

Methods for Teaching a First Parallel Computing Course to

Undergraduate Computer Science Students

Mike Estep, Feridoon Moinian, Johnny Carroll, Chao Zhao

Computing & Technology Department, Cameron University, Lawton, OK, USA

Abstract – Parallel computing has gained popularity in

recent years. It takes advantage of multiprocessor computing

equipment, such as multicore processors, computer networks,

clusters, and massively parallel processors. Complex

problems are solved more efficiently by overcoming the

physical constraints of serial computing. The basic idea of

parallel computing is to divide a large problem into smaller

ones which can be carried out by mapping onto different

processors; therefore those subtasks can be performed

simultaneously. However, parallel computing instruction for

undergraduate students is still somewhat in its infancy and

continues to pose certain challenges in terms of resource

availability. This article describes current instruction

methods, obtaining of valuable instructor and student

resources, and observations in teaching a first parallel

computing class to undergraduate students at Cameron

University.

Keywords: Teaching, Parallel Computing, MPI, OSCER

1 Introduction

 Parallel computing has gained popularity in recent years.

It takes advantage of multiprocessor computing equipment,

such as multicore processors, computer networks, clusters,

and massively parallel processors (MPP). Complex problems

are solved more efficiently by overcoming the physical

constraints of serial computing. The basic idea of parallel

computing is to divide a large problem into smaller ones

which can be carried out by mapping onto different

processors; therefore those subtasks can be performed

simultaneously.

 There are two basic parallel computing forms: data

parallelism and task parallelism. Data parallelism processes a

portion of the entire data set, such as sorting a big array with

multiple processes; each process sorts a part of the array, and

then processes interchange data such that all the elements held

by process pi are less than or equal to those held by process

pi+1. That is, the elements in the entire array are sorted in a

non-descending order. Task parallelism focuses on

distributing different functions to different processors with the

same or different data.

 Due to the increasing importance of parallel computing,

Parallel Algorithms was one of the recommended courses in

the ACM/IEEE CS2008 curriculum recommendation [1].

Furthermore, parallel and distributed computing was listed as

one of recommended knowledge areas in the ACM/IEEE

CS2013 curriculum recommendations [2]. Hence, it is

essential to offer a parallel computing course at the

undergraduate level. However it may be very challenging to

teach such a class at a university without any parallel

computing equipment. In this article, the authors discuss

utilizing the Oklahoma Supercomputing Center for Education

and Research (OSCER) [3,4] to teach a parallel computing

class at Cameron University.

2 Methods

 Cameron University is a five-year public regional

university that offers a B. S. degree in Computer Science (CS)

in the Computing and Technology department. CS 3813

Parallel Computing is one of elective courses in the CS

curriculum, usually offered in the spring semester each

academic year. Topics in CS 3813 include: parallel algorithms

and implementations for sorting, searching, matrix processing

and other problems, and efficiency issues of parallel

algorithms on different architectures. In order to teach this

class efficiently, several methods are utilized.

2.1 Instructor Training

 Teaching a parallel computing class can be quite

challenging since available instructional resources are

relatively limited. To obtain the most current information on

parallel computing, the authors attended OSCER’s parallel

computing workshop at the University of Oklahoma that is

sponsored by the National Science Foundation (NSF). In the

workshop, some essential topics in parallel computing were

covered, such as parallel logic, basic Message Passing

Interface (MPI) and advanced MPI, parallel equipment

manufacturing and usage, and MPI programming exercises.

Workshop attendants from different academic institutes

exchanged ideas over teaching strategies, teaching methods,

and teaching content. Through these activities, the authors

gained much information and knowledge about parallel

computing, useful for class instruction.

2.2 Inviting Parallel Processing Professionals to

Visit the Cameron Campus

 In order to motivate Cameron University CS student

interest in parallel computing, experts were invited to deliver

seminars on the subject. Basic topics included, but were not

limited to: trends in parallel computing, interprocess

communication with memory sharing in a multiple central

processing unit (CPU) system, interprocess communication in

a distributed system, and job balance in parallel computing

efficiency. Meanwhile OSCER offered an online remote

http://en.wikipedia.org/wiki/Task_parallelism

account to each CS student over a supercomputer with

thousands of processors and massive storage capability. Each

student would run their parallel programs on the machine. The

OSCER experts made a special trip to Cameron to teach

students how to configure and use their accounts [3].

2.3 Visiting the University of Oklahoma

Supercomputing Center

 Considering that most Cameron students did not have

much opportunity to see a real supercomputer, the authors

organized a field trip to the Supercomputing Center located at

the University of Oklahoma. The director of the computing

center gave the students a well-organized tour, and the

students obtained a great deal of information, such as

supercomputer physical components, architecture,

organization, and power supply. This knowledge was useful in

helping students run their programs on a supercomputer.

2.4 Parallel Algorithm Development

 Parallel algorithm development can be quite difficult for

CS undergraduate students who are used to serial

programming with single processes. To solve this problem,

the authors focused on explaining the major differences

between sequential and parallel computing. Sequential

computing completes a task step-by-step in a certain order by

one process, while parallel computing divides the task into a

number of subtasks and then finishes tasks in parallel utilizing

different processes. For example, if a search is conducted

sequentially using a key item from a very large list, the key

must be compared with each item in the list until the first

appearance is met, or the end of the list is reached. In a

parallel approach, the list can be divided into N sections, and

then a section and key are passed to a process, next all

processes run simultaneously, and finally execution results are

collected by one designated process to reach a conclusion.

 Parallel computing can use much less time to complete

the same task. That is, if a single process uses time T to

complete a task, and n processes may use equal or bigger than

time T/n to complete the same task, where n is a positive

integer, T/n is less than T if n is equal or larger than 2. This is

called the “speed up” of how quick a task can be completed

with n processes. The speed up concept can be expressed in

the following formula:

Sp(n) = Ts / Tp

Ts is the optimized sequential time needed by a single process

to complete the task, and Tp is the parallel time needed by n

processes running in parallel to complete the same task. For

example, if one person can finish a painting job in one hour

(Ts), as two (n) persons only use 40 (Tp) minutes to complete

the same job, and then the speed up (Sp(n)) is 60/40 = 1.5, that

is, the job can be completed 1.5 times faster.

 However, in general, parallel computing efficiency is

less than 100%. Parallel computing efficiency can be defined

as:

Ep(n) = Ts / (Tp * n) or

Ep(n) = Sp(n) / n

Ep(n) is efficiency, n is the number of processes, Sp(n) is the

speed up, Ts is the optimized sequential time needed for a

single process, and Tp is the parallel time needed for n

processes. From the above example, Ep(n) = 1.5 / 2 = 0.75 or

Ep(n) = 60 / (40 * 2) = 60 / 80 = 0.75. Therefore the efficiency

is 75%. In conclusion, a parallel algorithm is faster, but it is

also expensive because the interprocess communication

always causes some overhead. It is of significant concern to

attempt overhead reduction in parallel algorithm development.

 Generally speaking, a parallel algorithm may have three

parts: a common part, a master process part, and a slave

process part. The common part includes necessary variable

declaration and initialization, and shared functions declaration

and implementation. The master part is designed to divide the

given data set into subsections, send a subsection to a slave

process, collect the computing results from the slave process

if necessary, and finally display the results if required. The

slave part is used to complete a subtask that includes:

receiving necessary data from the master, completing

calculation on the data, and sending the result back to master

if required. In summary, a parallel algorithm design could be

expressed in the following common function prototypes…

main function

{

 variables declaration and initialization;

 if (master)

 {

 code that will be executed by the master

 process;

 }

 else

 {

 code that will be executed by a slave process;

 }

 program termination part;

}

2.5 Teaching Methods

 In CS 3813, the following topics were covered: parallel

computing without communication among slave processes,

job balance and dynamic job assignment, parallel computing

with communication among slave process, derived data types,

and new communicator creation. MPI was used to implement

parallel algorithms in C/C++. In order to help students

understand and master the above topics, typical examples

were given from Using MPI Portable Parallel Programming

with the Message-Passing Interface (2
nd

 Edition) [5].

2.5.1 Numerical Integration

 Numerical integration to compute pi was used to teach

parallel computing without communication among slave

processes:

Since

∫0
1
1/(1+x

2
) dx = arctan (x) |0

1
arctan (1) – arctan(0) = π /4,

π = 4 * ∫0
1
1/(1+x

2
) dx

So that we can integrate the function

f(x) = 4 / (1 + x
2
)

When

x = 0, f(x) = 4, and x = 1, f(x) = 2

 The x interval is first divided between 0 and 1 into N

sections, each section being a small rectangle with width = 1

/N, and height = 4 / (1 + x
2
), and then the rectangles are added

together to obtain pi’s value. To do so, first the master process

accepts an N from the keyboard, and then broadcasts it to all

processes. Secondly, all the processes receive N, find the

width of the small rectangles by 1/N, and then find the mid-

point of the width for process pi using:

mid-point = width * (pi’s rank + 0.5)

 For example, if pi’s rank, where pi’s rank is between 0

and N-1, is 1 and N = 10, then the mid-point is 1/10 * 1.5 =

0.15, and therefore the second process will start its calculation

at x = 0.15. Each process takes one or more of these small

rectangles to compute their areas. Finally after completing a

calculation, all processes send the calculation results to a

destination process, and then the destination process adds all

results together to display pi’s value. If the computing result is

sufficient enough, the computing process will be stopped;

otherwise another round of computing may be conducted as

described. It makes sense that the bigger N is, the better pi

value will be expected in a certain range. This is a good

example because calculation for each section is independent

from each other, and therefore these processes can run

simultaneously. To enhance student learning, it was given to

the students as a programming assignment using n processes

to sum a large integer array.

2.5.2 Job Balance

 Job balance is an important consideration in developing

a parallel algorithm because CPUs involved in parallel

computing may have different computing capacities.

Therefore some CPUs may be busy all time, while some

CPUs may be idle. CPUs are the most valuable computing

resource, and it is desirable to keep them as busy as possible.

To do so, CPUs should receive a new sub job once the current

sub job is finished, until the entire job is completed. That is, it

is important to allow faster CPUs to complete more jobs than

slower CPUs. Matrix multiplication was used as an example

to explain this topic. Matrix multiplication can be expressed

as:

A (m, n) * B (m’, n’) = C (m, n’)

where m and m’ are the number of rows in A and B and n and

n’ are the number of columns in A and B respectively, and n

must be equal to m’.

Master process performs the following in order:

A. Broadcasting matrix B to all slave processes;

B. Sending a row of matrix A to each process.

C. Receiving a row of matrix C from a slave process.

D. Copying the received row into matrix C

E. If the number of sent rows is less than the number

of rows in matrix A, repeat B, C, D, and E until the

job is done.

Slave process performs the following in order:

A. Receiving matrix B;

B. Receiving a row r of matrix A;

C. Multiplying row r to matrix B to produce a row of

matrix C

D. Sending the resulted row back to the master process

E. Repeating B, C, and D until the completion notice is

received.

This algorithm allows “self scheduling”, that is, after a

process completes its job, another job will be given until the

entire job is done. Matrix multiplication was assigned to the

students as a programming project.

2.5.3 Communicator Creation

 In parallel computing, processes are commonly assigned

to a number of groups, and each group completes a specific

task. There may be many groups, but a process only belongs

to one group. A group of processes with a unique context

assigned by the system is called a communicator.

 The Monte Carlo method to compute pi was introduced

to explain this concept. The Monte Carlo method is a class of

computational algorithms that relies on repeated random

sampling to compute results. This method may not be the best

way to compute pi, but can be an efficient way to show how

to create a new communicator. The basic mathematical

algorithm is:

If a circle of radius r = 1 is inscribed inside a square with side

length 2, then the area of the circle will be π* r
2
 = π and the

area of the square will be 2 * 2 = 4. So, the ratio of the area of

the circle to the area of the square will be π /4. This can be

expressed as:

ratio = π / 4 such that

π = 4 * ratio

where ratio can be determined by the number of points inside

of the circle over the number of points inside of the square.

For any point (x, y), if x
2
 + y

2
 < r

2
, where x and y are

http://en.wikipedia.org/wiki/Computation
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Random

coordinates of the point and r = 1, the point is inside of the

circle and square, and otherwise only inside of the square.

Therefore ratio is:

ratio = the number of points inside of the circle / (the sum of

 points in the circle and the square)

 Since the calculation for each point is independent, it can

be completed perfectly in parallel. There are two different

tasks in computing pi: generating a set of random numbers

and calculating points from a given random number set. All

processes can be assigned into two groups: one group is a

server group that is responsible to generate a set of random

numbers, and another group calculates points based on the

random number set. Then the formula π = 4 * ratio is used to

determine pi’s value. A communicator can be created for each

group. In the MPI, a set of routines are offered to create a new

communicator from an existing one. The algorithm is: (1)

create a new work group, world group, from the default

communicator that includes all the processes, (2) exclude the

server process from the world-group to form another work

group, worker-group, (3) create a new communicator using

the worker-group that includes all the processes except the

server process, (4) free the world-group and worker-group.

The results are two communicators: a world-communicator

(default) that contains all the processes and a worker-

communicator that only includes all the worker processes. In

the worker-communicator, worker processes cooperate

together to complete the calculation. The server process

generates a random number set if noticed. The algorithm is

shown below:

Server process:

A. generates a set of random numbers

B. sends the set to worker processes

C. if job is not done, repeat A and B, otherwise

terminates.

Worker processes:

A. receive a set of random numbers,

B. compute points from the set

C. determine if the job is complete; if not complete,

request server to produce another set of random

numbers, and then repeat A and B; otherwise send

the server a job complete signal to end the

calculation

The worker communicator contains fewer processes than the

world communicator, such that it may save time on collective

operations, therefore it may result in a better performance.

2.5.4 Derived Data Types

 Derived data types are very important because they

provide a useful means to pack related data that could be

homogenous or heterogeneous together as a single data unit to

avoid multiple data exchanging among processes. In MPI,

data will be sent as is. Hence, it is crucial to pack data

together properly before sending them. The data type in MPI

is an object that consists of a sequence of the basic data types,

such as MPI_INT, MPI_CHAR, MPI_FLOAT,

MPI_DOUBLE, and displacements of each of these data

types. These sequences and displacements can be described in

the typemap:

typemap = {(type0, disp0), (type1, disp1), …, (type (n-1),

 disp (n-1))}

 Data type tells MPI how to interpret data when data is

sent or received, while displacement tells MPI where to find

data bits when sending them or where to store data bits when

receiving them. For example, if typemap = {(double 0), (int

8)}, then the low bound that can be considered the location of

the first byte described by the data type is 0, and the upper

bound that can be considered as the location of the last byte

described by the data type is 16 (8 +4 +4), therefore 8 is the

number of bytes occupied by the variable with double data

type, the first 4 is the length of an integer, and the second 4 is

the number of bytes used as padding to meet system

alignment. The difference between the lower bound and upper

bound is called the extent which defines as the length of one

derived data. So the extent is 16 in this instance. In C, one of

the most common alignment requirements is that the address

of an element in bytes is a multiple of the length of that

element in bytes. If there are 4 such elements in a buffer, then

double variable addresses will be 0, 16, 32, and 48. MPI

provides a set of routines to get the lower bound, upper

bound, and extent.

 There are two cases: all elements in the derived data type

have the same data type and elements have different data

types. In the first case, all data have the same size so that there

is no need to add padding bytes to meet the system alignment

requirements. Therefore, one can simply pack the elements by

using an MPI routine MPI_Type_continuous, commit the new

data type, and then use it and free it after usage. The idea is

shown in the following code segment:

typedef struct

{

float x, y;

} point_type;

point_type Points[100];

…

MPI_Type_continuous (2, MPI_FLOAT, &new_type);

MPI_Type_commit (&new_type);

MPI_send (Points, 100, new_type, dest, tage, comm)

…

MPI_Type_free (&new_type);

…

 In the second case, a derived data type contains different

default data types such that one has to determine the number

of data types, the number of elements in each data type, and

displacement for each data type. Fortunately, MPI offers a set

of routines to complete this complex task. This was

introduced to students as following:

typedef struct

{

 int pid, priority;

 double arrival_time, cpu_time, start_time;

}job_type;

job_type jobs [100]; //declare an array of jobs

int blocks [2] = {2, 4}; //set up 2 blocks

MPI_Datatype types [2];

MPI_Aint displacements [2];

MPI_Datatype jobs_type;

/*initialize displacements */

MPI_Address (&job_type.pid, displacements);

MPI_Address (&job_type.arrival_time, displacement +

 1);

/*initialize datatypes */

types [0] = MPI_INT;

type [1] = MPI_DOUBLE;

/*make displacements relative */

displacements [1] = displacements[0];

displacements [0] = 0;

MPI_Type_struct (2, blocks, displacements, types,

 &job_struct);

MPI_Type_commit (&job_struct);

/*use the derived data type just as default data types */

for (int i = 0; i < 100; i ++)

{

 MPI_Send(&jobs + i, 1, job_struct, i+1, tag, comm);

 …..

}

 The derived data types in parallel may prove more

difficult to understand than data types in sequential

computing. Hence, it can require more effort and patience on

the part of the instructor to help students understand and use

derived data types in parallel.

3 Conclusions

 From the authors’ teaching practices and observations,

the following conclusions are drawn: (1) instructor training in

parallel computing is essential in ensuring prerequisite

knowledge and skills in instruction of CS undergraduate

students, (2) OSCER offers valuable resources that can be

used to improve the quality of teaching and learning, and (3)

Proper teaching methods provide instructors with an efficient

way to deliver their teaching content. Further study should be

helpful toward the understanding and development of

sufficient student learning outcomes.

5 References

[1] Computer Science Curriculum 2008: An Interim

Revision of CS 2001, Report from the Interim Review

Task Force, includes update of the CS2001 body of

knowledge plus commentary. December 2008, Association

for Computing Machinery IEEE Computer Society

http://www.acm.org//education/curricula/ComputerScience20

08.pdf.

[2] Computer Science Curricula 2013, Curriculum

Guidelines for Undergraduate Degree Programs in

Computer Science. December 20, 2013, The Joint Task

Force on Computing Curricula Association for Computing

Machinery (ACM) IEEE Computer Society,

http://www.acm.org/education/CS2013-final-report.pdf.

[3] OU Supercomputing Center for Education &

Research (OSCER). http://www.oscer.ou.edu/.

[4] Using a Shared, Remote Cluster for Teaching HPC.

C. Carley, K. Larry, B. McKinney, C. Zhao, and H. Neeman,

IEEE2013_indianapolis, ISBN: 978-1-4799-0896-7.

[5] Using MPI Portable Parallel Programming with the

Message-Passing Interface (2
nd

 Edition). William Group,

Ewing Lusk, and Anthony Skjellum, MIT Press, Cambridge,

MA.

http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://www.acm.org/education/CS2013-final-report.pdf

