
Health Journal Web Service using Cloud Computing

Ryan Hausen, Samuel Sambasivam,

Simon H Lin

Department of Computer Science, College of Liberal Arts and Sciences,

Azusa Pacific University, Azusa, CA 91702, USA

Abstract - Technology continues on a trend to a stronger

dependence on the cloud. Making web services easy to create

and easy to manage has taken large strides in recent years,

and there has been a push for more RESTful web services [3].

In this same stride, software has been leaning towards the

implementation of software as a service which can utilize

RESTful web services to access databases or other backend

services. In this paper, we explore how to implement a simple

RESTful web service using the recently released Microsoft

Web API 2.1 backed by SQL server. Using this impressively

easy technology with features like attribute routing and the

new IHttpActionResult interface, receiving and sending HTTP

requests and responses comes very naturally to anyone who is

familiar with .NET programming and some standard web

protocols.

Keywords: web service, software design, programming,

database, cloud computing

1 Requirement

The outcome of this project will be a RESTful web service,

henceforth referred to as the Service. The Service will support

a Health Journal storage system, by which users can submit a

daily journal and retrieve it later. Each journal should be able

to track the following six pieces of information:

1. Date that the journal represents

2. How the person was feeling that day

3. How much the person weighs that day

4. How far the person traveled in exercise that day

5. How many calories that person consumed that day

6. Any extra notes that person would like to associate with

that day

In addition to being able to submit data to the Service, the

Service should be able to respond with a single journal or a

series of journals filtered by date so that users can monitor

their results over time.

The Service will provide the basic Create, Read, Update, and

Delete functions. These will be exposed in intuitive functions

that will make it easy for client software to utilize its features

for the benefit of users.

2 High-Level Design

The design pattern that the Service architecture should follow

will be based on REST or Resource Oriented Architecture. In

this design pattern, the resources are represented by URI's that

utilize standard HTTP methods (POST, PUT, GET, and

DELETE) to perform operations against the data represented

by the URI, at which the methods are applied.

Figure 1: Use Case Diagram for

Managing Health Journals

Figure 2: Data Flow Diagram for the

Health Journal Web Service

3 Low-Level Design

The particular implementation of the RESTful architecture

pattern for this project will be Microsoft's Web API 2.1 in the

.Net environment, and using C#/SQL as the languages of

implementation. The target framework [1] for the project is

.Net 4.5 and will be hosted on a Microsoft IIS server. The data

will be stored using Microsoft's SQL Server 2012.

The dominant format of data on the web currently is XML.

Another format, JSON is growing in popularity. JSON is a

lightweight form of XML that simplifies data transmission in

a way that is easily understood in JavaScript and consequently

most browsers.

The class diagram has been designed with all attributes [4]

and relationships verified and validated. The data model has

been designed with all attributes and relationships verified and

validated [5]. The class diagram and the database diagram are

shown below.

Figure 3: Class diagram for the

Health Journal Web Service

Figure 4: Database Diagram for the

Health Journal Web Service

4 Coding

The coding has been completed successfully with

approximately 3000 lines of code. The complete source code

is available upon request.

5 Testing

Unit testing [2] and system testing have been completed

accordingly with some complex testing scripts being designed

and developed.

6 Product Demo

To demonstrate the Service, Dev HTTP Client, available in

the Google Chrome App Store was used to generate HTTP

requests and parse responses. To find out more about Dev

HTTP client, please go to:

https://plus.google.com/104025798250320128549.

The following is a sample list of actions a user or a service

administrator can perform.

1. Create a new user: A new user is created using JSON

format and sent using the POST method. Note that the

server response excludes the new user’s password and

includes the user’s Id. The response also includes the URI

for new user in Location Header.

2. Add a new journal to the created user’s journals: A new

journal is created using JSON format and sent using

POST, referencing the created user’s Id in the URI.

3. Retrieve an existing journal: An existing journal is

retrieved by making a GET request to the URI of the

journal.

4. Update an existing journal with new information: An

updated journal is sent over referencing an existing

journal’s Id in JSON format using the PUT method to the

URI referencing the Journal’s date. Note that the “Notes”

property of the JSON object has been updated to reflect

the changes.

5. Delete an existing Journal: A DELETE request is sent to

the URI of the journal; this time we use the Id of the

journal rather than the date to alter the resource.

7 References

[1] FitzMacken, Tom (2013). “Mocking Entity Framework

when Unit Testing ASP.NET Web API 2”,

http://www.asp.net/web-api/overview/testing-and-

debugging/mocking-entity-framework-when-unit-testing-

aspnet-web-api-2#dependency

[2] FitzMacken, Tom (2013). “Unit Testing ASP.NET Web

API 2”, http://www.asp.net/web-api/overview/testing-and-

debugging/unit-testing-with-aspnet-web-api#addtoexisting

[3] Richardson, Leonard & Ruby, Sam. “RESTful Web

Services”, Web services for the real world, O’Reilly Media,

454 pages, 2007.

[4] Wasson, Mike (2014). “Attribute Routing in Web API 2”,

http://www.asp.net/web-api/overview/web-api-routing-and-

actions/attribute-routing-in-web-api-2

[5] Wasson, Mike (2012). “Model Validation”,

http://www.asp.net/web-api/overview/formats-and-model-

binding/model-validation-in-aspnet-web-api

https://plus.google.com/104025798250320128549
http://www.asp.net/web-api/overview/testing-and-debugging/mocking-entity-framework-when-unit-testing-aspnet-web-api-2#dependency
http://www.asp.net/web-api/overview/testing-and-debugging/mocking-entity-framework-when-unit-testing-aspnet-web-api-2#dependency
http://www.asp.net/web-api/overview/testing-and-debugging/mocking-entity-framework-when-unit-testing-aspnet-web-api-2#dependency
http://www.asp.net/web-api/overview/testing-and-debugging/unit-testing-with-aspnet-web-api#addtoexisting
http://www.asp.net/web-api/overview/testing-and-debugging/unit-testing-with-aspnet-web-api#addtoexisting
http://www.asp.net/web-api/overview/web-api-routing-and-actions/attribute-routing-in-web-api-2
http://www.asp.net/web-api/overview/web-api-routing-and-actions/attribute-routing-in-web-api-2
http://www.asp.net/web-api/overview/formats-and-model-binding/model-validation-in-aspnet-web-api
http://www.asp.net/web-api/overview/formats-and-model-binding/model-validation-in-aspnet-web-api

