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Abstract - This work evolved from a case study on an Elliptic 

Curve Cryptosystem (ECC) [2], where the session keys are 

used with FPGAs in the process of encryptions or decryptions 

[4]. To improve the strength of encryption and the speed of 

processing, the public key and the private key of ECC are used 

in 3BC (Block Byte Bit Cipher) [1, 5, 11] algorithm, which 

generates session keys for the data encryption. We are 

investigating a novel approach of hardware co-design 

implemented in VHSIC Hardware Description Language 

(VHDL), which produces hardware algorithm for heavy 

iterations to be placed onto the FPGAs, thereby gaining a 

speed-up by a subroutine call to a sequence of custom 

instructions executed on the FPGAs. 
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1 Introduction 

 The session keys play an important role in the process of 

encryptions/decryptions for an ECC (Elliptic Curve 

Cryptosystem).  The majority of products that use public-key 

cryptography for encryption/decryption use RSA algorithm. 

But as we know, the key length for secure RSA has increased 

over the years. This would demand a heavy computing power 

for applications, especially for electronic commerce site that 

process a large number of transaction. Recently, a different 

approach of generating public key based on elliptic curve 

cryptography (ECC) has begun to challenge the weakness of 

RSA [12]. Its security relies on the problem of computing 

logarithms on the points of an elliptic curve. The main 

attraction of ECC is that it appears to offer equal security for a 

far smaller key size, thereby saving the processing overhead. 

To improve the strength of encryption and the speed of 

processing, the public key and the private key of ECC are 

used in the 3BC (Block Byte Bit Cipher) algorithm, which 

generates session keys for the data encryption. Fundamentally, 

ECC (Elliptic Curve Cryptosystem) technique is more 

mathematics involved. We only give a brief review of the 

basic concept in the next section and will explain elliptic 

curve ciphers later. 

2 EC (Elliptic Curves) - Mathematical 

Overview 

The elliptic curve cryptosystem makes use of elliptic curve in 

which the variables and coefficients are all restricted to 

elements of a finite field. Two families of elliptic curves are 

used in cryptographic applications. They are prime curves 

defined over Zp and binary curves constructed over GF(2n). In 

general, cubic equations for elliptic curve over real numbers 

takes the form 

     

                        y2  + axy + by = x3 + c x2 + d x + e.  (1) 

 

where a, b, c, d, e are real numbers that satisfy some 

conditions.  For our purpose, we will limit to the case where a, 

b, and c are zero, which results in the form  

  

                        y2   = x3 + d x + e.                             (2) 

 

To plot such curve, we need to compute  

 

                        y   = (x3 + d x + e)1/2                       (3) 

 

For given values of a and b, the plot consists of positive and 

negative values of y for each value of x.  Thus each curve is 

symmetric about y = 0. Figure show two examples of elliptic 

curves. In the definition of an elliptic curve, we include a 

single point O called a point at infinity or the zero point, and 

also if any three points on EC lie on a straight line, their sum 

is O. Thus, the addition of two points on EC is defined as 

follows: 

 

1) O serves as the additive identity so that  

O + O = O, and 

P + O = P, for any P ɛ EC 

 

2) There exists an inverse for any point P on EC. The inverse 

of P = (x,y) on EC is 

               -P = (x,-y), and the subtraction is defined as 

               Follows P - Q = P + (-Q), for any P, Q ɛ EC 

 

3) An associative law. 

P + (Q + P) = (P + Q) + R, for any P, Q, R ɛ EC 

 



4) A commutative law. 

P + Q = Q + P, for any P, Q ɛ EC 

 

For any two distinct points P = (xp, yp), Q = (xq, yq) that are 

not negative of each other, the slope of the line l that joins 

them is m = (yq - yp) / (xq - xp).  There is exactly one other 

point where l intersects the elliptic curve, and that is the 

negative of the sum of and Q.  After some algebraic 

manipulation, we have the sum R = P + Q as follows: 

 

               xr   = m2 -  xp – xq 

               yr  = - yp + m (xp – xr) 

 

We also need to be able to add a point to itself, that is P + P = 

2P = R. When yp ≠ 0, we have 

 

              xr   =  [( 3xp2 + a)/2yp]2 – 2xp 

              yr   =  [( 3xp2 + a)/2yp] (xp – xr) – yp 

 

 
 

 

 
            Figure 1 .  Examples of Elliptic Curves 

 

2.1 ECC (Elliptic Curve Cryptosystem) 

The concept of ECC, which was proposed by N. Kobiltz [5] 

and V. Miller [11] in 1985 is that when any two points are 

selected and added, the point of the sum is generated and is 

used for cryptosystem. The elliptic curve (EC) over real 

numbers x is the set of points (x,y) to satisfy a equation y2 = 

x3 + ax + b. If the right side term x3 + ax + b doesn’t have 

multiple root, that is, 4a3 + 27b2 ≠ 0, EC gives us some 

geometric features to work with. To apply EC to 

cryptosystem, the computation with modulo p is used where p 

is prime number. As a result of this calculation, rounding 

errors to be raised by real number computation can be 

prevented. The procedure to generate a public key in ECC is 

outlined as follows: 

(1) [Sender] Select any prime number p 

(2) [Sender] Select any integer number a, b for EC such that   

 y2 = x3 + ax + b 

(3) [Sender] Select randomly an initial point P on EC 

(4) [Sender] Generates a random integer as private key KS 

(5) [Sender] Computes a public key KS by multiplying P by  

 KS and registers it in the public key directory. 

(6) [Sender] Transmits p, a, b, P, KSP to Receiver 

(7) [Receiver] Receives p, a, b, P, KSP from Sender 

(8) [Receiver] Generates a random integer KR as a private key 

(9)  [Receiver] Computes a public key KRP by multiplying P    

by KR and registers it in the public key  

directory. 

 

Note:  It is easy to verify that KS KR P =  KR KS P                 

 

3 Encryption and Decryption Algorithm 

As shown in Figure 2, the user A computes a new key kA(kBP) 

by multiplying the user B's public key by the user A’s private 

key kA. The user A encodes the message by using this key and 

then transmits this cipher text to user B. After receiving this 

cipher text, The user B decodes with the key kB(kAP), which is 

obtained by multiplying the user A's public key, kAP by the 

user B’s private key, kB. Therefore, as kA(kBP) = kB(kAP), we 

may use these keys for the  encryption and the decryption. 

 

  Select factor:  a, b, y2   = x3 + a x + b.   

        p: prime number, P: Point on EC 

 

  User A                                       User B 

           Private key: KA                                       Private key: KB 

           Public key: KAP                                     Public key:KBP 

 

      en/decryption key:                    en/decryption key:   

                KA( KBP)                                                       KB(KAP)      

      ↑                                                       ↑ 

 

          Figure 2. Concept of en/decryption of ECC 

 

In the next section, we investigate 3BC cipher algorithm, 

which is a different approach that adds an additional level of 

complexity to enhance the security of encryption. 

 

 

 



3.1 Encryption and Decryption with 3BC 

Algorithm 

With 3BC algorithm, the procedure of data encryption is 

divided into three parts, inputting plaintext into data block, 

byte-exchange between blocks, and bit-wise XOR operations 

between data and session key. 

 

3.2 Session Key Generation 

As we know that the value which is obtained by multiplying 

one's private key by the other's public key is the same as what 

is computed by multiplying one's public key to the other's 

private key. The feature of EC is known to be almost 

impossible to estimate a private and a public key. With this 

advantage and the homogeneity of the result of operations, the 

proposed 3BC algorithm uses a 64-bit session key to perform 

the encryption and decryption. Given the sender’s private key 

Ks and the receiver’s public key Pr, we multiply Pr by Ks to 

obtain a point KsPr = (X,  Y) on EC, where X= X1 X2,…Xm 

and Y= Y1 Y2,…Yn. Then we form a key N by concatenating 

X and Y (i.e. N = X1 X2,…Xm Y1 Y2,…Yn), and generate 

the session keys  as follows: 

i) If the length (number of digits) of X or Y exceed four, then 

the extra digits on the left are truncated. And if the length of X 

or Y less than four, then they are padded with 0’s on the right.  

This creates a number N’ = X1’ X2’ X3’ X4’ Y1’ Y2’ Y3’ 

Y4’. Then a new number N’’ is generated by taking the 

modulus of each digit in N’ with 8. 

ii) The first session key sk1 is computed by taking bit-wise 

OR operation on N” with the reverse string of N”. 

iii) The second session key sk2 is generated by taking a 

circular right shift of sk1 by one bit. And repeat this operation 

to generate all the subsequent session keys needed until the 

encryption is completed. For more details on the use of public 

key and session key for encryption and decryption process, 

see [6]. 

3.3 Block Data Input 

The block size is defined as 64 bytes. A block consists of 56 

bytes for input data, 4 byte for the data block number, and 4 

byte for the byte-exchange block number (see Figure 5). 

During the encryption, input data stream are blocked by 56 

bytes. If the entire input data is less than 56 bytes, the 

remaining data area in the block is padded with each byte by a 

random character. Also, in the case where the total number of 

data blocks filled is odd, then additional block(s) will be 

added to make it even, and each of those will be filled with 

each byte by a random character as well. Also, a data block 

number in sequence is assigned and followed by a byte-

exchange block number, which is either 1 or 2. 

3.4 Byte Exchanges between Blocks 

After filling the data into the blocks, we begin the encryption 

by staring with the first data block and select a block, which 

has the same byte-exchange block number for the byte 

exchange.  In order to determine which byte in a block should 

be exchanged, we calculate its row-column position as 

follows: 

For the two blocks whose block exchange number, n = 1, and 

given the values of a sender's public key 21135 and a 

receiver's private key 790, the row and column can be 

computed. 

For n = 1, It follows from 3.2 that N” = 11357900 (after 

truncation, padding and concatenation), and  

 row = ((1,1,3,5,7,9,0,0)*1) mod 8 = (1,1,3,5,7,1,0,0) and 

 col = (((1,1,3,5,7,9,0,0)*1+3) mod 8)  = (4,4,6,0,2,4,3,3) 

This results 8 byte-exchange positions, (1,4), (1,4), (3,6), 

(5,0), (7,2), (1,4), (0,3) and (0,3).  However, counting only 

once for repeating pairs, the four bytes at (1,4)  (3,6), (5,0), 

and (7,2) will be selected for byte-exchange between two 

blocks.  

For block exchange number n = 2, we have 

 row = ((1,1,3,5,7,1,0,0)*2) mod 8 = (2,2,6,2,6,2,0,0) and 

 col = (((1,1,3,5,7,1,0,0)*2+3) mod 8 = (5,5,1,5,1,5,3,3), 

which results 8 byte-exchange positions, (2,5), (2,5), (6,1), 

(2,5), (6,1), (2,5), (0,3) and (0,3).  Similarly, only three byte 

positions at (2,5), (6,1), and (0,3)  are used for byte-

exchanges between two blocks. 

3.5 Bitwise XOR between Data and Session 

Keys 

After the byte-exchange is done, the encryption proceeds with 

a bit-wise XOR operation on the first 8 byte data with the 

session sk1 and repeats the operation on every 8 bytes of the 

remaining data with the subsequent session keys until the data 

block is finished. 

Note that the process of byte-exchange hides the meaning of 

56 byte data, and the exchange of the data block number hides 

the order of data block, which needs to be assembled later on.  

In addition, the bit-wise XOR operation transforms a 

character into a meaningless one, which adds another level of 

complexity to deter the network hackers.   

  

 



 

4 Theoretical Implementation 

To generate a public key, the most time consuming process is 

to find an initial point P on the given elliptic curve and to 

compute kP for an integer k < p for a large prime number p.  

The approach we investigate in this paper is to create a 64bit 

ALU with its own custom instructions added to an Altera 

EP2C35 NIOS II embedded processor. Custom instructions 

are designed to be small, rearrangeable portions of a C 

implementation of key generation. This will allow sections of 

the algorithm to be in C and other sections to be expressed as 

custom instructions.  These sections can be easily reordered 

and re-factored by recompiling the algorithm and uploading 

the overlay to the FPGA via TCP/IP in order to handle the 

distribution of the algorithms over the network. 

4.1 Hardware Design 

The design of this approach consists of four components: A 

PC Master Controller, TCP/IP interconnect, FGPA logic units 

that each contains a NIOS II processor and custom ALU, and 

the creation and selection of the custom instructions and 

overlays. 

4.2 PC Master Controller 

A PC Master Controller will provide benefits over existing 

designs. It is capable of systematically assigning algorithms to 

logic units based on the specific set of custom instructions 

included in the ALU. Our design will implement the 

delegation of operations and also take advantage of the 

parallelism that can be obtained by using a FPGA [3,7,8,10]. 

 

4.3 TCP/IP Interconnect 

The PC Master Controller will communicate through a TCP/IP 

interface with one or more FGPAs in a cluster. Each FPGA 

will execute the algorithm, using the custom instructions. 

 

4.4 Custom Instructions 

The Altera EP2C35 NIOS II embedded processor is a 32bit 

system. By adding a customized 64bit ALU and associated 

64bit registers [9, 12, 13], we can have custom instructions to 

handle algorithms specific to public key via EC, which 

include: XOR, Addition, Multiplication, Division, Right/Left 

Shift, and others. These instructions are given 32bit UUIDs as 

their opcode, allowing unique naming even when the full set is 

not within a single ALU. We are experimenting with various 

decompositions of Expansion and Permutation of the 3BC 

algorithm between PC Master Controller and custom 

instructions for optimal results. 

 

5 Current Implementation 

5.1 Implementation of 3BC Encryption 

The current approach to implementing the 3BC encryption 

algorithm assigns the blocking and byte exchange to the PC 

Master Controller, with the bitwise right rotation and XOR 

handled on the ALU implemented on an FPGA. The current 

model involves using the ALU to generate one 64-bit session 

key from a prior session key to encrypt 64-bits of data. 

 

5.2 Hardware Implementation 

At the time of writing, the hardware model is as follows: 

 

 

Figure 3. Current Implementation Model with Custom 

ALU 

 

In figure 3, two 32-bit input buses provide key, plaintext, and 

the number of bits to shift the prior session key into the ALU 

for key generation, a 5-bit control bus for the NIOS II custom 

instruction, and one 32-bit output bus for the encrypted result 

from the ALU. The NIOS II chip handles the network 

connection and manages the barrel shift and XOR by means of 

a custom instruction with some I/O handling for data locality. 

 

The inside of the ALU is outlined below: 

 

 
Figure 4. Inside of Custom ALU on FPGA 

(Not pictured: 5-bit control bus for custom instruction) 

 

 

This model suffers from the limitation of requiring 3 clock 

cycles to input the data from the NIOS II chip to the input 



register file, 2 clock cycles to output the data, an assumed 1 

clock cycle to process the data, as well as any inherent delays 

from Ethernet data transfer. Future research plans include 

changing to 64-bit data buses as input to the custom ALU, or a 

change to a different System on a Programmable Chip (SOPC) 

processor. With these, the input delay can be reduced to 2 

clock cycles or even 1. A 64-bit data bus for output from the 

ALU allows for output to be condensed into 1 clock cycle, 

allowing for the process to be completed in an expected 3-4 

clock cycles.  
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7 Empirical Results 

 

Different decompositions of the 3BC sub-algorithms are being 

investigated. With the approach on the encryption/decryption 

algorithm outlined in Section 4, the expectation is to process 

on average one key block per clock cycle, excluding filling 

and extracting the custom ALU  data. This appears reasonable 

as the custom instructions allow the design to use several 

FPGAs to process multiple key ranges simultaneously. Of 

interest is the location of the balance between the high 

implementation time with the low run time of the pure 

hardware approach, and the low implementation time with 

high run time of the pure software approach. 

 

For instance, starting with a pre-developed encryption or 

decryption algorithm in C that has a nonexistent design time, 

its average run time is a constant. When the algorithm is 

translated into well optimized hardware, the design time is 

very high and the run time is very low.  With the approach 

outlined in Section 4, the design time and run times are 

between the pure hardware and pure software methods. When 

the number of data sets to run is in the bolded range on Figure 

3, this method should be preferable. 

 

 

 
 

Figure 5. Area of Interest with Co-Design  

 

7.1  Difference in Efficiency 

The parallel algorithm described in section 4 allows for a large 

increase in speed over the pure software approach. 

 

For pure software, the assumption is that the first session key 

(SK1) has already been generated, there are 6 additional clock 

cycles needed to generate the session keys for the first block 

(SK2-7), and 7 clock cycles are needed to XOR the data with 

session keys. Thus, a total of 14 clock cycles are required for 

each block after the first. For n blocks, the operations take f(n) 

= 14n clock cycles. This is an operation in O(n) time. 

 

With sufficient hardware, the data can be input in 1 clock 

cycle.  After the first block, the algorithm requires 7 

operations that can be performed in parallel for session key 

generation.  With the FPGA, this can be accomplished in 1 

clock cycle. There are then 7 XOR operations between session 

keys and data that can also be performed in parallel. This, too, 

with the FPGA can be performed within 1 clock cycle. Lastly, 

an anticipated 1 clock cycle for gathering the results and 

output. Thus, for n blocks and sufficient hardware, the 

operations take f(n) = 4 clock cycles. This is an operation in 

O(1) time. 

 



 
 

 

Figure 6. Theoretical Efficiency gained with sufficient 

hardware 

 

8 Conclusion 

The researched approach has the benefit of some of the speed 

of ASIC, while maintaining some of the flexibility of C. The 

added use of storing and transferring the algorithms as an 

overlay allows the organizational aspects of the algorithm to 

be re-factored and delivered without the need of rebuilding the 

ASIC image and reconfiguring the FPGA [10] Using a TCP/IP 

interconnect network to send both the overlay and the problem 

set allows for an efficient and easily scalable infrastructure. 

 

The proposed 3BC, which uses byte-exchange and the bit 

operation increases data encryption speed. Even though cipher 

text is intercepted during transmission over the network. 

Because during the encryption process, the 3BC algorithm 

performs byte exchange between blocks, and then the plaintext 

is encoded through bit-wise XOR operation, it rarely has a 

possibility for cipher text to be decoded and has no problem to 

preserve a private key 
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