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Abstract – Parallel computing has gained popularity in 

recent years. It takes advantage of multiprocessor computing 

equipment, such as multicore processors, computer networks, 

clusters, and massively parallel processors. Complex 

problems are solved more efficiently by overcoming the 

physical constraints of serial computing. The basic idea of 

parallel computing is to divide a large problem into smaller 

ones which can be carried out by mapping onto different 

processors; therefore those subtasks can be performed 

simultaneously. However, parallel computing instruction for 

undergraduate students is still somewhat in its infancy and 

continues to pose certain challenges in terms of resource 

availability. This article describes current instruction 

methods, obtaining of valuable instructor and student 

resources, and observations in teaching a first parallel 

computing class to undergraduate students at Cameron 

University.  
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1 Introduction 
 

 Parallel computing has gained popularity in recent years. 

It takes advantage of multiprocessor computing equipment, 

such as multicore processors, computer networks, clusters, 

and massively parallel processors (MPP). Complex problems 

are solved more efficiently by overcoming the physical 

constraints of serial computing. The basic idea of parallel 

computing is to divide a large problem into smaller ones 

which can be carried out by mapping onto different 

processors; therefore those subtasks can be performed 

simultaneously.  

 There are two basic parallel computing forms: data 

parallelism and task parallelism. Data parallelism processes a 

portion of the entire data set, such as sorting a big array with 

multiple processes; each process sorts a part of the array, and 

then processes interchange data such that all the elements held 

by process pi are less than or equal to those held by process 

pi+1. That is, the elements in the entire array are sorted in a 

non-descending order. Task parallelism focuses on 

distributing different functions to different processors with the 

same or different data.  

 Due to the increasing importance of parallel computing, 

Parallel Algorithms was one of the recommended courses in 

the ACM/IEEE CS2008 curriculum recommendation [1]. 

Furthermore, parallel and distributed computing was listed as 

one of recommended knowledge areas in the ACM/IEEE 

CS2013 curriculum recommendations [2]. Hence, it is 

essential to offer a parallel computing course at the 

undergraduate level. However it may be very challenging to 

teach such a class at a university without any parallel 

computing equipment. In this article, the authors discuss 

utilizing the Oklahoma Supercomputing Center for Education 

and Research (OSCER) [3,4] to teach a parallel computing 

class at Cameron University. 

  

2 Methods 
 

 Cameron University is a five-year public regional 

university that offers a B. S. degree in Computer Science (CS) 

in the Computing and Technology department. CS 3813 

Parallel Computing is one of elective courses in the CS 

curriculum, usually offered in the spring semester each 

academic year. Topics in CS 3813 include: parallel algorithms 

and implementations for sorting, searching, matrix processing 

and other problems, and efficiency issues of parallel 

algorithms on different architectures. In order to teach this 

class efficiently, several methods are utilized. 

 

2.1 Instructor Training  
 

 Teaching a parallel computing class can be quite 

challenging since available instructional resources are 

relatively limited. To obtain the most current information on 

parallel computing, the authors attended OSCER’s parallel 

computing workshop at the University of Oklahoma that is 

sponsored by the National Science Foundation (NSF). In the 

workshop, some essential topics in parallel computing were 

covered, such as parallel logic, basic Message Passing 

Interface (MPI) and advanced MPI, parallel equipment 

manufacturing and usage, and MPI programming exercises. 

Workshop attendants from different academic institutes 

exchanged ideas over teaching strategies, teaching methods, 

and teaching content. Through these activities, the authors 

gained much information and knowledge about parallel 

computing, useful for class instruction. 

 

2.2 Inviting Parallel Processing Professionals to 

Visit the Cameron Campus 
 

 In order to motivate Cameron University CS student 

interest in parallel computing, experts were invited to deliver 

seminars on the subject. Basic topics included, but were not 

limited to: trends in parallel computing, interprocess 

communication with memory sharing in a multiple central 

processing unit (CPU) system, interprocess communication in 

a distributed system, and job balance in parallel computing 

efficiency. Meanwhile OSCER offered an online remote 
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account to each CS student over a supercomputer with 

thousands of processors and massive storage capability. Each 

student would run their parallel programs on the machine. The 

OSCER experts made a special trip to Cameron to teach 

students how to configure and use their accounts [3].  

 

2.3 Visiting the University of Oklahoma 

Supercomputing Center 
 

 Considering that most Cameron students did not have 

much opportunity to see a real supercomputer, the authors 

organized a field trip to the Supercomputing Center located at 

the University of Oklahoma. The director of the computing 

center gave the students a well-organized tour, and the 

students obtained a great deal of information, such as 

supercomputer physical components, architecture, 

organization, and power supply. This knowledge was useful in 

helping students run their programs on a supercomputer.  

 

2.4 Parallel Algorithm Development 
 

 Parallel algorithm development can be quite difficult for 

CS undergraduate students who are used to serial 

programming with single processes. To solve this problem, 

the authors focused on explaining the major differences 

between sequential and parallel computing. Sequential 

computing completes a task step-by-step in a certain order by 

one process, while parallel computing divides the task into a 

number of subtasks and then finishes tasks in parallel utilizing 

different processes. For example, if a search is conducted 

sequentially using a key item from a very large list, the key 

must be compared with each item in the list until the first 

appearance is met, or the end of the list is reached. In a 

parallel approach, the list can be divided into N sections, and 

then a section and key are passed to a process, next all 

processes run simultaneously, and finally execution results are 

collected by one designated process to reach a conclusion.  

 Parallel computing can use much less time to complete 

the same task. That is, if a single process uses time T to 

complete a task, and n processes may use equal or bigger than 

time T/n to complete the same task, where n is a positive 

integer, T/n is less than T if n is equal or larger than 2. This is 

called the “speed up” of how quick a task can be completed 

with n processes. The speed up concept can be expressed in 

the following formula: 

 

Sp(n) = Ts / Tp  

 

Ts is the optimized sequential time needed by a single process 

to complete the task, and Tp is the parallel time needed by n 

processes running in parallel to complete the same task. For 

example, if one person can finish a painting job in one hour 

(Ts), as two (n) persons only use 40 (Tp) minutes to complete 

the same job, and then the speed up (Sp(n) ) is 60/40 = 1.5, that 

is, the job can be completed 1.5 times faster.  

 However, in general, parallel computing efficiency is 

less than 100%. Parallel computing efficiency can be defined 

as: 

 

Ep(n) = Ts / (Tp * n ) or  

Ep(n) = Sp(n) / n  

 

Ep(n) is efficiency, n is the number of processes, Sp(n) is the 

speed up, Ts is the optimized sequential time needed for a 

single process, and Tp is the parallel time needed for n 

processes. From the above example, Ep(n) = 1.5 / 2 = 0.75 or 

Ep(n) = 60 / (40 * 2) = 60 / 80 = 0.75. Therefore the efficiency 

is 75%. In conclusion, a parallel algorithm is faster, but it is 

also expensive because the interprocess communication 

always causes some overhead. It is of significant concern to 

attempt overhead reduction in parallel algorithm development. 

 Generally speaking, a parallel algorithm may have three 

parts: a common part, a master process part, and a slave 

process part. The common part includes necessary variable 

declaration and initialization, and shared functions declaration 

and implementation. The master part is designed to divide the 

given data set into subsections, send a subsection to a slave 

process, collect the computing results from the slave process 

if necessary, and finally display the results if required. The 

slave part is used to complete a subtask that includes: 

receiving necessary data from the master, completing 

calculation on the data, and sending the result back to master 

if required. In summary, a parallel algorithm design could be 

expressed in the following common function prototypes… 

 

main function 

{ 

 variables declaration and initialization; 

 if (master) 

 { 

  code that will be executed by the master   

  process; 

 } 

 else  

 { 

  code that will be executed by a slave process; 

 } 

  program termination part; 

} 

 

2.5 Teaching Methods 
 

 In CS 3813, the following topics were covered: parallel 

computing without communication among slave processes, 

job balance and dynamic job assignment, parallel computing 

with communication among slave process, derived data types, 

and new communicator creation. MPI was used to implement 

parallel algorithms in C/C++. In order to help students 

understand and master the above topics, typical examples 

were given from Using MPI Portable Parallel Programming 

with the Message-Passing Interface (2
nd

 Edition) [5]. 

 

 



 

2.5.1 Numerical Integration 

 

 Numerical integration to compute pi was used to teach 

parallel computing without communication among slave 

processes:  

 

Since  

∫0
1 
1/(1+x

2
) dx = arctan (x) |0

1 
arctan (1) – arctan(0) = π /4, 

π = 4 * ∫0
1 
1/(1+x

2
) dx 

 

So that we can integrate the function  

f(x) = 4 / ( 1 + x
2 
) 

 

When  

x = 0, f(x) = 4, and x = 1, f(x) = 2  

 

 The x interval is first divided between 0 and 1 into N 

sections, each section being a small rectangle with width = 1 

/N, and height = 4 / (1 + x
2
), and then the rectangles are added 

together to obtain pi’s value. To do so, first the master process 

accepts an N from the keyboard, and then broadcasts it to all 

processes. Secondly, all the processes receive N, find the 

width of the small rectangles by 1/N, and then find the mid-

point of the width for process pi using: 

 

mid-point = width * ( pi’s rank + 0.5)  

 

 For example, if pi’s rank, where pi’s rank is between 0 

and N-1, is 1 and N = 10, then the mid-point is 1/10 * 1.5 = 

0.15, and therefore the second process will start its calculation 

at x = 0.15. Each process takes one or more of these small 

rectangles to compute their areas. Finally after completing a 

calculation, all processes send the calculation results to a 

destination process, and then the destination process adds all 

results together to display pi’s value. If the computing result is 

sufficient enough, the computing process will be stopped; 

otherwise another round of computing may be conducted as 

described. It makes sense that the bigger N is, the better pi 

value will be expected in a certain range. This is a good 

example because calculation for each section is independent 

from each other, and therefore these processes can run 

simultaneously. To enhance student learning, it was given to 

the students as a programming assignment using n processes 

to sum a large integer array. 

 

2.5.2 Job Balance 

 

 Job balance is an important consideration in developing 

a parallel algorithm because CPUs involved in parallel 

computing may have different computing capacities. 

Therefore some CPUs may be busy all time, while some 

CPUs may be idle. CPUs are the most valuable computing 

resource, and it is desirable to keep them as busy as possible. 

To do so, CPUs should receive a new sub job once the current 

sub job is finished, until the entire job is completed. That is, it 

is important to allow faster CPUs to complete more jobs than 

slower CPUs. Matrix multiplication was used as an example 

to explain this topic. Matrix multiplication can be expressed 

as: 

 

A (m, n) * B (m’, n’) = C (m, n’) 

 

where m and m’ are the number of rows in A and B and n and 

n’ are the number of columns in A and B respectively, and n 

must be equal to m’. 

 

Master process performs the following in order: 

A. Broadcasting matrix B to all slave processes; 

B. Sending a row of matrix A to each process.  

C. Receiving a row of matrix C from a slave process. 

D. Copying the received row into matrix C 

E. If the number of sent rows is less than the number 

of rows in matrix A, repeat B, C, D, and E until the 

job is done. 

Slave process performs the following in order: 

A. Receiving matrix B; 

B. Receiving a row r of matrix A; 

C. Multiplying row r to matrix B to produce a row of 

matrix C 

D. Sending the resulted row back to the master process 

E. Repeating B, C, and D until the completion notice is 

received. 

 

This algorithm allows “self scheduling”, that is, after a 

process completes its job, another job will be given until the 

entire job is done. Matrix multiplication was assigned to the 

students as a programming project.  

 

2.5.3 Communicator Creation 

 

 In parallel computing, processes are commonly assigned 

to a number of groups, and each group completes a specific 

task. There may be many groups, but a process only belongs 

to one group. A group of processes with a unique context 

assigned by the system is called a communicator.  

 The Monte Carlo method to compute pi was introduced 

to explain this concept. The Monte Carlo method is a class of 

computational algorithms that relies on repeated random 

sampling to compute results. This method may not be the best 

way to compute pi, but can be an efficient way to show how 

to create a new communicator. The basic mathematical 

algorithm is: 

 

If a circle of radius r = 1 is inscribed inside a square with side 

length 2, then the area of the circle will be π* r 
2
 = π and the 

area of the square will be 2 * 2 = 4. So, the ratio of the area of 

the circle to the area of the square will be π /4. This can be 

expressed as: 

 

ratio = π / 4 such that 

π = 4 * ratio  

 

where ratio can be determined by the number of points inside 

of the circle over the number of points inside of the square. 

For any point (x, y), if x
2
 + y

2
 < r

2
, where x and y are 
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coordinates of the point and r = 1, the point is inside of the 

circle and square, and otherwise only inside of the square. 

Therefore ratio is: 

 

ratio = the number of points inside of the circle / ( the sum of  

    points in the circle and the square) 

 

 Since the calculation for each point is independent, it can 

be completed perfectly in parallel. There are two different 

tasks in computing pi: generating a set of random numbers 

and calculating points from a given random number set. All 

processes can be assigned into two groups: one group is a 

server group that is responsible to generate a set of random 

numbers, and another group calculates points based on the 

random number set. Then the formula π = 4 * ratio is used to 

determine pi’s value. A communicator can be created for each 

group. In the MPI, a set of routines are offered to create a new 

communicator from an existing one. The algorithm is: (1) 

create a new work group, world group, from the default 

communicator that includes all the processes, (2) exclude the 

server process from the world-group to form another work 

group, worker-group, (3) create a new communicator using 

the worker-group that includes all the processes except the 

server process, (4) free the world-group and worker-group. 

The results are two communicators: a world-communicator 

(default) that contains all the processes and a worker-

communicator that only includes all the worker processes. In 

the worker-communicator, worker processes cooperate 

together to complete the calculation. The server process 

generates a random number set if noticed. The algorithm is 

shown below: 

 

Server process: 

A. generates a set of random numbers 

B. sends the set to worker processes 

C. if job is not done, repeat A and B, otherwise 

terminates. 

Worker processes: 

A. receive a set of random numbers, 

B. compute points from the set 

C. determine if the job is complete; if not complete, 

request server to produce another set of random 

numbers, and then repeat A and B; otherwise send 

the server a job complete signal to end the 

calculation 

 

The worker communicator contains fewer processes than the 

world communicator, such that it may save time on collective 

operations, therefore it may result in a better performance. 

 

2.5.4 Derived Data Types 

 

 Derived data types are very important because they 

provide a useful means to pack related data that could be 

homogenous or heterogeneous together as a single data unit to 

avoid multiple data exchanging among processes. In MPI, 

data will be sent as is. Hence, it is crucial to pack data 

together properly before sending them. The data type in MPI 

is an object that consists of a sequence of the basic data types, 

such as MPI_INT, MPI_CHAR, MPI_FLOAT, 

MPI_DOUBLE, and displacements of each of these data 

types. These sequences and displacements can be described in 

the typemap: 

 

typemap = {(type0, disp0), (type1, disp1), …, (type (n-1),  

    disp (n-1))} 

 

 Data type tells MPI how to interpret data when data is 

sent or received, while displacement tells MPI where to find 

data bits when sending them or where to store data bits when 

receiving them. For example, if typemap = {(double 0), (int 

8)}, then the low bound that can be considered the location of 

the first byte described by the data type is 0, and the upper 

bound that can be considered as the location of the last byte 

described by the data type is 16 (8 +4 +4), therefore 8 is the 

number of bytes occupied by the variable with double data 

type, the first 4 is the length of an integer, and the second 4 is 

the number of bytes used as padding to meet system 

alignment. The difference between the lower bound and upper 

bound is called the extent which defines as the length of one 

derived data. So the extent is 16 in this instance. In C, one of 

the most common alignment requirements is that the address 

of an element in bytes is a multiple of the length of that 

element in bytes. If there are 4 such elements in a buffer, then 

double variable addresses will be 0, 16, 32, and 48. MPI 

provides a set of routines to get the lower bound, upper 

bound, and extent. 

 There are two cases: all elements in the derived data type 

have the same data type and elements have different data 

types. In the first case, all data have the same size so that there 

is no need to add padding bytes to meet the system alignment 

requirements. Therefore, one can simply pack the elements by 

using an MPI routine MPI_Type_continuous, commit the new 

data type, and then use it and free it after usage. The idea is 

shown in the following code segment: 

 

typedef struct 

{ 

float x, y; 

} point_type; 

 

point_type Points[100]; 

… 

MPI_Type_continuous (2, MPI_FLOAT, &new_type); 

MPI_Type_commit (&new_type); 

MPI_send (Points, 100, new_type, dest, tage, comm) 

… 

MPI_Type_free (&new_type); 

… 

 

 In the second case, a derived data type contains different 

default data types such that one has to determine the number 

of data types, the number of elements in each data type, and 

displacement for each data type. Fortunately, MPI offers a set 

of routines to complete this complex task. This was 

introduced to students as following: 



 

typedef struct  

{ 

 int pid, priority; 

 double arrival_time, cpu_time, start_time; 

}job_type; 

 

job_type jobs [100]; //declare an array of jobs 

int blocks [2] = {2, 4}; //set up 2 blocks 

MPI_Datatype types [2]; 

MPI_Aint displacements [2]; 

MPI_Datatype jobs_type; 

/*initialize displacements */ 

MPI_Address (&job_type.pid, displacements); 

MPI_Address (&job_type.arrival_time, displacement +  

       1); 

/*initialize datatypes */ 

types [0] = MPI_INT; 

type [1] = MPI_DOUBLE; 

/*make displacements relative */ 

displacements [1] = displacements[0]; 

displacements [0] = 0; 

MPI_Type_struct (2, blocks, displacements, types,                   

       &job_struct); 

MPI_Type_commit (&job_struct); 

/*use the derived data type just as default data types */ 

for (int i = 0; i < 100; i ++) 

{  

 MPI_Send( &jobs + i, 1, job_struct, i+1, tag, comm); 

 ….. 

} 

 

 The derived data types in parallel may prove more 

difficult to understand than data types in sequential 

computing. Hence, it can require more effort and patience on 

the part of the instructor to help students understand and use 

derived data types in parallel. 

3 Conclusions 

 From the authors’ teaching practices and observations, 

the following conclusions are drawn: (1) instructor training in 

parallel computing is essential in ensuring prerequisite 

knowledge and skills in instruction of CS undergraduate 

students, (2) OSCER offers valuable resources that can be 

used to improve the quality of teaching and learning, and (3) 

Proper teaching methods provide instructors with an efficient 

way to deliver their teaching content. Further study should be 

helpful toward the understanding and development of 

sufficient student learning outcomes. 

 

5 References 
 

[1] Computer Science Curriculum 2008: An Interim 

Revision of CS 2001, Report from the Interim Review 

Task Force, includes update of the CS2001 body of 

knowledge plus commentary. December 2008, Association 

for Computing Machinery IEEE Computer Society 

http://www.acm.org//education/curricula/ComputerScience20

08.pdf. 

 

[2] Computer Science Curricula 2013, Curriculum 

Guidelines for Undergraduate Degree Programs in 

Computer Science. December 20, 2013, The Joint Task 

Force on Computing Curricula Association for Computing 

Machinery (ACM) IEEE Computer Society, 

http://www.acm.org/education/CS2013-final-report.pdf. 

 

[3] OU Supercomputing Center for Education & 

Research (OSCER). http://www.oscer.ou.edu/. 

 

[4] Using a Shared, Remote Cluster for Teaching HPC. 

C. Carley, K. Larry, B. McKinney, C. Zhao, and H. Neeman, 

IEEE2013_indianapolis, ISBN: 978-1-4799-0896-7. 

 

[5] Using MPI Portable Parallel Programming with the 

Message-Passing Interface (2
nd

 Edition). William Group, 

Ewing Lusk, and Anthony Skjellum, MIT Press, Cambridge, 

MA. 

http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://www.acm.org/education/CS2013-final-report.pdf

