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Abstract – Many computational tasks in science and 

engineering require highly accurate numerical derivatives. 

This paper presents a method of derivative approximation that 

avoids the subtractive cancellation problem that plagues 

ordinary finite difference (FD) and thus yields near-exact 

first-order derivatives. Extension of the method to second-

order derivatives allows approximations with considerable 

reduction in round-off errors. An overview of the method and 

a summary of its implementation are discussed and illustrated. 

Numerical experiments and application examples demonstrate 

that the method outperforms ordinary FD schemes in 

accuracy, efficiency, and numerical stability. Hence, the 

technique has strong potential as an effective teaching and 

research tool in engineering and scientific computing. 
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1 Introduction 

  The approximation of derivatives is a central and costly 

step in most computational tasks in science and engineering. 

Data inversion and parameters estimation problems, for 

example, require repeated computations of gradients, 

Jacobians and Hessians of the objective functions and 

associated active constraints. Inaccuracies in the 

approximation of these derivative structures not only degrade 

the performance of the optimizing algorithm but also limit the 

accuracy of achievable solutions. Therefore, development of 

efficient and accurate methods to approximate derivatives is 

of paramount importance. 

Because of its ease of implementation, finite difference 

(FD) is routinely used by teachers and researchers to 

approximate derivatives of functions. However, FD schemes 

are well known to be neither efficient nor accurate. A major 

drawback of the FD method is its critical dependence on the 

differencing interval or step-size.  For maximum accuracy, an 

optimum step size must be sought, often by trial and error, a 

process that significantly impedes the efficiency of the 

method (Mark and Workman 2003; Burge and Newman 

2003). Moreover, from the perspective of filter theory, 

generic FD differentiation filters have the undesirable 

property of noise amplification (Orfanidis 1996). In the 

context of numerical optimization, Hong, et al. (2012), point 

out that use of suboptimum FD step-size in iterative 

procedures introduces statistical noise that adversely impact 

not only the convergence rate of the optimization algorithm, 

but more importantly the accuracy of the resulting solution as 

well as the solution statistical properties and confidence 

interval.  

In this paper, I describe a method based on the theory of 

complex variable (hereafter referred to as complex 

perturbation method - CPM) as an alternative to FD with 

superior qualities. The technique was originally reported for 

first-order derivatives of univariate functions by Squire and 

Trapp (1998) who demonstrated that it was highly accurate, 

extremely robust and very easy to implement. The method 

has since been gaining recognition in many areas of 

computational fields, and has successfully been applied in 

several large scale studies including sensitivity analyses, 

aerodynamic design optimization and pseudospectral 

algorithms (e.g. Cerviño and Bewley, 2003; Martin et al., 

2001; Burge and Newman, 2003; Vatsa, 2000; Wang, 2004; 

De Pauw and Vanrolleghem, 2006).  Generalization of CP to 

multi-parameter functions, and extension to second-order 

derivatives were reported by the present author (Abokhodair, 

2007).  In addition to bringing the technique to the attention 

of the wider computational science community, the objective 

of this article is to present an overview of CPM, demonstrate 

by examples its accuracy and numerical stability, and 

illustrate its implementation in some computational problems. 

The aim is to highlight the simplicity, power and wide 

applicability of the technique, and thereby facilitate its use by 

students and researchers.  

2 How CPM Works 

 A simple example illustrates how the CPM method 

works: Let  ( )           with exact derivative   ( )  
(       )      . To estimate   ( ) by the CP method, 

the key idea is to perturb the target variable x with a pure 

imaginary step ih,    1, 1i h  , and construct the 

complex argument z x ih  . Thus, the ‘complexified’ 

version of the original real-valued function becomes: 
sin( ) zf z z e  . 

For h << 1,we may write: 

 sin sin sin cosz x ih x ih x    ,  

therefore, 
sin sin    , z x ie e e    where s  coh x  .  

Now 
iα  cos sin 1 cos  ,e i ih x       

 sin sin  1 cos    z xe ih x e   , and,  

   sin( ) 1 cos  xf z x ih ih x e    . Finally we have: 



   sin sin1 cos  x xf z xe ih x x e     

  This is a remarkable result. The complexified function 

  ( )f z  returns 2( )O h  approximations of the original real-

valued function and of its first derivative in the real and 

imaginary parts respectively. Moreover, the first derivative 

returned in the imaginary part of   ( )f z involves no 

differencing operation, thus precluding any subtractive 

cancellation and allowing for near-exact approximations. This 

is the essence of the CP method. Note also how the complex 

data type serves here as a carrier of both the function 

approximation in the real part and the derivative 

approximation in the imaginary part. This closely resembles 

true automatic differentiation systems implemented in object-

oriented programming. The result above is general as may be 

proven by a Taylor expansion of   ( )f z : 
2  ( ) ( ) ( ) '( ) ( )f z f x ih f x ih f x O h     , which is the 

original formula reported by Squire and Trapp (1998). 

 Figure 1 compares the absolute relative errors of the CPM 

and centered finite difference (CFD) approximations of   '( )f z

computed with respective step sizes of h= 251  0 and 10-8 As 

seen in the figure, the CPM relative error fluctuates randomly 

near machine epsilon ( 161  0 ), whereas the CFD error is eight 

orders of magnitude larger, with a mean value of about 10-8. 

The Matlab script in box 1, computes the CPM derivative of 

this example. 

 

x=pi*(-1:.02:1)'; 

h=1.0e-25 ;  

f=@(x) x.*exp(-sin(x)); 

z=complex(x,h); 

fc=f(z); 

cpfp=imag(fc)/h; 

Box 1: Matlab script to compute f(x) and f’(x) approximations of 

the heuristic example. 

 

 
Figure 1: The absolute relative errors of the CP (a), and 

CFD (b) approximations of '( )f x  for the heuristic example 

using step sizes h = 10
-25

 and 10
-8

 respectively. 

 

3 Computing Jacobians 

The generalized CPM formula for vector-valued functions 

of several variables is: 

         2  Tih ih O h    F z F x e F x e J x ,          (1) 

where  
1

(( ) )
N

k k
f


 xF x   

1

M

k k
x


x , and the N M matrix   ( )J x  is 

the Jacobian with respect to  , (Abokhodair, 2007). The 

imaginary part of equation (1) which provides the 

approximation formula for first derivatives is: 

     21T Im O h
h

   e J x F z                        (2) 

The Jacobian (gradients are special cases) is a first-order 

derivative structure extensively used in scientific computing 

in various contexts. Implementation of equation 2 is 

illustrated for the Jacobian of the environmental model in 

equation 3, which is a standard test function used for 

parameters calibration and tuning. The function models a 

pollutant spill caused by a chemical accident and returns the 

concentration of the pollutant at the space-time vector 

 ,x tx  , where 0 ≤ x ≤ 3 and t > 0 (Blizniouk, et al. 2008) 
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 , , ,M D L p is the vector of parameters: M = mass of 

pollutant; D = diffusion rate; ,L   = location and time of the 

second spill. Figure 2 depicts the residual errors in the FD-

based Jacobian compared to the CP Jacobian. As seen in the 

figure, the residuals are relatively large (> 10
-6

) and 

systematic in character. Accumulation of such errors in 

iterative procedure can contribute to the ill-conditioning of 

the computed Jacobian leading at best to biased solutions or 

at worst to failure of the computational routine. To appreciate 

the significance of the errors indicated in figure 3, suppose 

that the computed Jacobian J  is:  J J J , with an error of 

 J , and it is entered into a computation of the form y J x , 

then an upper bound on the relative error in the solution x is 

(e.g. Treferthan, and Bau, 1997) : 

 






x

J
x

J

J

, 

which in the present case is not negligible being of the order 

10
-2

. 



 
Figure 2: Residual errors in the Jacobian matrix of 

the environmental function in equation 3 
 

4 Computing Hessians 

The approximation formula for first order derivative 

(equation 1) is the only subtraction-free formula that can be 

obtained from complex variable theory. However, at the 

expense of a small lose in accuracy this formula can be 

extended to second-order derivatives by any ordinary finite 

difference scheme. This may be accomplished by perturbing 

the target variable say x, by a full complex step 

z x ih    and then expanding in Taylor series. The 

approximation formula so obtained using a centered 

difference (CFD) scheme is (Abokhodair, 2007): 

  21
Im ( ) ( )

2

T f O h
h x

  e H e z                      (4) 

where H is the hessian matrix. 

The hessian matrix, a second-order derivative structure, 

plays a crucial role in optimization algorithms allowing for 

the quadratic approximation of the objective function locally. 

To demonstrate application of equation 4, the Colville 

function is used, which is a standard optimization test 

function defined as (Surjanovic and Bingham, 2013): 
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The function is usually evaluated on the hypercube: 

   
4

1
10,10i i

x

  , and has a global minimum: ˆ( ) 0f x , at 

 ˆ 1,1,1,1x . Table 1 compares the element-wise relative 

errors in the Hessians of the objective near its minimum value 

computed by the CPM and CFD schemes. As seen in the 

table, the CPM-based Hessian is 7 orders of magnitude more 

accurate than that of the CFD-based approximation. In terms 

of norms, the relative errors are of the orders: 10
-12

 and 10
-6

, 

respectively a substantial gain in accuracy by the CPM 

scheme (Eqution 4) despite the fact that it involves a 

differencing operation. 

 

Table 1: Relative errors in the Hessian of Colville test 

function (Eqution 5)  

CPM Hessian  10 -10 

0.0655 0.0655 0 0 

0.0655 0.1874 0 0.0655 

0 0 0.1902  0.0655 

0 0.0655  0.0655  0.0655 

CFD Hessian  10-3 

0 0 0.2032 0.0508 

0 0 0.4064 0 

0.2032 0.4064 0 0 

0.5080 0 0 0 

 

5 Application Examples 

Use of the CP method in computational problems is 

demonstrated with an optimization example. In near-surface 

geophysical applications (e.g. archaeology and environmental 

studies), ground magnetics is often the method of choice for 

locating small buried metallic objects such as archaeological 

artifacts, drums and unexploded ordnances (UXOs). For this 

purpose, an isolated dipole or, equivalently, a uniformly 

magnetized spherical source is an adequate model of the 

anomaly source. Assuming induced magnetization, the total-

field magnetic anomaly of a sphere of radius R and 

magnetization J buried at depth zo is given by (e.g. Blakely, 

1995): 
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Figure 3: Results of the inversion example - (a) contours of 

the objective function and superimposed convergence path 

(blue); (b) observed data and solution-based model response; 

(c) iteration paths of the two parameters. 
 

In equation 5, [ , ]oR zp   is the vector of parameters, I is 

the geomagnetic inclination and K is a constant. For this 

didactic example, synthetic data was generate from equation 6 

for a source of radius R = 0.75 m at depth zo = 1.5 m. A 

normal random error of zero mean and a standard deviation 

2.5% of the peak anomaly was added to simulate 

observational data. The inverse problem solved consisted in 

estimating the parameters R and zo from the noisy data. The 

inversion results (figure 3) are: R = 0.75002 ± 0.00071 and zo 

= 1.50137 ± 0.0038. The inversion algorithm used is based on 

Newton method with a Levenberg-Marquardt type damping 

and requires at each iteration step updated versions of the 

Hessian and gradient of the objective function and associated 

constraints. The derivative structures were supplied by a 

Matlab function that was integrated into the optimizing 

routine.  

6 Summary 

The CP method introduced in this paper is a hybrid 

between finite difference (FD) and true automatic 

differentiation (AD). Computationally, it is simply FD in the 

complex plane, but without the step-size dilemma. And, in 

terms of performance, it is competitive with AD. The 

examples presented here demonstrate some of the key 

advantages of the CP technique: namely, implementation 

simplicity, accuracy, and numerical stability throughout a 

wide range of step-sizes down to 10
-50

.  Because of these 

performance features, the method provides a better alternative 

to ordinary FD schemes as on-the-fly automatic 

differentiation tool already built into most common 

computational environments. 
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