

An Evolving Educational Advisory
Role for Computer Science

Andrew J. McAllister, Genevieve Audet-Perron, Amanda Gilks,

Debbie McAnany, and Rick Wightman
Faculty of Computer Science, University of New Brunswick

P.O. Box 4400, Fredericton, New Brunswick, Canada, E3B 5A3

Abstract – Recent movements like Code.org seek to have
every school-aged child taught the rudiments of computer
programming. The goals of such initiatives are to recognize
Information Technology (IT) skills as a foundational science
in the new digital age, and to remove barriers for entry of
young people into IT professions. While these goals are
important, such change brings with it new needs for
collaboration between post-secondary Computer Science
educators and other stakeholders, which include teachers,
government departments, post-secondary departments of
Education, and industry associations. This paper provides
lessons learned from experience with a variety of such
interactions by members of the University of New
Brunswick’s Faculty of Computer Science. Immediate goals
for continuing and enhancing these interactions are
described.

Keywords: Computer Science Education, Recruitment,
Coding, Misperceptions of Computer Science

1. Introduction

Computer Science (CS) has historically been taught most
often by post-secondary institutions. Now Computer
Science courses are being introduced more and more as
electives at the high school level (for example [1, 7, 10, 12])
and even in earlier school grades (for example [2, 6, 8]). We
are also starting to see efforts to promote coverage of
fundamental CS topics such as coding for all students in
schools [11, 13]. This latter push is being popularized by
movements like Code.org in the United States [5] and Code
Kids in Canada [4]. The rationale for universal exposure to
CS at a young age includes the following:

(a) Virtually everyone in our society is experienced as a
consumer of information technology, but only a
select few understand what is involved in creating
that technology;

(b) Computational thinking is starting to be seen as a
foundational competency in today’s digital age.
During their career, many professionals in a wide
variety of disciplines will bump into the need to
modify a spreadsheet, understand a macro, or tweak a
website. Widespread exposure to CS basics will
dramatically lessen the sometimes painful learning

curve involved with such tasks, and will tend to
improve the quality of the results; and

(c) Over the last decade or so common misperceptions of
CS have resulted in lower enrollments in CS degree
programs [3, 14]. Widespread exposure to CS
concepts and skills is seen as one way to combat this
trend.

Rolling out CS education in school systems is not, however,
without its challenges. School teachers are taught what they
need to know to teach traditional school curriculum topics,
but relatively few teachers have a background in CS.
Information technology (IT) professionals are currently
blessed with such promising and well-paid career
opportunities that teaching positions are often seen as less
attractive. Then there is the question of what should be
taught. Should the focus be on skills such as coding? Or are
there other topics that would also provide significant
benefits?

As school systems in numerous jurisdictions worldwide
wrestle with these questions, we see a new and growing role
for post-secondary CS educators as advisors to this process.
This paper describes our preliminary experience with this
role at the University of New Brunswick (UNB), and
provides predictions for how this role is likely to expand in
nature and scope in the near future. Our goal is to help other
educators become more effective in this advisory role.

2. Experience with Students

The recruiting and transfer advising teams within UNB’s
Faculty of Computer Science bring a wealth of insight into
the questions posed above based on years of experience
dealing with students faced with the opportunity to choose
whether or not to enter a Computer Science, Information
Systems, or Software Engineering degree program. Our
recruiters:

• Meet face-to-face with over 5,000 students in
approximately 75 high schools each year, covering
schools in the Canadian provinces of New
Brunswick, Prince Edward Island, and Nova
Scotia, as well as the U.S. State of Maine;

• Interact with middle school students at dozens of
yearly math and science fairs; and

• Conduct “CS Unplugged” sessions with dozens of
local elementary school classes each year. These
sessions involve no technology, instead showing
young children how they can use algorithms such
as sorting values or keeping information safe, using
hands-on physical resources like tool boxes with
locks and our “super fun sorting mat.”

All of these interactions involve both (a) an educational
component where we strive to dispel common myths and
explain the true nature of Computer Science to the students,
as well as (b) considerable discussion where we hear about
the students’ perceptions, concerns, fears, goals, and
preferences. This experience has led us to a number of
insights, and has given us the opportunity to develop, refine,
and gauge the effectiveness of intervention strategies for
dealing with various challenges.

Insight #1: Fear is a significant factor when students
choose what to study after high school.

One of the most frequent comments we hear from high
school and potential transfer students is, “I heard CS is too
hard.” This even occurs when the student in question is
already in a technology-oriented university program of
study such as Engineering and is considering transferring to
CS. Friends will advise against the switch, saying they are
likely to fail out of the much tougher program.

Other fears also come into play, such as:

• “I don’t want people to see me as geeky.”

• “I don’t want to be in classes filled with geeky
people; I want to spend my time at university with
people like me.”

• “I’m a people person. I don’t want to spend my
entire career sitting behind a computer and never
dealing with people.”

• “I have no idea what Computer Science involves
(except that I would be studying computers) and
that uncertainty scares me.”

• “I’ve never taken any CS courses, but I’m afraid I
won’t like all the strictly technical subject matter
covered in them.”

• “I’ve heard there are no jobs in CS anymore; I’m
afraid I’ll get to the end of my program and not be
able to find a job.”

A considerable percentage of high schools have very little
idea what they would like to do for their careers, so
discussions about their options often focus on what they
believe they don’t want to do. It doesn’t take much fear and
uncertainty to rule out IT from the conversation.

Insight #2: Familiarity with a subject area lessens
students’ fears of the unknown.

Middle and high school students typically gain repeated
exposure to subjects such as math, English, sciences,
history, and so on. As a result they tend to develop
confidence that they can handle the work involved with
learning in these areas, because they have been there and
done that. For the large number of graduating high school
students who have no particular career path in mind, this
confidence often seems to tip them in direction of programs
such as Bachelor of Science or Bachelor of Arts. The
student may not have much of an idea of where such a
degree will lead them, but we frequently hear that at least
they are not afraid their studies will be “too hard.”

One of the benefits of providing CS instruction as part of
core school curriculums is that CS would become one of
those familiar and therefore somewhat less scary subject
areas. We believe, however, that CS courses in schools can
and do sometimes fail to alleviate other fears. For example,
a course that focuses solely on coding can actually reinforce
fears that a CS degree and resultant career would be all
about sitting behind a computer and dealing strictly with
technology.

Insight #3: Understanding the true nature of CS and IT
career paths seems more important than competency in
CS subject matter when selecting a degree program.

We almost never hear a high school student say they lack
the confidence to enroll in a CS degree because they feel
they lack sufficient skills in coding or algorithm design in
order to successfully begin the program. Given that CS
courses are not required in high school (and are not required
for applying to CS degree programs), most students seem to
realize this lack of knowledge is not a barrier to entry. What
we do hear is, “I like using computers,” or “I like playing
computer games so I thought CS might be something I
like.”

When asked what they think CS is about, however, the
answer is almost always, “I’m not sure,” “I don’t really have
any idea,” or “The study of computers, I guess.” Our
experiences in this regard are consistent with the findings of
more formalized studies such as [9].

Young people learn what doctors, police officers, lawyers,
and a wide variety of other professionals do through a
number of life experiences, including books, television,
movies, and real-life interactions with these professions, for
example by having an annual check-up with a family
physician. These experiences place these professions in the
consciousness of young people and increase the chances
they will consider them as possible career choices. The IT
profession, however, is somewhat of an invisible trade by

comparison. Most young people are unlikely to wander into
an IT professional’s workplace. Scrum sessions and JAD
workshops don’t seem to be high on the list for inclusion in
Hollywood films. Given this absence of information, the
general public ends up having very little idea what IT is all
about.

We have had good luck getting young people to understand
the problem-solving nature of CS by using anecdotal stories,
which we relay verbally to individuals or groups as the
situation dictates. One favorite is about a computer scientist
who visited a neonatal intensive care unit at a hospital and
noticed a variety of electronic monitoring devices in use
with each critically ill newborn. Collectively these devices
were capturing a considerable volume of data on the status
of each infant, however only a very small portion of the data
values were being sampled, usually by a nurse or physician
walking over to the machines and looking at the readings.

The computer scientist thought, “We should be able to make
better use of all this data,” and set out to create a software
solution to analyze the data more completely. One result
was that they were able to start detecting the presence of a
particular type of infection up to a full day earlier, which of
course means the infection is less well established and is
easier to combat, with less impact on the health of the
infant.

We explain this is what CS is all about – using information
to solve problems with real-world importance. The fact that
computers are often a part of the solution is not the point;
such devices are simply our best current tools for storing
and manipulating data into useful information in various
forms.

We go on to explain that the same is true in other
disciplines. Biologists use microscopes to study organisms,
but biology is not the study of microscopes. Similarly,
chemistry is not the study of test tubes, and CS is not the
study of computers.

At this point in the dialog we usually see plenty of head
nodding and “aha” moments happening. In many cases we
have found that this level of insight is effective in turning
young people on to the idea of becoming a problem solver
who can inject real value into a wide variety of enterprises.
Grover, Pea, and Cooper report similar success using a set
of videos to explain the true nature of CS [9].

Insight #4: The use of online and self-directed learning
seems more prevalent for high school courses with more

technology-oriented subject matter, with sometimes less-
than-optimal results.

Within the many high schools we visit each year, we have
never heard of courses in English literature or history being
offered online or via self-directed computer-based modules.
There are a few examples, however, of “Broad-Based
Technology” and computer programming courses that are
offered in this manner.

Given how short the attention span of young people can be,
it is our opinion that such a self-directed, technology-driven
mode of instruction is often likely to be less effective than
traditional in-class, face-to-face instruction provided by
teachers. This opinion is backed up by considerable
anecdotal evidence – stories we have been told of students
who are keen to take CS at university, but change their
minds after having a negative experience with a self-
directed CS course in high school.

The primary reason why technology courses are taught this
way in our local schools seems to be primarily due to the
aforementioned lack of teaching personnel who are qualified
to teach technology-related subject matter. For instance, in
the approximately seventy schools we visit regularly, only
three are fortunate enough to have a teacher on staff who is
qualified to teach Java programming. It is no surprise, then,
that our local school districts rely on “pre-canned” online
subject matter in order to offer instruction across a larger
number of schools.

3. Stakeholder Relationships

Figure 1 shows a number of the most important stakeholders
involved in typical school systems, along with the most
salient existing relationships (shown as black arrows).

The primary focus of this entire discussion is the teaching
relationship between school teachers and their students. The
hope is that appropriate skills and knowledge can be
imparted to students, consistent with the three-part rationale
presented in Section 1: developing creators of technology,
developing computational thinking as a foundational
competency, and enhancing uptake of CS as a profession.

This direct relationship between teacher and student is the
focus of movements such as Code.org and Code Kids. The
basic idea is that all students should learn the fundamentals
of coding. In other words, these movements strive to
influence what subject matter is presented to students in
schools.

Figure 1: Educational Stakeholders and Relationships

As Figure 1 shows, however, the impacts of such changes
ripple through a number of stakeholder groups:

• New teachers must be hired or existing teachers
must be re-trained to be able to teach new subject
matter;

• Teachers are normally trained, for example, by
Education departments or faculties at universities
or colleges. To implement a new foundational
science across all (or even many) school
curriculums, the teacher training at this level would
have to evolve; and

• It is common for school curriculums to be
developed centrally by government Departments of
Education and provided for teachers across a given
jurisdiction to deliver; this is the case in our
province. Changes to curriculums impact this
activity.

A number of industry- and government-sponsored
associations are also on board with the need to increase

exposure to CS among school students. These organizations
typically use a multi-pronged approach for information
dissemination, including influencing school curriculums.
For example, the Information and Communications
Technology Council (ICTC) of Canada conducts the Focus
on Information Technology (FIT) Program. Participating
provincial jurisdictions align their high school curriculums
with a set of IT-related goals defined by ICTC. High school
students can voluntarily sign up to participate in the
program, and receive a diploma recognizing their efforts in
completing relevant courses.

In many jurisdictions, the governmental Departments of
Education and university-level Education departments suffer
from the same challenge as the schools themselves, namely
a lack of fully trained IT resources who can effectively (a)
develop curriculums, and (b) train the teachers. For this
reason we believe it is becoming increasingly important for
university CS faculty members to provide expertise by
taking on new advisory roles, which are shown as thick gray
arrows in Figure 1.

At the University of New Brunswick we have already
undertaken this advisory role. For instance, each year we
conduct a full-day workshop for the entire graduating class
of UNB’s Faculty of Education. We explain how teachers
can implement computational thinking into courses as
diverse as English and mathematics, and the day includes
participatory exercises that prepare these teachers-to-be to
do exactly that.

We have also begun working with the ICTC to influence the
types of IT-related knowledge encompassed by the FIT
Program. Our hope is to work together to ensure students
are exposed to not only just IT skills, but also material that
helps dispel the most common fears and misperceptions
surrounding CS.

4. Looking Ahead

Despite our progress in working with various educational
stakeholders, we recognize that an ongoing and evolving
road lies ahead. We are committed to serving as an effective
source of help and information for continuing development
of CS-related subject matter in local and national school
curriculums.

At the present time we are working on addressing the
limited effectiveness of rolling out CS courses in middle
and high schools due to a lack of teachers with the required
IT expertise. The fundamental question is this; what can we
collectively do to significantly improve the information
making it to all school students without requiring large
numbers of qualified IT professionals to act as teachers?
How can we leverage the human resource base comprised of
existing teachers to improve upon the current situation,
based on only a reasonably modest investment of cost, time,
and effort?

We believe the answer lies in looking beyond the current
efforts to teach coding to all students. Such efforts are likely
to take time to implement, especially given the well-
recognized shortage of teachers with IT knowledge. In the
short term, we would like to help large numbers of teachers
in multiple disciplines become effective advocates for CS.
We have already started doing this with newly graduated
teachers, and we hope to do so with existing teachers as
well.

The key to this initiative is to recognize three factors:

1. Teachers can educate students about the true nature of
CS using anecdotal stories of the type described in
Section 2 above. Videos can also be incorporated into
such presentations;

2. The ability to do so does not require that teachers have
any specialized IT skills; and

3. Teachers can be prepared to take on this role in as little
as a single Professional Development (PD) day. (The
challenge, of course, is to convince school system
officials of the value of this role, and to obtain
agreement to allocate the required PD days.)

We are determined to serve as agents of this change, and we
encourage other university and college CS educators to
explore opportunities to take on similar advisory roles
within your own local educational systems. The potential
positive impacts on our IT economy and our society are sure
to be well worth the effort.

5. References
[1] M.A. Bernardo, J.D. Morris, Transfer effects of a high
school computer programming course on mathematical
modeling, procedural comprehension, and verbal problem
solution, Journal of Research on Computing in Education,
26, 4, Summer 1994, pp. 523-536.

[2] P.S. Buffum, A.G. Martinez-Arocho, M.H. Frankosky,
F.J. Rodriguez, E.N. Wiebe, K.E. Boyer, CS Principles
Goes to Middle School: Learning How to Teach “Big Data”,
Proc. SIGCSE’14: 45th ACM Technical Symposium on
Computer Science Education, March 2014, Atlanta, pp. 151-
156.

[3] L. Carter, Why students with an apparent aptitude for
computer science don’t choose to major in computer
science, Proc. SIGCSE’06: Symposium on Computer
Science Education, Houston, March 2006, pp. 27–31.

[4] Code Kids, http://www.codekids.ca.

[5] Code.org, http://www.code.org.

[6] J. Denner, L. Werner, E. Ortiz, Computer games
created by middle school girls: Can they be used to measure
understanding of computer science concepts?, Computers &
Education, 58, 1, Jan. 2012, pp. 240-249.

[7] W. Feurzeig, S. Papert, B. Lawler, Programming
languages as a conceptual framework for teaching
mathematics, Interactive Learning Environments, 19, 5,
Dec. 2011, pp. 487-501.

[8] M.N. Giannakos, L. Jaccheri, R. Proto, Teaching
Computer Science to Young Children through Creativity:
Lessons Learned from the Case of Norway, Proc.
CSERC’13: 3rd Computer Science Education Research
Conference, Arnhem, Netherlands, April 2013, pp. 103-111.

[9] S. Grover, R. Pea, S. Cooper, Remedying
Misperceptions of Computer Science among Middle School
Students, Proc. SIGCSE’14: 45th ACM Technical

Symposium on Computer Science Education, March 5–8,
2014, Atlanta, pp. 343-348.

[10] J. Liebenberg, E. Mentz, B. Breed, Pair programming
and secondary school girls’ enjoyment of programming and
the subject Information Technology (IT), Computer Science
Education, 22, 3, Sept. 2012, pp. 219-236.

[11] H. Partovih, Transforming US Education with
Computer Science, Proc. SIGCSE’14: 45th ACM Technical
Symposium on Computer Science Education, March 2014,
Atlanta.

[12] T. Paz, D. Levy, Introducing computer science to
educationally disadvantaged high school students, Research
in Science & Technological Education, 23, 2, Nov. 2005,
pp. 229-244.

[13] E. Shein, Should Everybody Learn to Code?,
Communications of the ACM, 57, 2, Feb. 2014, pp. 16-18.

[14] S. Yardi, A. Bruckman, What is computing?: bridging
the gap between teenagers’ perceptions and graduate
students’ experiences, Proc. ICER’07: Third International
Workshop on Computing Education Research, Sept. 2007,
Atlanta, pp. 39–50.

