The second loop repeatedly turns on the green LED, delays 200
milliseconds, turns off the green LED, and delays another 200
milliseconds. As with the first loop, if the button task sets
“TimeToSwitch” to true, the loop is broken, “TimeToSwitch” is set
to false, and the task returns to the first loop.

The Button task waits for a button to be pressed. When a button
press is recognized, the “TimeToSwitch” variable will be set to true.
The LED task has the responsibility for setting “TimeToSwitch”
back to false. The Button task is a bit more complicated than one
might expect, because it must debounce the button. The Button task
waits for the button to be pressed. This will be detected as a change
in bit three of the devSwitchPIN register. If such a change is
detected, the task delays 100 milliseconds, confirms that the bit has
indeed changed, and sets “TimeToSwitch” to true. Then the task
waits for the button to be released. This will cause bit three of
devSwitchPIN to return to zero. Waiting is done by repeatedly
delaying 100 milliseconds and retesting the devSwitchPIN bit.
Finally, the task waits for “TimeToSwitch” to be set to false by
repeatedly delaying for 100 milliseconds. After “TimeToSwitch”

becomes false, the Button task resumes waiting for the next button
press.

The code of Figure 8 is compiled and simulated using the same
tools as were used in Level 1. The initial include statement inserts the
required OS definitions into the users program. The FemtoOS source-
code files must be made part of the project, which allows the OS
code to be compiled into the user’s program. Once the code has been
simulated, the object file is downloaded to the microcontroller and
run just as in Level 1.

#include "femtoos_code.h"
static Tbool TimeToSwitch = false;

void appLoop_LEDtask1(void) {
 for (;;) {
 for (;;) {
 devLedPORT |= 1;
 taskDelayFromNow(200U);
 devLedPORT &= 0xFE;
 taskDelayFromNow(200U);
 if (TimeToSwitch) break; }
 TimeToSwitch = false;
 for (;;) {
 devLedPORT |= 2;
 taskDelayFromNow(200U);
 devLedPORT &= 0xFD;
 taskDelayFromNow(200U);
 if (TimeToSwitch) break; }
 TimeToSwitch = false; } }

void appLoop_DoButton(void) {
 for (;;) {
 if (devSwitchPIN & 4) {
 taskDelayFromNow(100);
 if (devSwitchPIN & 4) {
 TimeToSwitch = true;
 while (devSwitchPIN & 4) {
 taskDelayFromNow(100); }
 while (TimeToSwitch) {
 taskDelayFromNow(100); } } } }}

Figure 8. Switch from One Blinking LED to Another.

The programming exercises for Level 2 should be more
complex than those for Level 1. To facilitate this we recommend that
a larger (in terms of pin count) microcontroller be used, primarily
because it is easier to control multiple devices if more pins are
available. We suggest the ATTiny861, or the ATMega168.

5 Level 3: A Complete System
Level 3 is quite similar to ordinary Linux programming. There

are many devices available, but we recommend the Raspberry PI [8]
which is available for less than $50. It is a complete Linux system
that can be used as a desktop computer, if you wish. (As a desk top, it
is rather slow.) You can use it both as a development environment
and as part of an embedded system. There are commercial kits
available for the Raspberry PI, that cover everything from robotics to
home theater. There are even educational laboratories aimed at the K
through 12 audience. There is online documentation (available from
many sources) that covers programming, OS modifications, and
sample projects.

It is best to ignore all the commercial products and focus on
programming the general purpose I/O pins. This is done in the same
manner as in Level 1, namely by moving values to or reading values
from memory mapped registers. Figure 9 shows a picture of the

Raspberry PI. The General Purpose I/O (GPIO) pins are at the lower
right. The device is booted from an SD card, which is the rectangle at
the far right. The device pictured is wired to operate as a desktop
computer, with the video port at the bottom, power at the upper right,
internet connector at the upper left, and USB hub at the center left.
Mouse and keyboard are attached to the USB hub.

General purpose I/O is managed through a Broadcom BCM2835
ARM peripherals chip [9], whose GPIO registers are mapped to the
Raspberry PI’s memory space starting at 0x2002000. Figure 10
shows the general outline of an LED flasher task. Unlike the ATTiny
and ATMega microcontrollers, the Raspberry Pi has two separate
registers, one for setting pins to 1 and another for setting pins to 0.
(Such variations between different products are common.)

The LED must be connected between pins 7 and 8, with a
resistor to limit the voltage. Figure 11 shows the pinout of the GPIO
pins. In Figure 9, Pin 1 is the rightmost pin of the top row. The pins
marked as GPIO can be used for any purpose and can be configured
as input or output. The other pins (other than power and ground pins)
can also be configured for general purpose I/O if their specialized
functions are not required.

Figure 9. The Raspberry PI.

Configure Pin-7 as an output, using Function-Select register.
for (;;) {
 Move 1 to Pin-7 GPIO-Set register
 Pause
 Move 1 to Pin-7 GPIO-Clear register
 Pause }

Figure 10. A Raspberry PI LED Flasher Program.

Figure 11. Raspberry PI GPIO Pinout [6].

The possibilities for the Raspberry PI are nearly limitless. The

SP10 pins (See Figure 11) can be used to communicate with Level 1
or 2 microcontrollers using the SPI protocol. The I2C1 pins do the

same using the TWI protocol. This gives one the power to construct
complex systems with Level 1 or 2 microcontrollers performing the
low-level tasks and Linux-based programs providing the over-all
control.

The UART pins can be used to communicate with a serial port
on another computer, or with a microcontroller USART interface.
There are several other connectors in addition to the pins described in
Figure 11. There is a camera connector near end of the Ethernet
connector. There is an LED screen connector above the memory card
slot. There is a JTAG interface and an additional GPIO header.
(These last two have no pins attached and require expert handling.)

The power of this $30 device is astounding. I will leave the
exploitation of this power to your imagination.

6 Conclusion
As mentioned above, the past two decades have seen an

explosion in embedded programming. Microcontrollers have
proliferated into almost every electronic device. In addition,
controllers have become increasingly more complex and increasingly
less expensive. The explosion in embedded programming can only be

expected to continue. As systems become more complex, there will
be an increasing need for expert programmers to program them. This
is an important opportunity for computer science students, one that
cannot be ignored. A one-semester course in embedded programming
will prepare students for this exciting and rewarding opportunity.

7 References
1. PIC Microcontrollers http://www.microchip.com
2. AVR Microcontrollers http://www.atmel.com
3. ARM Cortex Microcontrollers

http://www.ti.com/lsds/ti/arm/overview.page
4. AvrDude http://www.nongnu.org/avrdude
5. Pocket AVR Programmer http://www.sparkfun.com
6. FreeRTOS http://www.freertos.org
7. FEMTOOS http://www.femtoos.org
8. Raspberry PI http://www.raspberrypi.org
9. BCM2835 http://www.raspberrypi.org/wp-

content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

