
Session Keys for Encryption/Decryption in Elliptic Curve

Cryptosystems

Donovan Moore, Michael Gubody, and Tai-Chi Lee

Department of Computer Science and Information Systems
Saginaw Valley State University

 University Center, MI 48710

Abstract - This work evolved from a case study on an Elliptic

Curve Cryptosystem (ECC) [2], where the session keys are

used with FPGAs in the process of encryptions or decryptions

[4]. To improve the strength of encryption and the speed of

processing, the public key and the private key of ECC are used

in 3BC (Block Byte Bit Cipher) [1, 5, 11] algorithm, which

generates session keys for the data encryption. We are

investigating a novel approach of hardware co-design

implemented in VHSIC Hardware Description Language

(VHDL), which produces hardware algorithm for heavy

iterations to be placed onto the FPGAs, thereby gaining a

speed-up by a subroutine call to a sequence of custom

instructions executed on the FPGAs.

Keywords: EEC, FPGA, VHDL, 3BC algorithm

1 Introduction

 The session keys play an important role in the process of

encryptions/decryptions for an ECC (Elliptic Curve

Cryptosystem). The majority of products that use public-key

cryptography for encryption/decryption use RSA algorithm.

But as we know, the key length for secure RSA has increased

over the years. This would demand a heavy computing power

for applications, especially for electronic commerce site that

process a large number of transaction. Recently, a different

approach of generating public key based on elliptic curve

cryptography (ECC) has begun to challenge the weakness of

RSA [12]. Its security relies on the problem of computing

logarithms on the points of an elliptic curve. The main

attraction of ECC is that it appears to offer equal security for a

far smaller key size, thereby saving the processing overhead.

To improve the strength of encryption and the speed of

processing, the public key and the private key of ECC are

used in the 3BC (Block Byte Bit Cipher) algorithm, which

generates session keys for the data encryption. Fundamentally,

ECC (Elliptic Curve Cryptosystem) technique is more

mathematics involved. We only give a brief review of the

basic concept in the next section and will explain elliptic

curve ciphers later.

2 EC (Elliptic Curves) - Mathematical

Overview

The elliptic curve cryptosystem makes use of elliptic curve in

which the variables and coefficients are all restricted to

elements of a finite field. Two families of elliptic curves are

used in cryptographic applications. They are prime curves

defined over Zp and binary curves constructed over GF(2n). In

general, cubic equations for elliptic curve over real numbers

takes the form

 y2 + axy + by = x3 + c x2 + d x + e. (1)

where a, b, c, d, e are real numbers that satisfy some

conditions. For our purpose, we will limit to the case where a,

b, and c are zero, which results in the form

 y2 = x3 + d x + e. (2)

To plot such curve, we need to compute

 y = (x3 + d x + e)1/2 (3)

For given values of a and b, the plot consists of positive and

negative values of y for each value of x. Thus each curve is

symmetric about y = 0. Figure show two examples of elliptic

curves. In the definition of an elliptic curve, we include a

single point O called a point at infinity or the zero point, and

also if any three points on EC lie on a straight line, their sum

is O. Thus, the addition of two points on EC is defined as

follows:

1) O serves as the additive identity so that

O + O = O, and

P + O = P, for any P ɛ EC

2) There exists an inverse for any point P on EC. The inverse

of P = (x,y) on EC is

 -P = (x,-y), and the subtraction is defined as

 Follows P - Q = P + (-Q), for any P, Q ɛ EC

3) An associative law.

P + (Q + P) = (P + Q) + R, for any P, Q, R ɛ EC

4) A commutative law.

P + Q = Q + P, for any P, Q ɛ EC

For any two distinct points P = (xp, yp), Q = (xq, yq) that are

not negative of each other, the slope of the line l that joins

them is m = (yq - yp) / (xq - xp). There is exactly one other

point where l intersects the elliptic curve, and that is the

negative of the sum of and Q. After some algebraic

manipulation, we have the sum R = P + Q as follows:

 xr = m2 - xp – xq

 yr = - yp + m (xp – xr)

We also need to be able to add a point to itself, that is P + P =

2P = R. When yp ≠ 0, we have

 xr = [(3xp2 + a)/2yp]2 – 2xp

 yr = [(3xp2 + a)/2yp] (xp – xr) – yp

 Figure 1 . Examples of Elliptic Curves

2.1 ECC (Elliptic Curve Cryptosystem)

The concept of ECC, which was proposed by N. Kobiltz [5]

and V. Miller [11] in 1985 is that when any two points are

selected and added, the point of the sum is generated and is

used for cryptosystem. The elliptic curve (EC) over real

numbers x is the set of points (x,y) to satisfy a equation y2 =

x3 + ax + b. If the right side term x3 + ax + b doesn’t have

multiple root, that is, 4a3 + 27b2 ≠ 0, EC gives us some

geometric features to work with. To apply EC to

cryptosystem, the computation with modulo p is used where p

is prime number. As a result of this calculation, rounding

errors to be raised by real number computation can be

prevented. The procedure to generate a public key in ECC is

outlined as follows:

(1) [Sender] Select any prime number p

(2) [Sender] Select any integer number a, b for EC such that

 y2 = x3 + ax + b

(3) [Sender] Select randomly an initial point P on EC

(4) [Sender] Generates a random integer as private key KS

(5) [Sender] Computes a public key KS by multiplying P by

 KS and registers it in the public key directory.

(6) [Sender] Transmits p, a, b, P, KSP to Receiver

(7) [Receiver] Receives p, a, b, P, KSP from Sender

(8) [Receiver] Generates a random integer KR as a private key

(9) [Receiver] Computes a public key KRP by multiplying P

by KR and registers it in the public key

directory.

Note: It is easy to verify that KS KR P = KR KS P

3 Encryption and Decryption Algorithm

As shown in Figure 2, the user A computes a new key kA(kBP)

by multiplying the user B's public key by the user A’s private

key kA. The user A encodes the message by using this key and

then transmits this cipher text to user B. After receiving this

cipher text, The user B decodes with the key kB(kAP), which is

obtained by multiplying the user A's public key, kAP by the

user B’s private key, kB. Therefore, as kA(kBP) = kB(kAP), we

may use these keys for the encryption and the decryption.

 Select factor: a, b, y2 = x3 + a x + b.

 p: prime number, P: Point on EC

 User A User B

 Private key: KA Private key: KB

 Public key: KAP Public key:KBP

 en/decryption key: en/decryption key:

 KA(KBP) KB(KAP)

 ↑ ↑

 Figure 2. Concept of en/decryption of ECC

In the next section, we investigate 3BC cipher algorithm,

which is a different approach that adds an additional level of

complexity to enhance the security of encryption.

3.1 Encryption and Decryption with 3BC

Algorithm

With 3BC algorithm, the procedure of data encryption is

divided into three parts, inputting plaintext into data block,

byte-exchange between blocks, and bit-wise XOR operations

between data and session key.

3.2 Session Key Generation

As we know that the value which is obtained by multiplying

one's private key by the other's public key is the same as what

is computed by multiplying one's public key to the other's

private key. The feature of EC is known to be almost

impossible to estimate a private and a public key. With this

advantage and the homogeneity of the result of operations, the

proposed 3BC algorithm uses a 64-bit session key to perform

the encryption and decryption. Given the sender’s private key

Ks and the receiver’s public key Pr, we multiply Pr by Ks to

obtain a point KsPr = (X, Y) on EC, where X= X1 X2,…Xm

and Y= Y1 Y2,…Yn. Then we form a key N by concatenating

X and Y (i.e. N = X1 X2,…Xm Y1 Y2,…Yn), and generate

the session keys as follows:

i) If the length (number of digits) of X or Y exceed four, then

the extra digits on the left are truncated. And if the length of X

or Y less than four, then they are padded with 0’s on the right.

This creates a number N’ = X1’ X2’ X3’ X4’ Y1’ Y2’ Y3’

Y4’. Then a new number N’’ is generated by taking the

modulus of each digit in N’ with 8.

ii) The first session key sk1 is computed by taking bit-wise

OR operation on N” with the reverse string of N”.

iii) The second session key sk2 is generated by taking a

circular right shift of sk1 by one bit. And repeat this operation

to generate all the subsequent session keys needed until the

encryption is completed. For more details on the use of public

key and session key for encryption and decryption process,

see [6].

3.3 Block Data Input

The block size is defined as 64 bytes. A block consists of 56

bytes for input data, 4 byte for the data block number, and 4

byte for the byte-exchange block number (see Figure 5).

During the encryption, input data stream are blocked by 56

bytes. If the entire input data is less than 56 bytes, the

remaining data area in the block is padded with each byte by a

random character. Also, in the case where the total number of

data blocks filled is odd, then additional block(s) will be

added to make it even, and each of those will be filled with

each byte by a random character as well. Also, a data block

number in sequence is assigned and followed by a byte-

exchange block number, which is either 1 or 2.

3.4 Byte Exchanges between Blocks

After filling the data into the blocks, we begin the encryption

by staring with the first data block and select a block, which

has the same byte-exchange block number for the byte

exchange. In order to determine which byte in a block should

be exchanged, we calculate its row-column position as

follows:

For the two blocks whose block exchange number, n = 1, and

given the values of a sender's public key 21135 and a

receiver's private key 790, the row and column can be

computed.

For n = 1, It follows from 3.2 that N” = 11357900 (after

truncation, padding and concatenation), and

 row = ((1,1,3,5,7,9,0,0)*1) mod 8 = (1,1,3,5,7,1,0,0) and

 col = (((1,1,3,5,7,9,0,0)*1+3) mod 8) = (4,4,6,0,2,4,3,3)

This results 8 byte-exchange positions, (1,4), (1,4), (3,6),

(5,0), (7,2), (1,4), (0,3) and (0,3). However, counting only

once for repeating pairs, the four bytes at (1,4) (3,6), (5,0),

and (7,2) will be selected for byte-exchange between two

blocks.

For block exchange number n = 2, we have

 row = ((1,1,3,5,7,1,0,0)*2) mod 8 = (2,2,6,2,6,2,0,0) and

 col = (((1,1,3,5,7,1,0,0)*2+3) mod 8 = (5,5,1,5,1,5,3,3),

which results 8 byte-exchange positions, (2,5), (2,5), (6,1),

(2,5), (6,1), (2,5), (0,3) and (0,3). Similarly, only three byte

positions at (2,5), (6,1), and (0,3) are used for byte-

exchanges between two blocks.

3.5 Bitwise XOR between Data and Session

Keys

After the byte-exchange is done, the encryption proceeds with

a bit-wise XOR operation on the first 8 byte data with the

session sk1 and repeats the operation on every 8 bytes of the

remaining data with the subsequent session keys until the data

block is finished.

Note that the process of byte-exchange hides the meaning of

56 byte data, and the exchange of the data block number hides

the order of data block, which needs to be assembled later on.

In addition, the bit-wise XOR operation transforms a

character into a meaningless one, which adds another level of

complexity to deter the network hackers.

4 Theoretical Implementation

To generate a public key, the most time consuming process is

to find an initial point P on the given elliptic curve and to

compute kP for an integer k < p for a large prime number p.

The approach we investigate in this paper is to create a 64bit

ALU with its own custom instructions added to an Altera

EP2C35 NIOS II embedded processor. Custom instructions

are designed to be small, rearrangeable portions of a C

implementation of key generation. This will allow sections of

the algorithm to be in C and other sections to be expressed as

custom instructions. These sections can be easily reordered

and re-factored by recompiling the algorithm and uploading

the overlay to the FPGA via TCP/IP in order to handle the

distribution of the algorithms over the network.

4.1 Hardware Design

The design of this approach consists of four components: A

PC Master Controller, TCP/IP interconnect, FGPA logic units

that each contains a NIOS II processor and custom ALU, and

the creation and selection of the custom instructions and

overlays.

4.2 PC Master Controller

A PC Master Controller will provide benefits over existing

designs. It is capable of systematically assigning algorithms to

logic units based on the specific set of custom instructions

included in the ALU. Our design will implement the

delegation of operations and also take advantage of the

parallelism that can be obtained by using a FPGA [3,7,8,10].

4.3 TCP/IP Interconnect

The PC Master Controller will communicate through a TCP/IP

interface with one or more FGPAs in a cluster. Each FPGA

will execute the algorithm, using the custom instructions.

4.4 Custom Instructions

The Altera EP2C35 NIOS II embedded processor is a 32bit

system. By adding a customized 64bit ALU and associated

64bit registers [9, 12, 13], we can have custom instructions to

handle algorithms specific to public key via EC, which

include: XOR, Addition, Multiplication, Division, Right/Left

Shift, and others. These instructions are given 32bit UUIDs as

their opcode, allowing unique naming even when the full set is

not within a single ALU. We are experimenting with various

decompositions of Expansion and Permutation of the 3BC

algorithm between PC Master Controller and custom

instructions for optimal results.

5 Current Implementation

5.1 Implementation of 3BC Encryption

The current approach to implementing the 3BC encryption

algorithm assigns the blocking and byte exchange to the PC

Master Controller, with the bitwise right rotation and XOR

handled on the ALU implemented on an FPGA. The current

model involves using the ALU to generate one 64-bit session

key from a prior session key to encrypt 64-bits of data.

5.2 Hardware Implementation

At the time of writing, the hardware model is as follows:

Figure 3. Current Implementation Model with Custom

ALU

In figure 3, two 32-bit input buses provide key, plaintext, and

the number of bits to shift the prior session key into the ALU

for key generation, a 5-bit control bus for the NIOS II custom

instruction, and one 32-bit output bus for the encrypted result

from the ALU. The NIOS II chip handles the network

connection and manages the barrel shift and XOR by means of

a custom instruction with some I/O handling for data locality.

The inside of the ALU is outlined below:

Figure 4. Inside of Custom ALU on FPGA

(Not pictured: 5-bit control bus for custom instruction)

This model suffers from the limitation of requiring 3 clock

cycles to input the data from the NIOS II chip to the input

register file, 2 clock cycles to output the data, an assumed 1

clock cycle to process the data, as well as any inherent delays

from Ethernet data transfer. Future research plans include

changing to 64-bit data buses as input to the custom ALU, or a

change to a different System on a Programmable Chip (SOPC)

processor. With these, the input delay can be reduced to 2

clock cycles or even 1. A 64-bit data bus for output from the

ALU allows for output to be condensed into 1 clock cycle,

allowing for the process to be completed in an expected 3-4

clock cycles.

6 Acknowledgements

The student authors would like to acknowledge the SRCI

mini-grant foundation for the opportunities it provides, SVSU

for providing a prosperous research environment, and Dr. Lee

for his resources and encouragements.

7 Empirical Results

Different decompositions of the 3BC sub-algorithms are being

investigated. With the approach on the encryption/decryption

algorithm outlined in Section 4, the expectation is to process

on average one key block per clock cycle, excluding filling

and extracting the custom ALU data. This appears reasonable

as the custom instructions allow the design to use several

FPGAs to process multiple key ranges simultaneously. Of

interest is the location of the balance between the high

implementation time with the low run time of the pure

hardware approach, and the low implementation time with

high run time of the pure software approach.

For instance, starting with a pre-developed encryption or

decryption algorithm in C that has a nonexistent design time,

its average run time is a constant. When the algorithm is

translated into well optimized hardware, the design time is

very high and the run time is very low. With the approach

outlined in Section 4, the design time and run times are

between the pure hardware and pure software methods. When

the number of data sets to run is in the bolded range on Figure

3, this method should be preferable.

Figure 5. Area of Interest with Co-Design

7.1 Difference in Efficiency

The parallel algorithm described in section 4 allows for a large

increase in speed over the pure software approach.

For pure software, the assumption is that the first session key

(SK1) has already been generated, there are 6 additional clock

cycles needed to generate the session keys for the first block

(SK2-7), and 7 clock cycles are needed to XOR the data with

session keys. Thus, a total of 14 clock cycles are required for

each block after the first. For n blocks, the operations take f(n)

= 14n clock cycles. This is an operation in O(n) time.

With sufficient hardware, the data can be input in 1 clock

cycle. After the first block, the algorithm requires 7

operations that can be performed in parallel for session key

generation. With the FPGA, this can be accomplished in 1

clock cycle. There are then 7 XOR operations between session

keys and data that can also be performed in parallel. This, too,

with the FPGA can be performed within 1 clock cycle. Lastly,

an anticipated 1 clock cycle for gathering the results and

output. Thus, for n blocks and sufficient hardware, the

operations take f(n) = 4 clock cycles. This is an operation in

O(1) time.

Figure 6. Theoretical Efficiency gained with sufficient

hardware

8 Conclusion

The researched approach has the benefit of some of the speed

of ASIC, while maintaining some of the flexibility of C. The

added use of storing and transferring the algorithms as an

overlay allows the organizational aspects of the algorithm to

be re-factored and delivered without the need of rebuilding the

ASIC image and reconfiguring the FPGA [10] Using a TCP/IP

interconnect network to send both the overlay and the problem

set allows for an efficient and easily scalable infrastructure.

The proposed 3BC, which uses byte-exchange and the bit

operation increases data encryption speed. Even though cipher

text is intercepted during transmission over the network.

Because during the encryption process, the 3BC algorithm

performs byte exchange between blocks, and then the plaintext

is encoded through bit-wise XOR operation, it rarely has a

possibility for cipher text to be decoded and has no problem to

preserve a private key

9 References

1. M.J. Bastiaans, FPGA’s as Cryptanalytic Tools,

http://www.sps.ele.tue.nl/

members/m.j.bastiaans/spc/rouvroy.pdf.

2. A. Fernaades, Elliptic Curve Cryptography, Dr. Dobb’s

Journal, December, 1999.

3. P. Glesner, and M. Zipf, Renovell (Eds.): Programmable

Logic and Applications. Reconfigurable Computing Is Going

Mainstream, Proceedings of 12th International Conference,

FPL 2002, Montpellier, France, September 2-4, 2002.

4. Jilani Ibrahim, Li Lan, Shi Yixin, VHDL implementation

of Data Encryption Standard (DES), pp. 3-6, 16, ECE

Department, University of Illinois at Chicago May 9th, 2003.

5. N. Koblitz, Elliptic Curve Cryptosystems. Math. Comp. 48

203-209, 1987.

6. Tai-Chi Lee, Byung Kwan Lee, An ASEP (Advanced

Secure Electronic Payment) Protocol Design, The

Proceedings of The IEEE 2004 International Conference e-

Technology, e-Commerce and e-Service, Taipei, Taiwan, pp.

41-46, 3/28-31, 2004.

7. Tai-Chi Lee, Mark White, Using Software Emulation in

FPGAs To Improve Co-Design Development Time, The

Proceedings of the Fourth International Conference of

Applied Mathematics and Computing, Bulgaria, pp. 359-360,

August 12-18, 2007.

8. Tai-Chi Lee, Patrick Robinson, A FPGA-Based Designed

for an Image Compressor, International Journal of Pure and

Applied Math, Academic Publications, Volume 33 No.1, pp.

63-67, 2006.

9. Tai-Chi Lee, Richard Zeien, Adam Roach, and Patrick

Robinson, DES Decoding Using FPGA and Custom

Instructions, The Proceedings of The Third International

Conference on Information Technology: New Generation,

Las Vegas, Nevada, pp. 575-577, 2006.

10. Tai-Chi Lee, Patrick Robinson, and Erik Henne,

Framework for executing VHDL code on FPGA, The

Proceedings of the International MultiConference in

Computer Science & Computer, Las Vegas, NV, pp. 1296-

1299, 2004.

11. V.S. Miller, Use of Elliptic Curve in Cryptography.

Advances in Cryptology-Proceedings of Crypto '85, Lecture

Notes in Computer Science 218, pp. 417-426, Springer-

Verlag, 1986.

12. M. Robshaw, Block Ciphers, RSA Laboratories Technical

Report TR, 601, August 1995,

http://www.rsasecurity.com/rsalabs/dindex.html.

13. B. Schneier, Description of a New Variable-Length Key,

64-bit Block Cipher (Blowfish), Proceedings, Workshop on

Fast 78 Software Encryption, New York: Springer-Verlag,

1993.

