
Running an Agile Class

Kevin A. Gary
Arizona State University

7171 E. Sonoran Arroyo Mall
Mesa, AZ 85212
kgary@asu.edu

Abstract

Agile methods, particularly Scrum, apply an empirical process model to the complexity of
software development. The reasoning, in short, is that a highly iterative process with specific
short-term goals can be instrumented to provide constant feedback to change and disruption.
Agile methods focus on short iterations, adaptive work assignments, constant feedback, and
process visibility to address the fundamental nature of complexity. The author is currently
experimenting with agility in the classroom through the incorporation of these mechanisms and
the support of online tools. Online tools can help in several ways, such as helping the instructor
and teaching assistants scale up the agile teaching process. Initially we have found that the most
impactful of online tools is a scrum taskboard, or Scrumboard, to make the work of the class
visible to all stakeholders. In the context of the technology-supported classroom, the online
Scrumboard not only helps the instructor and teaching assistants (yes, the pigs) manage the busy
work of running the course, but lets the stakeholders (students, or chickens) understand what is
happening now and next, and how their progress influences what happens on the board. This
paper will focus on the use of an online Scrumboard in an upper-division project course, sharing
the instructor’s experience combined with a survey completed by the students. It will expand on
agile teaching and its potential for managing today’s complex higher education class.

Introduction

This is not another paper describing how to teach agile methods to software engineering
students. Rather, it is a paper on experiences using an agile methodology to execute a college
course. This paper shares instructor experiences and student evaluations of running a course as a
series of scrum sprints, and sharing the visibility of the sprints via an online scrumboard.

The higher education landscape is changing in many ways; online courses, project-based
learning, active/discovery-based learning, technology aids, high articulation rates, and so on. The
“sage on the stage” teaching model is as obsolescent as the waterfall model in software
engineering. Instructors are now expected to balance a fast-paced classroom incorporating new
learning models and complex course plans with the events that inevitably arise when dealing
with nonlinear processes. In other words, dealing with the complexity of teaching material while
guiding self-directed activities to teams of students with different educational backgrounds.

The experience described in this paper is from an upper-division project-centric course where
student teams work on a project while learning and applying new concepts. The author found
that constantly revising a course plan based on student progress was a losing game; there were
too many events that altered the plan. The “instructor as coach” model was difficult to scale,

students were confused between the learning process and the project process, and too much time
was spent tweaking the course with the students than was spent on executing the learning
process.

The author’s epiphany was realizing an inability to control a predictive (course) plan and instead
applying a reactive, empirical process model. Agile methods, notably Scrum, provide
mechanisms for implementing empirical process control. Sprints, sprint goals, and continuous
feedback provide for directed process execution with the ability to adapt to change [6]. In terms
of a course, a sprint is a unit of time; a sprint goal is the outcome (or suboutcomes) to be
achieved by the sprint, and the class meeting time, formative and summative assessment
activities, and technology-based touchpoints (email, project dashboards, discussion forums) a
form of continuous feedback. This paper describes the agile mechanisms put in place and shares
the results of a small survey of class participants on the utility of the approach. Some thoughts on
progressing the idea of agile classrooms are provided at the conclusion of the paper.

The Benefits of Agility in a Course Context

Agile methods are, of course, the silver bullet software engineering has long awaited. It provides
productivity, innovation, creativity, time-to-market, under budget costs and zero learning curve
to all adopters on their software projects. Plus, it cures the common cold. So why shouldn’t we
shoot that bullet at the difficulties in the changing landscape of higher education? After all, the
modern classroom is distancing itself day by day from the classrooms of yore. Learners arrived
with predetermined expectations of what energy they should and will expend on the class.
Technology is as much an intrusion as an innovation; we swing the Mjölnir	 wildly with tablets,
cell phones, content delivery systems, online interactive collaboration and of course MOOCs
(my how the mighty have fallen…). New pedagogies exuberantly attack the sage on the stage
with enough variants to start their own revolution (oh, wait…).

Facetiousness aside, Agile is in the category of hyped technologies and some are starting to track
its spiral into the “Trough of Disillusionment” [4,7]. Most critics do not fault agile methods
themselves, but rather the inexperienced or inaccurate application of agile methods by
uninformed middle management. Of course over time agile methods will mature into better-
understood variants and adaptations and appears to be here for the long haul [5]. It is the author’s
experience that Agile experienced an initial popularity as part of a developer revolt of sorts;
emboldened by the success of open source software and community development spurred by the
Internet, developers rapidly adopted (sometimes in secret) agile means of executing their tasks.
Traditional project and product managers did not always buy into these methods, as they did not
understand them, and felt more comfortable with traditional project management techniques and
tools, and needed more long-term guarantees than agilist developers would provide (ignoring the
fact that these guarantees only guaranteed failure).

Much of the agile literature espouses the wonders of agile from the software engineering
perspective, but there are also several business-oriented benefits that have helped agile overcome
initial project/product management skepticism [3]. Most notable of these are an ability to adapt
to changing requirements, expectations, and operating conditions, an ability to cross functional
boundaries, and the transparency and visibility of the process to all stakeholders. While there are

many other benefits of agile, it is these benefits that convinced the author that perhaps agile
applied to teaching and learning could address some of the issues arising from the evolving
education landscape. Specifically:

• The changing environment in which the modern university course is taught is changing as

mentioned above. Changes in student expectations, changes technology, changes in
pedagogy map to the changes in requirements and operating conditions that agile addresses
for software development organizations. Can agile help manage this change for the educator?

• More and more (at least at the author’s institution), higher education students are encouraged
to work in multidisciplinary teams and even define custom multidisciplinary degree
programs. At the author’s institution students may cluster 4 courses into a secondary focus
area combining a student’s interests with degree program outcome requirements. The result
from the faculty perspective is more students showing up in upper division classrooms with a
variety of backgrounds and interests. This maps to the agile benefit of dealing with cross-
functional boundaries.

• Transparency and visibility of the process is a tremendous impetus for agile adoption on
software development projects. Project managers enjoy being able to receive constant
feedback on projects via daily standup meetings and dashboards, while product managers and
clients gain visibility and control into the management process via short iterations and
frequent planning sessions. Risks are identified early and addressed through a scale-down /
scale-up set of mechanisms. To the author this is the main potential benefit of applying an
agile approach to teaching and learning. Providing students with visibility into where the
course is, what learning goals are being achieved (in the current iteration), and getting
constant feedback provides them a context and organization of the learning process, resulting
a less frustrated and more engaged student participant.

The next section will present the specific agile mechanisms put in place in an upper division
project-centric course in the spring of 2013, with the focus on achieving the third agile benefit of
transparency and visibility.

Agile Practices for Course Management

The traditional means by which a higher education instructor manages her/his course offering is
to distribute a planning document, or syllabus, on the first day of class. This syllabus is usually
an example of a prescriptive process model – it contains process steps (course topics and perhaps
a calendar), process constraints and resources (textbooks, homework submission policies),
process assessment (learning outcomes and grades), and policies for resolving process errors
(grade appeals, academic integrity policies, etc.). While usually prescriptive there is nothing
mandating that it be constructed as such; one can argue that the most important content of the
syllabus are the process assessment components, as they inform the student what s/he will learn
and how feedback will be provided to ensure the process of learning in the classroom supports
achievement of those outcomes. Nonetheless most courses map out a syllabus and use it as a plan
to prescriptively execute throughout the semester. Technology only reinforces this approach, as
many course management systems now provide a syllabus tool and allow the instructor to
generate learning activities from that tool, and often map them onto a course calendar.

But what if the instructor focused less on course content and learning activities and more on
learning outcomes, continuous feedback, and making in-time adjustments to learning process
execution during the semester? Then s/he starts to sound agile. To realize this approach, the
author introduced some agile mechanisms based on the Scrum methodology [6] in a junior level
project-centric course in the spring semester of 2013. The course material focused on software
development best practices, though that is not particularly important outside of there being
specific measurable technical competencies as part of the course outcomes. 23 students were
enrolled in the course, 22 of the 23 passed the course.

The principal agile concept introduced was the Scrum sprint with accompanying product and
sprint backlogs. Using the Scrumwise tool, obtained via a free academic license, the instructor
created a product backlog by starting from the course learning outcomes. From there, eight
sprints were mapped out over the course of the semester corresponding to eight modules the
instructor wished to cover. Figure 1 shows a completed Scrumboard from Scrumwise.

Figure 1. Completed Scrumboard from a course sprint

The notion of a sprint is fundamental to the introduction of agile teaching and learning. First, the
sprint provided a time-boxed way to achieve a learning outcome within a course, or at least to
cover some material associated with a learning outcome. Second, the concept of a sprint goal is
very important to this process. A sprint goal in Scrum is the specification of what the team is
trying to achieve by completing the sprint. It is best used as a litmus test to determine whether
the sprint was successful or not – instead of assuming a sprint is successful merely by completing
all the tasks associated with a backlog item. This is an important, oft-overlooked aspect of
Scrum, and one that enables it to react to change so well. The focus of a sprint is on achieving a
goal, not on completing activities. Likewise, for a teaching and learning process, the focus
should be on understanding whether students are achieving learning outcomes and not as much

on whether they actually (or the instructor actually) completes various tasks. Finally, the
Scrumboard provides a powerful information radiator [2] for the class. It provides constant
feedback as to what the instructor is doing, what is coming next in the class, what is changing,
and what the goal is.

The Scrumboard for the course was made available throughout the course by adding the students
as stakeholders (“chickens” in Scrum lingo) while the instructor and teaching assistants were the
owners (“pigs”). Anecdotally, the author found that utilizing the Scrumboard and organizing
course tasks in sprints was a great way to manage the constant change and minutiae of executing
a course. Interestingly, sharing the Scrumboard with students appeared to be a step toward better
communication of weekly course goals and activities, resulting in less communication time
around where the class was and what was coming next [1]. Of course this is the perspective of a
single instructor. A survey was also conducted asking the students for their perspectives on
utilizing Scrum in the class. The survey asked 3 simple rating questions and one qualitative free-
form type of question. Of the 23 enrollees, 13 responded to the survey.

Q1: “I liked being able to see what the instructor was preparing next for our XXX class”

Answer Response %
1 Strongly Agree 6 46%
2 Agree 5 38%
3 Neither Agree nor Disagree 2 15%
4 Disagree 0 0%
5 Strongly Disagree 0 0%

Table 1. Results from survey question Q1

Q2: I checked the XXX Scrumboard periodically throughout the semester

Answer Response %
1 Strongly Agree 2 15%
2 Agree 7 54%
3 Neither Agree nor Disagree 1 8%
4 Disagree 1 8%
5 Strongly Disagree 2 15%

Table 2. Results from survey question Q2

Q3: I would recommend the Scrumboard for the next offering of XXX

Answer Response %
1 Strongly Agree 6 46%
2 Agree 5 38%
3 Neither Agree nor Disagree 2 15%
4 Disagree 0 0%
5 Strongly Disagree 0 0%
 Total 13 100%

Table 2. Results from survey question Q3

(Note: XXX is used to hide the course identification)

Q1 directly asks whether students found the Scrumboard useful, and most students responded
positively. Likewise Q3 is similarly positive, though a cross-tabulation of the responses reveals

that respondents did not answer these 2 questions the same way, despite the identical aggregate
results. Q2 responses were more distributed, though 9 of 13 answered positively while only 3 of
13 answered negatively. The cross-tabulation reveals that for those 3 that answered negatively to
Q2 (i.e. they did not check the Scrumboard periodically), 2 of those 3 answered Q1 and Q3
positively. The author believes this is because a postmortem reviews of the class Scrumboard at
the end of the semester led to observations that some students did not track the board closely as
they did not fully understand the intent of these sprints in the first place.

Q4: Please enter any thoughts or recommendations you would make regarding your experience
using a Scrumboard by the Instructor in XXX

There were only 7 responses to this question, and most were comments on the Scrum tool
employed and not on the Scrumboard itself. That is, as often happens with open-ended class style
evaluation surveys, the students riffed on what they wanted, not what was asked! One exception:

“It provided a good reference for where we were in the class and what to expect.
But I did not use it as much as I probably should have.”	

Which the author believes represents the typical perspective of students in the class.

These results are taken from a single semester offering with a relatively small number of
participants in a single course section, so the author is aware of the limitations of drawing
conclusions from the survey. Further the survey asks about perspectives on learning and the
utility of a teaching and learning tool, and does not directly measure learning outcomes. Future
iterations require a measurement vehicle where the impact of the methodology and tools on
learning outcomes is directly addressed.

Discussion and Future Directions

This is a new way of running a class, and communicating the model and the mode of work to the
stakeholders (the students) is critical to its success. Confounding this challenge was the fact that
students were also executing their own sprints for their class projects. While at first the author
thought this would help minimize the learning curve for conducting an agile class, it appears to
have confused the matter for some students (as evidenced by Q2).

The careful reader has probably noticed by now that the definition and execution of the sprints
does not exactly match the motivational philosophy given for employing sprints above. Most of
this is due to the simple nature of trying this in a real class the first time, and the practical
obstacles that arise. For example, eight sprints were defined because there were eight pre-
existing curricular modules available for the course based on previous course offerings. It was
thought that a straight one-to-one mapping of modules to sprints would be the least intrusive way
to introduce agility. But, the results were sprint goals narrowly defined by technical
competencies (e.g. “the student will be able to construct a unit test in tool X”) and not easily
mapped to course level outcomes (e.g. “at the conclusion of this course, students will understand
the principles of quality source code development, the challenges in introducing best practices on
software development projects, and apply tools and techniques for achieving code quality in the

context of a scalable project”). The author had to create a suboutcome layer and map these
suboutcomes, representing specific technical competencies to the course outcomes, and all this
was tracked outside the sprints. For the next iteration of the course in Spring 2014, the author is
considering how to introduce epics as a means to manage themes that corresponding to learning
outcomes. For example, one epic might represent quality coding practices with sprints dedicated
to static analysis, refactoring, and code reviews (3 example modules from the course) while
another epic might represent software testing and include sprints on unit testing and continuous
integration and testing (2 more modules). Other approaches may work as well.

Despite the infancy of this research, some clear benefits have been identified. Transparency,
visibility, and organization are powerful vehicles for progressing learner motivation and
outcomes. This is inline with larger studies on these basic mechanisms (a good summary recently
published here [1]). The nature of change may be distinct from software engineering, but the
transformation of the modern higher education experience means that change does occur and
takes many forms, and perhaps empirical process control is one mechanism to help the
overwhelmed instructor adapt. Of course not all is good; there is danger is adopting a process
model from one domain to another domain of practice, though we note ironically this is what
happened with Scrum in the first place. Many of the drawbacks encountered so far are likely due
to the infancy of the work combined with this danger. Figuring out the right agile practices,
defining a methodology for introducing those practices in the classroom, and assessing their
impact requires deeper investigation and rigor, and this is the trajectory of future work.

Finally, the author notes that this work is part of a larger research impetus to investigate and
implement strategies taken from engineering and computing disciplines in the context of
teaching and learning processes. Software engineering in particular has seen great change in the
understanding of best practices, driven by new process models like agile but also from the
expansion of community-oriented development spurred by the Internet. In short, software
engineers are becoming expert practitioners in working on problems with high rates of change –
in requirements, methods, tools, technology, and expectations. That sounds a lot like what is
starting to happen in higher education, so perhaps we should look to process and practices we
have right under our nose for the solution!

References

1. Barrett, D., “Teaching Clearly Can Be a Deceptively Simple Way to Improve Learning”, The Chronicle of

Higher Education, November 22, 2013.
2. Cockburn, A. (Online), “Information Radiator”, Available at http://alistair.cockburn.us/Information+radiator, (last

accessed January 4, 2014) June 19, 2008.
3. Highsmith, J. and Coburn, A., “Agile Software Development: The Business of Innovation”, IEEE Computer September

2001, pp. 120-122.
4. Janes, A., Succi, G., “The Dark Side of Agile Software Development”, Proceedings of the Third ACM

conference on Systems, Programming, Languages and Applications: Software for Humanity (SPLASH 2012),
Tucson, AZ. October 2012.

5. Kajko-Mattsson, M., Aguiar, A., Boness, K., Kaindl, H., Pooley, R., and Tael, A., “Long-Term Perspective of
Agile Methods”, Panel report in the Proceedings of the 4th International Conference on Software Engineering
Advances, 2009 (ICSEA '09), Porto Portugal, September 2009.

6. Schwaber, K. and Beedle, M., Agile Software Development with Scrum, Prentice-Hall 2001.
7. Wilson, N. (Online), “The Trough of Disillusionment” Available at http://blogs.gartner.com/nathan-wilson/the-trough-

of-disillusionment/, (last accessed January 4, 2014) July 12, 2012.

