Research Directions for
Teaching Programming Online

Amber Settle!, Arto Vihavainen?, and Craig S. Miller!
1School of Computing, DePaul University, Chicago, Illinois, USA
2Department of Computer Science, University of Helsinki, Helsinki, Finland

Abstract— Online education has a long-standing tradition in
academia, and yet online programming remains a relatively
undeveloped area in the computing education literature. This
is in sharp contrast with in-person programming courses,
which have been a favorite subject of study in computing
education. Research into teaching on-site programming is
so extensive that numerous practices have emerged and are
typically supported by instructional theory, empirical results
or both. In this article we identify some of the commonly
accepted practices for teaching programming in an on-site
environment and survey the work that has been done for
online programming. In doing so, we contrast the rigor
of on-site programming research with the relative immatu-
rity of educational practices for online programming. We
identify research questions and future directions for online
programming educators, with the goal of inspiring the same
high-quality work that on-site programming research has
produced.

Keywords: online programming, programming, pedagogy, tools,
best practices

1. Introduction

The computing community has recently witnessed a rebirth
of interest in online education. The immense popularity of
Khan Academy and Code.org, and the collaboration between
organizations like Coursera, edX, and Udacity and prestigious
universities like MIT, Harvard, Stanford, and others have
brought new energy to a long-standing educational approach.
The attention from the academic community, for example in
the creation of new conferences like ACM Learning@Scale,
and the interest from the popular press have converged
to produce diverse opportunities for reaching hundreds of
thousands of students.

While the new possibilities have energized many educators
in computing, lost in the enthusiasm is the acknowledgment
that online education, often called distance education prior to
2000, has existed for decades. To provide just two examples
of enduring online education journals, Distance Education
was founded in 1980 and The American Journal of Distance
Education was created in 1987. What the recent initiatives ar-
guably contribute is large scale access to students, a new and
highly interesting development in online education. There is

also a much stronger focus on teaching programming in the
latest round of online educational initiatives.

Despite an established body of research in online educa-
tion, research in teaching programming online remains un-
derdeveloped. Unlike traditional programming courses where
scores of researchers have conducted numerous quantitative
and qualitative studies of how best to teach students to
program (for surveys, see [55], [49]), the research into teach-
ing online programming rarely identifies replicable prac-
tices that are either theoretically motivated or supported
by empirical study. The majority of published papers are
experience reports, and such articles are difficult to adapt and
generalize. This leaves educators working on teaching online
programming today with little guidance in how to approach
their work. However, unlike previous online education re-
search, the stakes now are higher. Many schools are adopting
programming courses into their offerings, often basing their
content on existing online courses. The attention of the press
may lead any mistakes to be widely reported, and momentum
in reaching hundreds of thousands of interested students will
not be easy to recapture.

In this article, we explore the space of traditional “on-
site” or “in-person” strategies for teaching programming to
understand how it is that educators have approached the
problem, after which we outline research done specifically
on online programming. By “online”, we mean a course in
which a large portion of the activities and assessments are
completed by students who are not on-site. In doing so we
identify a number of gaps between the work in teaching
on-site and online programming and provide suggestions for
how to advance research in online programming in a more
methodical and rigorous direction. Doing so will allow online
educators to make more significant progress than previous
researchers in order to capitalize on its momentum.

2. Teaching Programming

Teaching and learning programming has been researched
widely during the past few decades to the point where stan-
dard educational approaches are forming from the numerous
experiments. In this section, current educational practices
that are used in teaching programming are discussed, with
the goal of emphasizing the increasing maturity of the area.
While a comprehensive survey is not possible here, a range of



practices is presented, selected for common acceptance and
diverse representation. Although the practices are presented
separately, many of them have been studied and applied
together to form hybrid courses (see e.g. [50]).

2.1 Changing Interaction

Classrooms have been traditionally seen as large auditori-
ums filled with thousands of students. The most stereotyp-
ical understanding of this situation is the classroom with a
lonely teacher talking to students who struggle to follow.
In response, computing education researchers have identified
numerous ways in which students can be more fully engaged
in learning to program, either by increasing student to student
interaction, student to instructor interaction, or student to
content interaction [45], [1]. Many of the approaches use
active learning, where students not only do, but think about
what they are doing [7].

Peer instruction [42] was originally created to solve the
passive classroom-issue in physics education [19]. In order
to have better participation from students, they prepare for
lectures beforehand by reading provided material. As students
have already read the material, the lectures are devoted to the
teacher discussing the content, and engaging the students with
interactive questions from which both the teacher and stu-
dents benefit. Although some studies suggest that quizzes in
lectures are not efficient [43], the questions in peer instruction
are done in multiple iterations where the students think both
alone and collaboratively in groups. Peer instruction helps in-
structors adapt their class to address student misconceptions,
increase student retention, and improve learning outcomes
over traditional lectures [19], [56].

Another approach to tackling the passive classroom is to
move to hands-on programming assignments as soon as pos-
sible [67]. Students benefit immensely if instruction is moved
from large classes to smaller classrooms with integrated labs
and hands-on activities [69], [10], [67]. Methodologies such
as lab-centric instruction [15], [62], [63], [39] and studio-
based instruction [13] provide ways in which this can be
done; typically students work on tasks under guidance from
instructors and peers that provide support for the students if
needed.

2.2 Collaboration and Peer Support

In order to have multiple directions for input, peer reviews
can be utilized given that the guidelines emphasize the
learning objectives [4]. Peer evaluation is often used in
studio-based classroom settings [31] and, in one context, the
quality of students’ reviews have been found comparable
to those provided by paid teaching assistants in computer
science [29].

Work in laboratories can be done in pairs or in small
groups [69] and organized to emphasize good programming
practices such as the ones outlined by extreme program-
ming [57]. The most typical extreme programming practice

taken into introductory programming laboratories is pair
programming, where pairs of students work together to create
programs. As two students work on one assignment, the work
is constantly being reviewed, and possible challenges can be
discussed directly with the peer. In various studies, pair pro-
gramming has been found to improve students’ performance
and retention [47], [11].

Additional collaboration and peer support can be facilitated
by recruiting students as teaching assistants and mentors.
In peer-led team learning, students work in groups that are
led by e.g. peers or undergraduate teaching assistants, who
are typically trained and supervised by faculty [30], [32]
and are also themselves learning during the process. Peer-
led team learning reworks student interactions significantly,
although it is evident that recruiting the correct people and
providing them proper guidance is of the utmost importance.
Peer-led team learning has been reported to increase student
retention [58] as well as increase the amount of students
that choose CS as a major [46]. In addition, the use of
undergraduate teaching assistants has been reported to create
a more enjoyable context [20] as well as to help students
improve their teaching and mentoring skills [68].

2.3 Modeling Problem Solving

When students are learning to program, they benefit im-
mensely if they have a model on how a programming problem
should be solved. Some modeling can done by process
recordings [6] and by task design (see e.g. [65]), while for
some, the use of a virtual classroom can be beneficial [8].
One suggestion is to utilize case studies [40], which consist
of a problem and a narrative description on how solutions
for the problems have been reached; case studies can be also
seen as worked examples [14].

Lectures can be also used for worked examples [14],
during which the teacher discusses a problem and works
through it in a step-by-step fashion. Extensive empirical
study has shown that novices greatly benefit from seeing
worked examples in the early stages of learning [37], [44].
Worked examples are one approach for providing students
a mental model, an explanation of the thought process that
is needed to solve a problem. The need for a mental model
is emphasized in teaching approaches that rely on cognitive
apprenticeship, which is a theory on the process of how a
more experienced person can teach a skill to a novice [16].
Cognitive apprenticeship has been adapted and discussed in
the programming instruction-context (see e.g. [2], [14], [67]).

2.4 Engaging Content and Contextualization

Activity in classrooms can also be increased via the use
of engaging content. As an example, in media computa-
tion [27], [24], students are introduced to computing using
an interesting context; multimedia. The lectures often evolve
around live-coding [3] examples, where the lecturer creates
representations such as music or graphics. Media computing



has been reported to increase student retention across various
tertiary education institutions [28].

The way the material and assignments are designed play
a large role since they form the main media with which
students spend their effective learning time. As no material
fits all contexts, it is important that it is contextualized so
that the students can relate to it (see e.g. [64]) and that it
supports the incremental steps in learning to program.

2.5 Adaptive Teaching

Adjusting the difficulty level of a course to match the
students’ ability level is important. Many authors suggest
taking an incremental approach to building the material,
which allows students to slowly build up their knowledge
and skills (see e.g. [67]). This can be reflected both in the
tasks that the students do, where assignments can be split into
smaller parts that form subgoals, and also in the material,
where one can e.g. emulate mini-languages by first only
focusing on a small subset of a language [12].

Mini-languages typically have a small syntax and simple
semantics, which makes starting programming easier. Mini-
languages have been combined with visual programming
environments [17]; the use of environments such as Scratch
for teaching at-risk students has been noted to increase
success in introductory programming courses [53].

3. Teaching Programming Online

As we have already noted, distance-education has a long
history of study. At the same time, as our review illustrated,
the study of teaching programming on-site has produced
a variety of practices that are well supported both theo-
retically and empirically. In contrast, the study of online
programming courses is still underdeveloped in the literature.
As an example, performing a query' for articles on the
ACM Digital Library related to teaching programming online
using keywords "(programming OR csl) AND (online OR
distance) AND (teaching OR education)" returns 159 results,
while the query "(programming OR cs1) AND (teaching OR
education)" returns 1850 results.

Only a small part of the 159 articles contain somewhat
relevant results, while still outlining mostly experience re-
ports. Only a handful sought to identify underlying causes.
Examples of the experience reports contain a description of
how a consensus on online course structure was formed [52],
what observations educators received from using specific
platforms [51] and languages [60], and how the capabilities of
web (i.e. no need for downloading software, dynamic sites)
can be leveraged to bring more value to students [72] and
to increase collaboration [34]. Some discussion on how to
design and implement materials to support students learning
to program exists as well, whether in an online environment
or as a supplement to a more traditional course [22], [33].

IThe queries reported in this section have been performed in April 2014

Various studies have considered differences between stu-
dents in local and online classrooms. While learning out-
comes are often highly related to student motivation and
reasons for participation as well as course outcomes, a
meta-analysis on online learning that also included non-
programming-related articles suggests that instructor-directed
and collaborative instruction provides better results than inde-
pendent study, and that the practice of providing quizzes does
not seem to be more effective than assigning homework [43].
One should also remember that online participants are often
adult students who cannot attend the traditional classroom
environment due to work or family-related constraints [5],
[38].

When switching to an online environment, researchers
have also considered the broader implications to pedagogies
for both programming and in general [8]. One author suggests
that an online environment could enhance students’ skills
such as collaborative problem solving and the capacity to
integrate into new communities [8], and the same author
considered the challenges of doing group work in syn-
chronous online programming classes, developing a set of
recommendations for instructors wishing to include group
work in virtual classrooms [9].

3.1 MOOC:s in Introductory Programming

MOOCs in programming are discussed as a separate
subsection due to their inherent issue in scale and popula-
tion. MOOCs in general are offered to anyone willing to
participate, increasing the amount of students, and hence,
creating additional challenges on making support resources
available to participants. When comparing published research
on MOOCs in introductory programming to the studies
on teaching programming online, the amount of MOOC
articles is — not surprisingly — lower. Searching for keywords
"MOOC" and "programming" in ACM Digital Library pro-
duced 58 hits. Out of those articles, 14 include keywords
"MOOC", "programming", "CS1", and only a few actually
discuss MOOC:s in introductory programming. Some of the
articles discuss overall experiences in creating more advanced
MOOGC:s (e.g. courses on software engineering) and mention
introductory programming (see e.g. [18]), while some discuss
possible challenges related to offering MOOCs to specific
populations such as K-12 students (see e.g. [35]).

Only a few articles that describe the creation and evalu-
ation of a MOOC in introductory programming exist. One
article describes support mechanisms and activities used
in a MOOC in programming that was directed to high-
school students [65], while a follow-up article discussed how
students recruited via the MOOC had fared in their CS studies
when compared to other students [66]. While the former
studies are somewhat constrained due to the low amount of
participants, more recent studies have given insight on larger
courses. Recently, a course that focuses on emphasizing
human-human interaction in a programming MOOC [71] was



published; the team discusses their platform in a separate
article [59]. Another laudable MOOC-effort is the Functional
Programming Principles in Scala-course, which was offered
at Udacity [48].

To date, only one article has evaluated several MOOCs
for teaching programming; the result from the evaluation
was that MOOC:s did not leverage the years of research into
teaching programming [4].

3.2 Tools

Nearly any search for information about online program-
ming will produce results about tools. Unfortunately, many
of the resulting papers do not address online programming
courses, instead focusing on online tools for traditional
programming courses. This is not simply a side effect of
poor searching techniques, as many of the articles contain
the words “online” and/or “programming” in the title.

As an example, consider the top fifteen articles discussing
tools returned in a search of the ACM Digital Library
performed using the keywords “online programming.” Of
these, eleven of them discussed systems designed to be used
exclusively in on-site programming courses. The remaining
four were only tangentially related to online programming
courses. One was a proposal for a prototype-only massive
multiplayer online role playing game, although the paper
made no indication that the game had been fully implemented
and deployed and did not suggest that the programming
courses that used it would be for anything other than students
physically present in a classroom[41]. Two described tools
for “blended courses” in which the tool was the only online
component[25], [54]. The fourth analyzed how various online
assessment systems could be used for a MOOC and argued
that the authors’ tool was superior in many ways to other
assessment systems, although the tool had not been tested in
a MOOC]J61]. A common direction for recent work on tools
is to produce online IDEs, which was also represented in the
results of the query[25].

While the creation of tools that enable better student learn-
ing is important for both on-site and online programming
situations, it appears that the majority of tools with the label
online are in fact tools for teaching on-site programming. For
more information on tools used in introductory programming,
see [49].

3.3 Suggestions from the Literature

The reviewed literature for online programming in many
cases contained suggestions and guidelines for creating
courses that were not supported by rigorous study. This
is a common situation for experience reports, which serve
as guide into new directions for educators. However, when
considering the work on online programming education the
suggestions one finds seem obvious. For example, the rec-
ommendations in the online programming literature include:

« Learn to utilize the capabilities of web; make the most of
videos, audio and interactive content to engage multiple
sensors; identify appropriate tools [70], [72], [36], [60],
(21]

o Foster regular interaction and collaboration among the
students to help them stay engaged; if needed, use
a LMS or some other tool to provide facilities for
discussion [9], [70], [51], [21]

« Ask and provide feedback; feedback can be used to both
support students in their learning and to improve the
course content [21]; respond to student inquiries in a
timely fashion [60]

o Design the learning tasks to be informative and make the
content incremental; if possible, use a tool that provides
runtime syntax and error checking [72], [65], [38], [9]

These recommendations, which are common sense for
experienced educators, apply equally well to both online and
on-site courses. More importantly, they provide a strong con-
trast with the recommendations for teaching on-site program-
ming, which are based on theories about learning and/or have
been empirically tested for validity. This is an indicator of
the relative immaturity of the online programming literature.

4. Discussion of Unresolved issues

Experience reports often serve a good purpose, for example
by demonstrating that an approach or idea has merit for
further consideration. The next step to take is a more rigorous
investigation of pedagogies, tools, and learning environments
as well as learner perspectives, which seek to provide answers
and information for adoption. In this paper, we turned to the
extensive research on teaching programming in traditional
contexts for direction. Its offering of teaching practices,
derived from instructional theory and based on empirical
study, provides useful goals for the less developed study of
teaching programming online.

Teaching programming online is an area where experience
reports still heavily predominate the literature, indicating
that the research still remains in the early stages. Part of
the reason may be that many educators have their first
teaching experiences in a face-to-face environment. This
makes it natural to replicate that experience when creating
online courses, which requires using tools to produce the
types of interaction seen in the on-site classroom. While
approaching teaching programming online as a translation
process from existing face-to-face experiences is natural, it
may be also limited by personal experiences and things that
we do not know [26]. Moving forward from replicating in-
person experiences might help online programming classes
to take advantage of the unique strengths of the online
environment.

The evolution of online programming as a research area
would involve investigating many of the questions that have
been studied for on-site programming courses, including:



o How can interaction, whether student-student, student-
instructor, or student-content, be improved?

o How can tools be used to improve interaction without
unduly increasing cognitive load? Comparative studies
are especially useful for this question.

o How does learning programming in an online environ-
ment affect student course outcomes in later courses and
projects?

« How effective are various pedagogies, tools, and tech-
niques? Here empirical studies that can be replicated are
a necessity.

o What approaches can be shown to work in comparative
studies, whether across student populations, institutions,
or cultures?

Note that these points call for studies that evaluate the
effectiveness of practices and their online counterparts. While
previous studies have evaluated online learning at the course-
level (see e.g. [38], [23]), practice-level studies will not
only provide explanations for why one course delivery is
better than another, it will provide directions for further
improvement for diverse modes of delivery.

While investigating existing research questions is useful
for the online context, there are some questions that are
unique to online programming courses such as:

o What is the relationship between the scale of an online
programming class and the amount and type of interac-
tion found in that class?

o How do technological advances change the utility of
the results in papers related to teaching programming
online? What could be done to better withstand the
influence of time and technological change?

« What impact does the audience for an online program-
ming class have on the approaches used? Heterogeneous
populations, particularly for massive online classes,
complicate research studies.

Advancing the body of knowledge in this area requires
both consideration of existing work as well as creative out-
of-the-box thinking for the design of online programming
classes. There is nothing wrong with finding motivation from
the latest tools and technology, provided that the resulting
course activities produce the desired learning objectives. But
a first step in reaching a learning objective is to define one,
and this is an area where researchers in online programming
have much left to do.

References

[1] T. Anderson. Getting the mix right again: An updated and theoretical
rationale for interaction. The International Review of Research in Open
and Distance Learning, 4(2), 2003.

[2] O. Astrachan and D. Reed. Aaa and cs 1: the applied apprenticeship
approach to cs 1. In ACM SIGCSE Bulletin, volume 27, pages 1-5.
ACM, 1995.

[3] L. J. Barker, K. Garvin-Doxas, and E. Roberts. What can computer
science learn from a fine arts approach to teaching? SIGCSE Bull.,
37(1):421-425, Feb. 2005.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]
[19]

[20]

[21]

(22]

[23]

[24]

[25]

M. Ben-Ari. MOOCs on introductory programming: A travelogue.
ACM Inroads, 4(2):58-61, June 2013.

K. Benda, A. Bruckman, and M. Guzdial. When life and learning
do not fit: Challenges of workload and communication in introductory
computer science online. Trans. Comput. Educ., 12(4):15:1-15:38,
Nov. 2012.

J. Bennedsen and M. E. Caspersen. Exposing the programming
process. In Reflections on the Teaching of Programming, pages 6—
16. Springer, 2008.

C. C. Bonwell and J. A. Eison. Active learning: Creating excitement in
the classroom. School of Education and Human Development, George
Washington University Washington, DC, 1991.

M. Bower. Virtual classroom pedagogy. SIGCSE Bull., 38(1):148-152,
Mar. 2006.

M. Bower. Groupwork activities in synchronous online classroom
spaces. In Proceedings of the 38th SIGCSE Technical Symposium on
Computer Science Education, SIGCSE 07, pages 91-95, New York,
NY, USA, 2007. ACM.

K. E. Boyer, R. S. Dwight, C. S. Miller, C. D. Raubenheimer, M. F.
Stallmann, and M. A. Vouk. A case for smaller class size with
integrated lab for introductory computer science. SIGCSE Bull.,
39(1):341-345, Mar. 2007.

G. Braught, T. Wahls, and L. M. Eby. The case for pair programming
in the computer science classroom. Trans. Comput. Educ., 11(1):2:1—
2:21, Feb. 2011.

P. Brusilovsky, E. Calabrese, J. Hvorecky, A. Kouchnirenko, and
P. Miller. Mini-languages: a way to learn programming principles.
Education and Information Technologies, 2(1):65-83, 1997.

A. S. Carter and C. D. Hundhausen. A review of studio-based learning
in computer science. J. Comput. Sci. Coll., 27(1):105-111, Oct. 2011.
M. E. Caspersen and J. Bennedsen. Instructional design of a program-
ming course: a learning theoretic approach. In Proceedings of the
third intl workshop on Computing education research, pages 111-122.
ACM, 2007.

M. Clancy, N. Titterton, C. Ryan, J. Slotta, and M. Linn. New roles
for students, instructors, and computers in a lab-based introductory
programming course. In Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education, SIGCSE °03, pages 132—
136, New York, NY, USA, 2003. ACM.

A. Collins, J. S. Brown, and A. Holum. Cognitive apprenticeship:
making thinking visible. American Educator, 6:38—46, 1991.

S. Cooper, W. Dann, and R. Pausch. Using animated 3d graphics to
prepare novices for csl. Computer Science Education, 13(1):3-30,
2003.

S. Cooper and M. Sahami. Reflections on stanford’s moocs. Commun.
ACM, 56(2):28-30, Feb. 2013.

C. H. Crouch and E. Mazur. Peer instruction: Ten years of experience
and results. American Journal of Physics, 69:970, 2001.

P. E. Dickson. Using undergraduate teaching assistants in a small
college environment. In Proceedings of the 42nd ACM technical
symposium on Computer science education, pages 75-80. ACM, 2011.
E. M. El-Sheikh. Techniques for engaging students in an online
computer programming course. Journal of Systemics, Cybernetics &
Informatics, 7(1), 2009.

A. Ellis, D. Hagan, J. Sheard, J. Lowder, W. Doube, A. Carbone,
J. Robinson, and S. Tucker. A collaborative strategy for developing
shared java teaching resources to support first year programming.
In Proceedings of the 4th Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE 99, pages 84—
87, New York, NY, USA, 1999. ACM.

W. Farag. Comparing achievement of intended learning outcomes in
online programming classes with blended offerings. In Proceedings of
the 13th Annual Conf. on Information Technology Education, SIGITE
’12, pages 25-30, New York, NY, USA, 2012. ACM.

A. Forte and M. Guzdial. Computers for communication, not cal-
culation: Media as a motivation and context for learning. In System
Sciences, 2004. Proceedings of the 37th Annual Hawaii Intl. Conf. on,
pages 10—pp. IEEE, 2004.

S. Friese. Measuring of and reacting to learners’ progress in logic
programming courses. In Proceedings of the Fifteenth Annual Confer-



[26]
[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

ence on Innovation and Technology in Computer Science Education,
ITiCSE ’10, pages 152-154, New York, NY, USA, 2010. ACM.

J. Gal-Ezer and D. Harel. What (else) should cs educators know?
Commun. ACM, 41(9):77-84, Sept. 1998.

M. Guzdial. A media computation course for non-majors. SIGCSE
Bull., 35(3):104-108, June 2003.

M. Guzdial. Exploring hypotheses about media computation. In
Proceedings of the Ninth Annual Intl. ACM Conf. on Intl. Computing
Education Research, ICER 13, pages 19-26, New York, NY, USA,
2013. ACM.

J. Hamer, H. C. Purchase, P. Denny, and A. Luxton-Reilly. Quality
of peer assessment in csl. In Proceedings of the Fifth Intl. Workshop
on Computing Education Research Workshop, ICER 09, pages 27-36,
New York, NY, USA, 2009. ACM.

S. Horwitz, S. H. Rodger, M. Biggers, D. Binkley, C. K. Frantz,
D. Gundermann, S. Hambrusch, S. Huss-Lederman, E. Munson, B. Ry-
der, et al. Using peer-led team learning to increase participation and
success of under-represented groups in introductory computer science.
In ACM SIGCSE Bull., volume 41, pages 163-167. ACM, 2009.

C. Hundhausen, A. Agrawal, D. Fairbrother, and M. Trevisan. Integrat-
ing pedagogical code reviews into a cs 1 course: An empirical study.
In Proceedings of the 40th ACM Technical Symposium on Computer
Science Education, SIGCSE *09, pages 291-295, New York, NY, USA,
2009. ACM.

S. Huss-Lederman, D. Chinn, and J. Skrentny. Serious fun: peer-led
team learning in cs. In ACM SIGCSE Bulletin, volume 40, pages 330—
331. ACM, 2008.

L. J. White, J. W. Coffey, and E. M. El-Sheikh. Exploring technologies,
materials, and methods for an online foundational programming course.
Informatics in Education, (Vol 7:2):259-276, 2008.

J. Jenkins, E. Brannock, T. Cooper, S. Dekhane, M. Hall, and
M. Nguyen. Perspectives on active learning and collaboration: Javaw-
ide in the classroom. In Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education, SIGCSE ’12, pages 185—
190, New York, NY, USA, 2012. ACM.

L. C. Kaczmarczyk. We need to talk. ACM Inroads, 5(1):30-31, Mar.
2014.

R. Karsten, S. Kaparthi, and R. M. Roth. Teaching programming via
the web: A time-tested methodology. College Teaching Methods &
Styles Journal (CTMS), 1(3):73-82, 2005.

P. A. Kirschner, J. Sweller, and R. E. Clark. Why minimal guidance
during instruction does not work: An analysis of the failure of con-
structivist, discovery, problem-based, experiential, and inquiry-based
teaching. Educational Psychologist, 41(2):75-86, 2006.

J. Kleinman and E. B. Entin. Comparison of in-class and distance-
learning students’ performance and attitudes in an introductory com-
puter science course. J. Comput. Sci. Coll., 17(6):206-219, May 2002.
C. M. Lewis, N. Titterton, and M. Clancy. Developing students’ self-
assessment skills using lab-centric instruction. J. Comput. Sci. Coll.,
26(4):173-180, Apr. 2011.

M. C. Linn and M. J. Clancy. The case for case studies of programming
problems. Commun. ACM, 35(3):121-132, Mar. 1992.

C. Malliarakis, M. Satratzemi, and S. Xinogalos. Towards a new mas-
sive multiplayer online role playing game for introductory program-
ming. In Proceedings of the 6th Balkan Conference in Informatics,
BCI ’13, pages 156-163, New York, NY, USA, 2013. ACM.

E. Mazur and R. C. Hilborn. Peer instruction: A user’s manual. Physics
Today, 50(4):68-69, 1997.

B. Means, Y. Toyama, R. Murphy, M. Bakia, and K. Jones. Evaluation
of evidence-based practices in online learning: A meta-analysis and
review of online learning studies. 2010.

C. S. Miller and A. Settle. When practice doesn’t make perfect: Effects
of task goals on learning computing concepts. ACM Transactions on
Computing Education (TOCE), 11(4):22, 2011.

M. G. Moore. Editorial: Three types of interaction. American Journal
of Distance Education, 3(2):1-7, 1989.

C. Murphy, R. Powell, K. Parton, and A. Cannon. Lessons learned
from a pltl-cs program. In Proceedings of the 42Nd ACM Technical
Symposium on Computer Science Education, SIGCSE ’11, pages 207—
212, New York, NY, USA, 2011. ACM.

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

N. Nagappan, L. Williams, M. Ferzli, E. Wiebe, K. Yang, C. Miller,
and S. Balik. Improving the csl experience with pair programming.
In ACM SIGCSE Bulletin, volume 35, pages 359-362. ACM, 2003.
M. Odersky, L. Rytz, H. Miller, and P. Haller. Functional programming
for all! scaling a mooc for students and professionals alike. In 36th
International Conference on Software Engineering (ICSE" 14) SEET
Track, number EPFL-CONF-190022, 2014.

A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J. Bennedsen,
M. Devlin, and J. Paterson. A survey of literature on the teaching of
introductory programming. In Working Group Reports on ITiCSE on
Innovation and Technology in Computer Science Education, ITiCSE-
WGR ’07, pages 204-223, New York, NY, USA, 2007. ACM.

L. Porter and B. Simon. Retaining nearly one-third more majors with
a trio of instructional best practices in csl. In Proceeding of the 44th
ACM Technical Symposium on Computer Science Education, SIGCSE
’13, pages 165-170, New York, NY, USA, 2013. ACM.

T. Reeves, P. Baxter, and C. Jordan. Teaching computing courses -
computer literacy, business microcomputer applications, and introduc-
tion to programming online utilizing webct. J. Comput. Sci. Coll.,
18(1):290-300, Oct. 2002.

K. Renaud, J. Barrow, and P. le Roux. Teaching programming from a
distance: Problems and a proposed solution. SIGCSE Bull., 33(4):39—
42, Dec. 2001.

M. Rizvi and T. Humphries. A scratch-based csO course for at-risk
computer science majors. In Proceedings of the 2012 IEEE Frontiers
in Education Conference (FIE), FIE *12, pages 1-5, Washington, DC,
USA, 2012. IEEE Computer Society.

G. H. B. Roberts and J. L. M. Verbyla. An online programming
assessment tool. In Proceedings of the Fifth Australasian Conference
on Computing Education - Volume 20, ACE 03, pages 69-75, Dar-
linghurst, Australia, Australia, 2003. Australian Computer Society, Inc.
A. Robins, J. Rountree, and N. Rountree. Learning and teaching
programming: A review and discussion. Computer Science Education,
13(2):137-172, 2003.

B. Simon, M. Kohanfars, J. Lee, K. Tamayo, and Q. Cutts. Experience
report: Peer instruction in introductory computing. In Proceedings of
the 41st ACM technical symposium on Computer science education,
pages 341-345. ACM, 2010.

S. Smith and S. Stoecklin. What we can learn from extreme program-
ming. J. Comput. Sci. Coll., 17(2):144-151, Dec. 2001.

C. Stewart-Gardiner. Improving the student success and retention of
under achiever students in introductory computer science. J. Comput.
Sci. Coll., 26(6):16-22, June 2011.

T. Tang, S. Rixner, and J. Warren. An environment for learning
interactive programming. In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, SIGCSE ’14, pages 671—
676, New York, NY, USA, 2014. ACM.

R. Thomas. Experiences teaching c++ programming online. In
Proceedings of the Fifth Annual CCSC Northeastern Conference on
The Journal of Computing in Small Colleges, CCSC 00, pages 211-
219, USA, 2000. Consortium for Computing Sciences in Colleges.

N. Tillmann, J. De Halleux, T. Xie, S. Gulwani, and J. Bishop. Teach-
ing and learning programming and software engineering via interactive
gaming. In Proceedings of the 2013 International Conference on
Software Engineering, ICSE 13, pages 1117-1126, Piscataway, NJ,
USA, 2013. IEEE Press.

N. Titterton and M. J. Clancy. Adding some lab time is good, adding
more must be better: the benefits and barriers to lab-centric courses.
In FECS, pages 363-367, 2007.

N. Titterton, C. M. Lewis, and M. J. Clancy. Experiences with lab-
centric instruction. Computer Science Education, 20(2):79-102, 2010.
M. Vesisenaho, M. Duveskog, E. Laisser, and E. Sutinen. Designing
a contextualized programming course in a tanzanian university. In
Frontiers in Education Conference, 36th Annual, pages 1-6. IEEE,
2006.

A. Vihavainen, M. Luukkainen, and J. Kurhila. Multi-faceted support
for mooc in programming. In Proceedings of the 13th annual con-
ference on Information technology education, pages 171-176. ACM,
2012.

A. Vihavainen, M. Luukkainen, and J. Kurhila. Mooc as semester-
long entrance exam. In Proceedings of the 14th Annual ACM SIGITE



[67]

[68]

[69]

Conference on Information Technology Education, SIGITE 13, pages
177-182, New York, NY, USA, 2013. ACM.

A. Vihavainen, M. Paksula, and M. Luukkainen. Extreme apprentice-
ship method in teaching programming for beginners. In Proceedings of
the 42nd ACM technical symposium on Computer science education,
pages 93-98. ACM, 2011.

A. Vihavainen, T. Vikberg, M. Luukkainen, and J. Kurhila. Massive
increase in eager tas: Experiences from extreme apprenticeship-based
csl. In Proceedings of the 18th ACM Conference on Innovation and
Technology in Computer Science Education, ITiCSE 13, pages 123—
128, New York, NY, USA, 2013. ACM.

H. M. Walker. Collaborative learning: A case study for csl at grinnell
college and austin. SIGCSE Bull., 29(1):209-213, Mar. 1997.

[70]

[71]

[72]

W. Wang. Teaching programming online. In International Conference
on the Future of Education, 2011.

J. Warren, S. Rixner, J. Greiner, and S. Wong. Facilitating human
interaction in an online programming course. In Proceedings of the
45th ACM Technical Symposium on Computer Science Education,
SIGCSE ’14, pages 665-670, New York, NY, USA, 2014. ACM.

J. L. Zachary and P. A. Jensen. Exploiting value-added content in
an online course: Introducing programming concepts via html and
javascript. In Proceedings of the 34th SIGCSE Technical Symposium
on Computer Science Education, SIGCSE *03, pages 396-400, New
York, NY, USA, 2003. ACM.



