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Abstract – The past two decades have seen an explosion in 
embedded programming technology. Embedded controllers are 
everywhere, in practically every electronic device. These 
controllers, which are essentially computers, have become 
increasingly complex, with a corresponding increasing in the 
complexity of their programming. Embedded programming is a 
tremendous opportunity for computer science students. Here we 
give an overview of the three levels of embedded programming, 
bare machine, Real Time OS, and conventional OS. We also give 
suggestions for projects at each level. The aim is to allow the 
reader to construct his or her own course in embedded 
programming. 

1 Introduction 
Imagine yourself teaching Introduction to Computer Science. 

It’s the first day and your classroom is filled with eager young 
students wanting to learn everything there is to know about computer 
programming. You give them their first “confidence builder” 
program, and they eagerly run off to the lab do the project (maybe!). 
However, the laboratory is not their first encounter with computers 
today. The alarm clock that woke them up for class has a computer in 
it, the microwave they used to warm their breakfast has a computer in 
it, the watch that told them when to leave for class has a computer in 
it, the cell phone that they (hopefully) silenced at the start of class has 
a computer in it, and if they drove to class, they interacted not with 
one computer, but with many. A car’s electronic ignition has a 
computer, the automatic transmission has a computer, the anti-lock 
brakes have a computer, the intermittent windshield wipers have a 
computer, and on and on and on. If they drove a fairly new car, these 
computers did not work in isolation, but were consolidated into a 
communication network that controls the car as an integrated unit. 

So the question is: who programs all of these computers? And 
who will program them in the future? Will it be your students? Will 
their undergraduate education prepare them to enter a world where 
everything they touch contains a computer? Will they understand 
even the basics of this type of programming? If yours is a typical 
undergraduate program, the answer is probably not. 

There was a time when most embedded programming consisted 
of a few lines of code that could easily be hacked out by a non-
expert. There are still embedded programs like this, but they are 
becoming the exception rather than the rule. 

Processors designed for embedded programming are called 
“microcontrollers.” A microcontroller is a computer in every sense of 
the word, except the name. As I am writing this, I’m looking at a 
sales blurb for a 32-bit microcontroller with more than half a 
megabyte of internal memory and a 32-megabyte external memory 
interface. (Cost: around $10.00 in quantity.) Any application that 
needs a device of this complexity also needs expert programming. 

Of course, one can learn embedded programming “on the fly.” 
One can learn anything “on the fly.” It’s usually better and faster to 
learn from a well-designed comprehensive course. Our purpose here 
is to discuss the design of such a course. There are, in fact, many 
textbooks devoted to embedded programming. Unfortunately, most 
of these focus on only one type of embedded programming. My aim 

here is to give a more broad-based view that will encompass most of 
the important issues. This will enable you to decide which topics are 
most important to you, so you can design your own course 
effectively. 

The good news is that C has become the de-facto standard for 
embedded programming, and C++ is usually also available. 
Therefore the basic programming skills learned in an introductory 
programming course will also be used in embedded programming. 
(One can also use assembly language, but it’s probably best to avoid 
this.) 

There are three main levels of embedded programing. At Level 
1, the programmer must write every line of code. There is no 
operating system and essentially no C library. The program is boot-
strapped into the memory of a microcontroller, usually by burning it 
into non-volatile memory. Execution is initiated by a power-on 
interrupt. At Level 2, a miniature operating system (called a Real 
Time Operating System or RTOS) is used to assist with multi-tasking 
and other housekeeping chores. The RTOS, or portions of it, become 
part of the program and are boot-strapped into non-volatile memory 
along with the programmer’s code. At Level 3, there is a real 
operating system, usually Linux. Special operations must be used to 
access the hardware features, but for the most part, you program the 
system as if it were an ordinary Linux system. The OS and the 
programmer’s code are booted either from non-volatile memory or 
from a memory card. 

It may be tempting to concentrate on Level 3, because the 
environment is familiar and extremely powerful. But this would give 
an inaccurate picture of the world of embedded programming. We 
recommend that all three levels be taught, with special emphasis on 
Level 1. 

2 Before We Start 
If you are not comfortable constructing simple hardware, or 

allowing your students to do so, it is best to cooperate with one or 
more colleagues from electrical or computer engineering. Even 
though we will focus on programming, the aim is to eventually use 
this programming to control special purpose hardware. It is best to 
have a number of pre-completed hardware projects available for 
students. These projects will have all the necessary hardware 
assembled and tested. There will be an empty socket that will 
eventually hold a microcontroller programmed with your students’ 
code. At Level 1, five to seven projects will suffice. At Level 2, two 
or three complex projects will be needed. Simple projects at Level 2 
can use the Level 1 hardware. At Level 3, one or two trivial projects 
should be used to familiarize students with the basic hardware, and 
then the sky’s the limit. 

If your students are comfortable with designing and building 
simple hardware, then they should be allowed to do so. The 
microcontrollers discussed here are available in DIP packages that 
can be used with standard breadboards. Hardware-capable students 
should be encouraged to branch out to more complex projects of their 
own devising. 



3 Level 1: Bare-Device Programming 
At Level 1 there is a small microcontroller, some simple 

hardware and virtually nothing else. The procedure for writing 
programs is quite different from that used for a typical console-level 
program. There is no I/O interface. The objects cin and cout don’t 
exist. There is some debugging help available, but usually you will 
not be able to debug the program while it is running on the 
microcontroller. 

First, you must decide which microcontroller to use. PIC [1] is 
the most popular, but we have found the AVR [2] 8-bit 
microcontrollers easier to work with. These are not the only choices 
(there are hundreds), but they are probably the two best options for a 
starting point. Another popular choice is the ARM [3] architecture 
because it is the architecture found in smart phones and tablets. 
However, the ARM architecture requires a substantial investment in 
development equipment. 

For simplicity, we will describe the tools needed for AVR 
development. In our examples we will concentrate on the Atmel 
ATTiny85 microcontroller (75 cents in quantity), and will use the 
free development system provided by the ATMEL corporation 
(Atmel Studio). There are similar tools available for the PIC and 
other platforms. 

The first concern will be memory management. There are three 
types of microcontroller memory, flash RAM, which holds the 
program, static RAM which is used for variables and stacks, and 
Electrically Erasable Programmable Read-Only Memory 
(EEPROM), which holds constant data. Although the EEPROM (and 
sometimes the flash RAM) can be written by the program, one needs 
to exercise care when doing so. Both EEPROM and flash RAM can 
endure only a limited number of write cycles before wearing out 
(typically 10,000 to 100,000 writes) so these types of memory must 
not be used for program variables. The static RAM can be written an 
unlimited number of times, but there is only a limited quantity 
available. Deep subroutine nesting will cause problems. Recursive 
programs are probably not a good idea. Large arrays probably won’t 
work. The ATTtiny85, which we are using for an example, has 8 
Kilobytes of flash RAM, 512 bytes of EEPROM, and 512 bytes of 
static RAM. The ATTtiny85 is, of course, rather small, but even the 
larger 8-bit microcontrollers have strictly limited amounts of 
memory. 

3.1 Getting Started 
To help you understand what embedded programs do, we’ll start 

with a simple example. Consider the circuit of Figure 1. 
 

 
Figure 1. A Simple Circuit. 

 

This circuit has an 8-pin, the TTiny85, three LEDs, and two 
buttons. Several programming assignments can be completed with 
this hardware. For a first assignment, we’ll flash the LEDs on and off 
using the program of Figure 2.The TTiny85 has five general-purpose 
I/O pins, which are collectively called I/O PORTB. Each pin can be 
configured as an input or an output pin during program initialization. 
Programming is accomplished by moving values to memory mapped 
registers, which are defined as variables in the “avr/io.h” include file. 
These variables are DDRB, which is used to configure ports as input 
or output, PORTB, which is used to configure input pins and to set 
output pins to specific values, and PINB which is used to read the 
values of input pins. We won’t use PINB in Figure 2. The Red, 
Yellow, and Green LEDs are attached to pins 2, 1, and 0, 
respectively. These pins are controlled by the three low-order bits of 
PORTB/DDRB/PINB. The left-hand button is attached to pin 3, and 
the right-hand button is attached to pin 4. These pins are controlled 
by bits 3 and 4 of PORTB/DDRB/PINB. The bits of each register are 
numbered from low order to high order starting with zero. 

When setting the direction of a pin, a zero in DDRB indicates an 
input pin while a one indicates an output pin. For the input pins, it is 
necessary to use PORTB to set the internal pull-up resistors. This 
causes the default value of the pin to be 1. If we don’t do this, the 
input pins will require extra external hardware to maintain their 
default values. A one-bit in PORTB activates the pull-up resistor, a 
zero lets the pin float. 

 
#include <avr/io.h> 
int main( ) { 

// initialization 
// Configure pins 0, 1, and 2 as output pins, 3, and 4 as input 
pins 
DDRB = 0x07; 
// activate the pull-up resistors of ports 3 and 4, setting the 
default input to 1 
PORTB = 0x18; 
// infinite loop 
for (;;) { 
 PORTB = 0x1C; // turn on the RED LED 
 PORTB = 0x18; // turn off the RED LED 
 PORTB = 0x1A; // turn on the yellow LED 
 PORTB = 0x18; // turn off the yellow LED 
 PORTB = 0x19; // turn on the green LED 
 PORTB = 0x18; // turn off the green LED } } 
Figure 2. Rolling the Red/Yellow/Green LEDs. 
 
Slowing the flashing down to the point where it is visible will be 

the student’s first challenge. With the code of Figure 2, the flashing 
won’t be visible. All three LEDs will glow dimly. To slow things 
down, we need to add a delay between turning the LEDs on and off. 
The simplest way to do this is to add a programmed delay as shown 
in Figure 3. (Remember that this is an 8-bit microprocessor, hence 
the unsigned char variables.) This delay might be enough, but it 
probably won’t be. One can add nested loops to increase the delay to 
any desired value. Once the lights start blinking at the desired rate, 
we could try something fancier, like make the hardware work like a 
traffic light: long red, short yellow, long green.  

The next challenge is to use the input pins to detect a button-
push. With our sample hardware it will be necessary to debounce the 
button. A button does not go from off to on instantly. It goes from 
off, to rapidly changing between on and off, to on. When detecting a 
change in the button, the microcontroller program must wait a few 
milliseconds, and then confirm the status of the button. A change can 
be detected by reading a register and testing a bit. Debouncing can 
also be done with external hardware, which simplifies the 



programming. We will use the left-hand button is attached to pin 3. 
Figure 4 shows how to read the state of the button. 

 
#include <avr/io.h> 
int main( ) { 
 unsigned char i,j,k; 

// initialization 
// Configure pins 0, 1, and 2 as output pins, 3, and 4 as input 
pins 
DDRB = 0x07; 
// activate the pull-up resistors of ports 3 and 4, setting the 
default input to 1 
PORTB = 0x18; 
// infinite loop 
for (;;) { 
 PORTB = 0x1C; // turn on the RED LED 
 for (i=255 ; i>0 ; i--); 
 PORTB = 0x18; // turn off the RED LED 
 for (i=255 ; i>0 ; i--); 
 PORTB = 0x1A; // turn on the yellow LED 
 for (i=255 ; i>0 ; i--); 
 PORTB = 0x18; // turn off the yellow LED 
 for (i=255 ; i>0 ; i--); 
 PORTB = 0x19; // turn on the green LED 
 for (i=255 ; i>0 ; i--); 
 PORTB = 0x18; // turn off the green LED 
 for (i=255 ; i>0 ; i--); } } 

Figure 3. Visibly Rolling the Red/Yellow/Green LEDs. 
 

#include <avr/io.h> 
int main( ) { 
 unsigned char i,j,k; 

// initialization 
// Configure pins 0, 1, and 2 as output pins, 3, and 4 as input pins 
DDRB = 0x07; 
// activate the pull-up resistors of ports 3 and 4, setting the default 
input to 1 
// Also, turn on the RED LED 
PORTB = 0x1C; 
// infinite loop 
for (;;) { 
 // zero means the button is down 
 if ((PINB&0x80) == 0 { 
  // wait a bit 
  for (i=255 ; i>0 ; i--); 
  // is the button still down? 
  if ((PINB&0x80) == 0) { 
   // code to turn off the current LED 
   // and turn on the next one is placed here 
   while ((PINB&0x80) == 0) { 
    // wait for the button to start back up  } 
     for (i=255 ; i>0 ; i--); } } } } 

Figure 4. Responding to a Button. 
 
Completing these simple assignments will teach the student 

some important basic points. In embedded programming, “input” 
means reading the status of an input pin, “output” means setting the 
value of an output pin, and significant amount of code is required to 
configure the microcontroller for different operations. 

As the preceding examples show, an embedded program 
consists of a set of initializations followed by an infinite loop. Delays 
of some sort are almost always necessary. Programmed delays are 
conceptually simple, but a better method is to place the 
microcontroller in a wait state, using an interrupt from an internal 

timer is then used to terminate the delay. This method consumes less 
power, because much of the microcontroller’s circuitry will enter a 
sleep state during the wait. 

3.2 The programming process. 
Microcontroller programs must be developed on a standard 

platform such as MS Windows and cross-compiled it to produce 
microcontroller object code. The object code is then downloaded into 
a microcontroller for execution. As mentioned above, we use the free 
software from Atmel Corporation for code development and cross-
compilation. The object files are in Intel’s “.hex” format, which can 
be downloaded using a free software package called “avrdude” [4]. 
Figure 5 shows a picture of some sample hardware similar to that of 
Figure 1, but without the buttons. The black rectangle in the center is 
an 8-bit socket. The black rectangle below it is the microcontroller, 
which has been removed from its socket for programming. 

 

 
Figure 5. Sample Hardware. 

 
Figure 6 shows an inexpensive programmer called the “Pocket 

AVR Programmer” [5]. It is about 1x1.5 inches in size and costs 
around $15. The gold socket at the top is a mini-USB connecter 
which is used to connect to a desktop PC or laptop. The cable at the 
bottom goes to a breadboard which is wired to communicate with 
several different microcontrollers. Figure 7 shows the breadboard 
with the microcontroller in place for programming. The connector to 
the programmer is at the far left. 

 

 
Figure 6. The Pocket AVR Programmer. [5] 

 

 
Figure 7. The Microcontroller in Place for Programming. 



Once the microcontroller is programmed, it is placed back in its 
socket and the red and black wires at the lower left of Figure 5 are 
attached to a power supply. If one is very lucky, something will 
happen. However, in most cases, the program will have to be 
debugged before it starts to work properly. Many microcontrollers 
have in-place debugging features that can be invoked by a 
sophisticated development system, but with hardware shown in 
Figure 6, it is necessary to debug the program “offline.” The AVR 
software has an offline simulator that can be used to verify program 
correctness. It is best to simulate the program before downloading it 
for the first time. Once the program is working correctly in the 
simulator, it can be downloaded into the real hardware for further 
testing. 

3.3 Advanced Programming 
Additional assignments can explore the input and output 

features of the microcontroller as well as some of its internal features. 
The logical next step is to replace the programmed delays of Figures 
3 and 4 with internal-timer based delays. This will result in an 
interrupt-driven program. This style of programming is substantially 
different from the examples given in Figures 2-4, but is necessary to 
access the more advanced features of the microcontroller. 

Some of the additional features which should be explored are 
pin-change interrupts, analog input using pin comparators or analog-
to-digital conversion. Analog-to-digital input is often used to 
determine the position of a dial attached to a potentiometer, but it 
could be used in connection with other features to record analog 
signals. Another important feature is analog output using Pulse Width 
Modulation (PWM). PWM can be used to vary the intensity of an 
LED, or control the speed of an electric motor. Some advanced 
microcontrollers provide digital-to-analog output, although this is 
rare. 

Some microcontrollers provide Universal Serial Asynchronous 
Receiver Transmitters (USARTs) that can communicate with the 
serial ports of a conventional computer. This port can be read and 
written by a terminal program, allowing a user to communicate 
directly with the program on the microcontroller. 

An increasingly important feature of embedded program is 
networking between two or more microcontrollers using either the 
Serial Peripheral Interface (SPI) protocol or the Two Wire Interface 
(TWI) protocol. These protocols can be explicitly programmed, but 
most microcontrollers provide built-in hardware which simplifies the 
programming process. 

Another important consideration is power management. Certain 
features permit unused portions of the microcontroller to be powered 
down, and others permit the microcontroller to enter various levels of 
sleep modes when waiting for events to occur. These modes of 
operation are extremely important for battery-powered circuits, so it 
will be beneficial for students to learn about them. 

4 Level 2: Real-Time Operating Systems 
At level 2 we add an operating system, the main benefit of 

which is multi-tasking. Everything we learned at level 1 is still valid. 
We do things in much the same way as at level 1, but now we can 
control multiple independent devices simultaneously with only 
moderate difficulty. There are many microcontroller-based Real 
Time Operating Systems (RTOS) available, some of which are free. 
One of the most popular is FreeRTOS [6], which is available for a 
number of different platforms, including the AVR ATMega series. 
Unfortunately, the larger RTOS’s are too large for the smaller 
microcontrollers such as the ATTiny85. An even smaller RTOS, 
FemtoOS [7], is available for these smaller microcontrollers. 

The OS itself is the only new tool needed at this level. Cross-
compiling, simulating, and downloading, are done using precisely the 
same tools used in Level 1. 

The first step in creating an RTOS-based program is to copy the 
OS files into your project. The OS itself becomes the project with 
your code consisting of a set of subroutines that are called by the OS 
at various times. The main routine will be provided by the OS, but 
there will be a primary subroutine for each task. Each task will 
consist of an initialization section followed by an infinite loop. Tasks 
are pre-emptible via interrupts, and will be scheduled according to a 
system of priorities which you can designate using configuration 
files. Operating system calls are available for task synchronization, 
timed waits, and inter-task communication. 

It will generally be necessary to modify the OS source files to 
some degree, although these modifications will normally be confined 
to the OS configuration files. Because of this it is usually a good idea 
to start with a sample project that is as close as possible to the project 
you wish to complete. You can then modify the sample project to do 
what you want. This saves the trouble of creating configuration files 
from scratch. 

Figure 8 shows a two-task FemtoOS project using the 
ATTMega168 microcontroller. Two pins of the microcontroller are 
wired to LEDs, one red and one green. These two pins are controlled 
by the two least significant bits of the devLedPORT and 
devSwitchPIN registers. The variables devLedPort, and 
devSwitchPIN, are mapped to microcontroller registers by the OS 
include file. The button is wired to a pin controlled by the third bit of 
the devSwitchPIN variable, which is also mapped to a device 
register. 

The program blinks the two LEDs alternatively, switching from 
one the other when the button is pushed. There are two tasks, one to 
manage the blinking, and another to watch the button. A global 
variable is used for inter-task communication. The programming of 
device registers is essentially the same as at level 1. However, delays 
are handled through the OS, not by programmed loops.  

The two functions “appLoop_LEDtask1” and 
“appLoop_DoButton” are the main routines for the LED task and the 
Button task respectively. The “TimeToSwitch” variable is used for 
task communication. The first loop in the LED task turns on the red 
LED, delays 200 milliseconds, then turns off the red LED and delays 
another 200 milliseconds. This procedure is repeated until the 
“TimeToSwitch” variable is set to true by the Button task. When 
“TimeToSwitch” becomes true, the first loop is broken, 
“TimeToSwitch” is set back to false, and the second loop is entered. 
The second loop repeatedly turns on the green LED, delays 200 
milliseconds, turns off the green LED, and delays another 200 
milliseconds. As with the first loop, if the button task sets 
“TimeToSwitch” to true, the loop is broken, “TimeToSwitch” is set 
to false, and the task returns to the first loop. 

The Button task waits for a button to be pressed. When a button 
press is recognized, the “TimeToSwitch” variable will be set to true. 
The LED task has the responsibility for setting “TimeToSwitch” 
back to false. The Button task is a bit more complicated than one 
might expect, because it must debounce the button. The Button task 
waits for the button to be pressed. This will be detected as a change 
in bit three of the devSwitchPIN register. If such a change is 
detected, the task delays 100 milliseconds, confirms that the bit has 
indeed changed, and sets “TimeToSwitch” to true. Then the task 
waits for the button to be released. This will cause bit three of 
devSwitchPIN to return to zero. Waiting is done by repeatedly 
delaying 100 milliseconds and retesting the devSwitchPIN bit. 
Finally, the task waits for “TimeToSwitch” to be set to false by 
repeatedly delaying for 100 milliseconds. After “TimeToSwitch” 



becomes false, the Button task resumes waiting for the next button 
press. 

The code of Figure 8 is compiled and simulated using the same 
tools as were used in Level 1. The initial include statement inserts the 
required OS definitions into the users program. The FemtoOS source-
code files must be made part of the project, which allows the OS 
code to be compiled into the user’s program. Once the code has been 
simulated, the object file is downloaded to the microcontroller and 
run just as in Level 1. 
 
#include "femtoos_code.h" 
static Tbool TimeToSwitch = false; 
 
void appLoop_LEDtask1(void) { 
 for (;;)  { 
  for (;;)  { 
   devLedPORT |= 1; 
   taskDelayFromNow(200U); 
   devLedPORT &= 0xFE; 
   taskDelayFromNow(200U); 
   if (TimeToSwitch) break;  } 
  TimeToSwitch = false; 
  for (;;)  { 
   devLedPORT |= 2; 
   taskDelayFromNow(200U); 
   devLedPORT &= 0xFD; 
   taskDelayFromNow(200U); 
   if (TimeToSwitch) break;  } 
  TimeToSwitch = false; } } 
 
void appLoop_DoButton(void) { 
 for (;;)  { 
  if (devSwitchPIN & 4) { 
   taskDelayFromNow(100); 
   if (devSwitchPIN & 4) { 
    TimeToSwitch = true; 
    while (devSwitchPIN & 4) { 
     taskDelayFromNow(100);  } 
    while (TimeToSwitch) { 
     taskDelayFromNow(100);  } } } }} 

Figure 8. Switch from One Blinking LED to Another. 
 

The programming exercises for Level 2 should be more 
complex than those for Level 1. To facilitate this we recommend that 
a larger (in terms of pin count) microcontroller be used, primarily 
because it is easier to control multiple devices if more pins are 
available. We suggest the ATTiny861, or the ATMega168. 

5 Level 3: A Complete System 
Level 3 is quite similar to ordinary Linux programming. There 

are many devices available, but we recommend the Raspberry PI [8] 
which is available for less than $50. It is a complete Linux system 
that can be used as a desktop computer, if you wish. (As a desk top, it 
is rather slow.) You can use it both as a development environment 
and as part of an embedded system. There are commercial kits 
available for the Raspberry PI, that cover everything from robotics to 
home theater. There are even educational laboratories aimed at the K 
through 12 audience. There is online documentation (available from 
many sources) that covers programming, OS modifications, and 
sample projects. 

It is best to ignore all the commercial products and focus on 
programming the general purpose I/O pins. This is done in the same 
manner as in Level 1, namely by moving values to or reading values 
from memory mapped registers. Figure 9 shows a picture of the 

Raspberry PI. The General Purpose I/O (GPIO) pins are at the lower 
right. The device is booted from an SD card, which is the rectangle at 
the far right. The device pictured is wired to operate as a desktop 
computer, with the video port at the bottom, power at the upper right, 
internet connector at the upper left, and USB hub at the center left. 
Mouse and keyboard are attached to the USB hub. 

General purpose I/O is managed through a Broadcom BCM2835 
ARM peripherals chip [9], whose GPIO registers are mapped to the 
Raspberry PI’s memory space starting at 0x2002000. Figure 10 
shows the general outline of an LED flasher task. Unlike the ATTiny 
and ATMega microcontrollers, the Raspberry Pi has two separate 
registers, one for setting pins to 1 and another for setting pins to 0. 
(Such variations between different products are common.) 

The LED must be connected between pins 7 and 8, with a 
resistor to limit the voltage. Figure 11 shows the pinout of the GPIO 
pins. In Figure 9, Pin 1 is the rightmost pin of the top row. The pins 
marked as GPIO can be used for any purpose and can be configured 
as input or output. The other pins (other than power and ground pins) 
can also be configured for general purpose I/O if their specialized 
functions are not required. 

 

 
Figure 9. The Raspberry PI. 

 
Configure Pin-7 as an output, using Function-Select  register. 
for (;;) { 
 Move 1 to Pin-7 GPIO-Set register 
 Pause 
 Move 1 to Pin-7 GPIO-Clear register 
 Pause } 

Figure 10. A Raspberry PI LED Flasher Program. 
 

 
Figure 11. Raspberry PI GPIO Pinout [6]. 

 
The possibilities for the Raspberry PI are nearly limitless. The 

SP10 pins (See Figure 11) can be used to communicate with Level 1 
or 2 microcontrollers using the SPI protocol. The I2C1 pins do the 



same using the TWI protocol. This gives one the power to construct 
complex systems with Level 1 or 2 microcontrollers performing the 
low-level tasks and Linux-based programs providing the over-all 
control. 

The UART pins can be used to communicate with a serial port 
on another computer, or with a microcontroller USART interface. 
There are several other connectors in addition to the pins described in 
Figure 11. There is a camera connector near end of the Ethernet 
connector. There is an LED screen connector above the memory card 
slot. There is a JTAG interface and an additional GPIO header. 
(These last two have no pins attached and require expert handling.) 

The power of this $30 device is astounding. I will leave the 
exploitation of this power to your imagination. 

6 Conclusion 
As mentioned above, the past two decades have seen an 

explosion in embedded programming. Microcontrollers have 
proliferated into almost every electronic device. In addition, 
controllers have become increasingly more complex and increasingly 
less expensive. The explosion in embedded programming can only be 

expected to continue. As systems become more complex, there will 
be an increasing need for expert programmers to program them. This 
is an important opportunity for computer science students, one that 
cannot be ignored. A one-semester course in embedded programming 
will prepare students for this exciting and rewarding opportunity. 
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