
Feeling Glassy:
An Analysis of Developing for Google Glass

Dakota Gallimore
Department of Mathematics and

Computer Science
University of Virginia, College at

Wise
Wise, VA USA

Joseph LaCava
Department of Mathematics and

Computer Science
University of Virginia, College at

Wise
Wise, VA USA

Dr. Abrar Qureshi
Department of Mathematics and

Computer Science
University of Virginia, College at

Wise
Wise, VA USA

Abstract - Google Glass is considered a front-runner of
mobile computing. It functions as a wearable device that,
as the name suggests resembles a pair of glasses, but the
abilities of the device prove that this is no ordinary pair of
spectacles. Understanding that this device stands to be the
new and, currently, unrivaled device for the future of
mobile computing, those with the ability to program for it
stand to enter into a market that has limitless potential.
The proposed paper serves as an analysis of the
development process and attempts to outline the pieces that
are required for both Android and Glass.

Keywords: Activities, Services, Google Glass, Intents,
Mirror API, Google Development Kit (GDK).

1. Introduction
Programming for Google Glass starts as any other

programming project would, with the SDK. Google is
currently in the stages of developing their own Android
Studio, but for the purposes of coding for Glass we, the
developers, utilized the existing Eclipse[1] and the ADT
plugin bundle. Both, the Android SDK and the Android
Studio, are available to download for free on the Google
development website. As one might suspect from the IDE,
Java[2] is the suggested language used in Android
programming. However, for those who prefer C/C++ or
simply wish to reuse existing libraries, Google also offers a
NDK, but does not suggest its use to program in C/C++ and
states using native code does not typically increase
application performance. All of these and more is available
of Google’s developer site. The sample project that is later
referenced in this paper was built in the Android SDK
environment, the Eclipse IDE and Android ADT plugin
bundle. Further detail of how to set up the IDE and
importing the appropriate libraries will be covered later in
this paper.

2. Project requirements
Assuming that the steps to download the SDK above were
followed correctly and everything is working, if issues

please consult the support provided by Google’s website, it
is time to download the appropriate library for GDK. Under
Window, in the menu bar, select the Android SDK Manager
which will pull up a window similar to the one below.

Figure 1. Android SDK Manager.

Make sure the most recent SDK tools have been
downloaded and installed. All of the programming for
Glass is through the Android 4.0.3 or API15, as is depicted
in the screenshot below. You will need to download the
entire API, excluding the samples at your prerogative, so it
may be a better decision to do all of them at once. It should
be noted that in the extras folder resides all of the legal
documentation for android development. It may be a good
idea to download and install these as well.

Figure 2. Android API 15

The Figure 2 shows the Android API 15 open and as you
can see installed. If there any problems installing or

locating the correct API bundles please contact Google, or
simply refer to their developer website. To continue into
the depth of the GDK coding process, we have to give a
few descriptions of the parts found and implemented in
Android development.

3. Development parts[4]

3.1 Activities
Activities are the main building blocks of any android
project. Activities handle anything having to do with user
interaction and maintaining the user interface thread.
Activities follow a lifecycle process. Developers can use
this to contain actions performed within their projects. Such
actions could include shutting down a running service for
power management or memory optimization and
management.

3.2 Services
Services handle background tasks much like AsyncTasks,
however it is important to note that AsyncTasks are more
suited for short term processes like downloading a file and
then updating the UI thread to reflect completion whereas
services are fitted for long running background tasks. This
could be anything from audio playback to polling a WiFi
connection in a set interval.

3.3 Fragments
Fragments are also play a keen role in android development
and while Glass is based off android 4.0.3, they do not have
a substantial role in Glass development but are worth
noting. Fragments are a part of an activity and you can have
multiple nested fragments per activity to give multiple
viewpoints within an activities UI thread. This means all
fragments share the same lifecycle state as their parent
activity. Fragments were introduced in android 3.0 as a
mean to extend the functionality and dynamic (*dynamic-
like*) nature of android activities.

4. Glass environment[5]

The Glass environment is based off a timeline like
implementation where events in the past are generated and
stored on the left side of the home screen and present or
upcoming events are stored. This is where Glass steps away
from its fundamental android roots and becomes one in its
own. Developers can publish and delete items pertaining to
their application onto the Glass timeline. This being said
the Glass development standards still apply regardless if the
user is interacting with an activity or a timeline card. A time
card is an instance of a developer’s application being
placed on the main timeline. Time cards allow applications
to handle many tasks in the background like audio
processing.

4.1 Menu Items
Menu items allow users to request actions related to the
timeline cards. They are one of the most interesting
services included in Glass and allow the user to interact
directly with any timecard that is currently displayed.
Android comes with many built-in functionalities, such as
sharing images, replying to message, all of which may be
command through either the touch panel or said aloud. The
GDK allows developers to create their own menu items,
thus increasing customization and fluidity inside the
software.

4.2 Mirror API[5]

The Mirror API is a tool Google has created to allow
developers to create services for Google Glass without
having the software directly on the device. Google
affectionately labels the modified software as “Glassware.”
The Mirror API allows everything to function like a web
based service, increasing productivity and versatility, it
does all of this without actually running code on the Glass
itself. The Mirror API serves as a means to simply display
the data without too much having to cross through Google
Glass' connection to the internet. It utilizes a REST API
method which essentially means that instead of using
arbitrary verbs to pull data it instead utilizes a simpler
uniform selection of the HTTP methods 'GET', 'POST',
'PUT', and 'DELETE,’ but further detail into the precise
command interfaces may be found on Google’s developers
website. Since the project referenced in this paper was not
created using the Mirror API, it would be interesting to
note, the developer website also includes sample projects in
the following languages: “Go[3],” “Java[2],” “.NET[6],”
“PHP[7],” “Python[8],” and “Ruby[9].”

The functionality of the Mirror API differs only slightly for
each aspect of the Glass interface. Since the Mirror API
does not have hardware access its functionality is limited in
regards to the Glass Development Kit. However, a Glass
user will be able to push content to Glassware that is using
the Mirror API method, regardless of hardware access. A
Glass user simply has to tie their Google id to Glassware
that uses the Mirror API. The Glassware will then start to
push content to Google’s servers which will filter content to
the appropriate end user. In addition, the Mirror API
handles any displaying of data necessary in any glassware
action. As was previously stated, the following project
does not implement the Mirror API.

5. Project
The project encompasses the steps from creating a Glass
application, “Glassware,” to the finalization of the
publishing of the finished project. As well as outlining the
essential pieces implemented for functionality. The goal of
this project is to improve the everyday life of the hearing
impaired. We developed this with the hopes of evolving

into an all-around accessibility application. For now, the
application caters to the hearing impaired. This project will
act as the middleman between the speaker and the user.
Much like movies have captions for the hearing impaired,
our application will provide captions to the user for people
around them.

When assessing which development tools to use, we knew
using the GDK would be the most reasonable. This will
allow our application to be used and accessed by the user
even if no phone is connected or no data connection is
available by using the built in voice recognition software.
Due to the constraints of the deployment environment. We
wanted to design the application to run only when the user
wanted it. We opted for an activity based approach over a
service based approach. This requires the user to launch the
activity every time they need it but saves battery and allows
the user to control what actually gets displayed. The user
will queue up the application via the Glass voice menu.
Since every application within the voice menu must contain
a voice trigger we wanted to make ours easy and simple to
pronounce.

Figure 3. XML queuing voice trigger.

The voice trigger used by the Glass operating system is
declared in the main AndroidManifest.xml file on a per
activity base. The meta data contains the string information
to be prompted to the user. The meta data tag points to our
xml file located in our applications resource folder titled
xml.

Figure 4. Voice trigger content

my_voice_trigger.xml contains the actual voice trigger
content. Since we have no constraints determining if we can
launch our application we simply point to our string
resources that we give to the voice recognition activity. The
Glass trigger keyword is aptly set as “caption” and the
prompt simply tells the user that the Glass is listening and
ready to receive voice input. As of the Glass operating
system XE16+, when they moved to the Android operating

system KitKat, applications must use one of the approved
Glass command words listed at
https://developers.google.com/glass/develop/gdk/reference/
com/google/android/glass/app/VoiceTriggers.Command or
add a permission named development in the applications
manifest file (allows any command keyword to launch your
app) to allow application launches on Glass.

Firgure 5. Voice trigger development permission

5.1 Touch Interface
Glass also allows for touch interaction of the voice menu
items. This allows the users to interact with our application
without needing to use voice. The user will use our intuitive
gesture system where they can take two fingers and swipe
towards the Glass screen to queue up a new caption. The
user will need to do this for each new caption they want to
see. This allows for user control when they want it and for
the application to conserve power when the user is not
using it due to not having a background service running and
not allowing the processor to go into deep sleep. The user
interface will fit into the Glass design restrictions by being
quick and easy to read.

5.2 Voice Recognition
We call the voice recognition activity in the onResume()
method of our application since the onCreate() method will
call the onResume() method upon completion, this insures
we gather voice data when the activity is resumed and
created. We overwrite the main view screen each time the
voice recognition activity is called if the results are not null.

Figure 6. Calling Voice Recognition .

https://developers.google.com/glass/develop/gdk/reference/com/google/android/glass/app/VoiceTriggers.Command
https://developers.google.com/glass/develop/gdk/reference/com/google/android/glass/app/VoiceTriggers.Command

The user can queue up the Glass voice recognition activity
manually from a menu item. This allows them to add
captions when they want them and end a caption when they
don’t want them. We do this by passing an Intent to the
voice recognition activity and waiting for a result from the
VR activity.

Figure 7. Passing the Intent

launchSpeechRecognizer() is the method called by the
menu listener that simply creates a voice recognition intent
setting the language model to free form and starting the
voice recognition activity for results.

Figure 8. Getting results.

Upon getting the results from the activity it automatically
will recall onResume() which will update the UI thread
from the zero index of voiceResults string array, so upon
results from the voice recognizer we set the zero index of
the voiceResults to the new value received from the Glass
VR. This is the application and how we handle the many
interactions from the user.

6. Product release
As many may have recognized the stages are summarized as
so: Stage 1, Stage 2, Profit. Luckily, this isn’t so far off
from the truth! The methods implemented by Google to
publish and profit from your application is incredibly
simple. All Glassware and, possibly, applications
developed with GDK, will be distributed through Google’s
MyGlass website. As of this publication, Google has not
yet released how they plan to receive GDK developed apps.
However, if the Glassware is developed with the Mirror
API, the Google develop website has a link to an online
application form. Google is requiring Glassware to be

submitted for review before they are published on the
MyGlass website. Those who are developing with the
Mirror API may wish to reference checklist that Google has
posted online, that simply outlines the requirements and
practices that are to be implemented before the review
process.

Google has forbidden any commercial profit from
Glassware and Glass applications, but upon reading the
legal documentation on the MyGlass website, we expect
this to change in either the near future or upon the general
public release. The MyGlass has legal documentation
prepared for Google Wallet, and if it is set up anything like
the existing Google Play Market, then a developer will need
to create a Google Wallet account and the funds will
transfer directly into the account.

7. Conclusion
With the ease of programming and the predefined API
interfaces, not to mention the sheer number of APIs
provided, Google Glass market stands to be as massive and
successful as the Android/Google Play is currently. The
methods of programming for Glass, as noted above, serve
as a breach into the new emerging mobile market, giving
developers the means to potentially make a name for
themselves, which could also prove to be quite lucrative.
Google continues to innovate with newer pursuits in mobile
computing, opening the world for the general user, allowing
them access to tools that are virtually limitless. It is
impossible to reject such innovations based on their own
merit. Glass proves these statements true and leads the
frontier in mobile computing, making the call for quality
application that much more emphatic and necessary, truly,
this is the future and for those reading, now is the time to
break out from the wires of tradition and move into the new
horizon of mobile computing.

8. References
[1] The Eclipse Foundation. (n.d.) Retrieved December 9,

2013 from the Eclipse website: http://www.eclipse.org/

[2] Oracle Inc. (n.d.) Retrieved December 9, 2013 from
the Java website: http://www.java.com/en/

[3] The Go Authors. (n.d.) Retrieved December 9, 2013
from the Go website: http://golang.org/

[4] Google Inc. (n.d.) Retrieved December 9, 2013 from
the Google Developer website:
https://developers.google.com/

[5] Google Inc. (2013, November 22) Retrieved December
9, 2013 from the Glass Developer website:
https://developers.google.com/glass/

[6] Microsoft Inc. (2008) Retrieved December 9, 2013
from the .NET website: http://www.microsoft.com/net

http://www.java.com/en/
http://www.eclipse.org/

[7] ThePHPGroup. (n.d.) Retrieved December 9, 2013
from the PHP website: http://php.net/

[8] Python Software Foundation. (n.d.) Retrieved
December 9, 2013 from the Python website:
http://www.python.org/

[9] Ruby Community (n.d.) Retrieved December 9, 2013
from the Ruby website: https://www.ruby-lang.org/en/

	1. Introduction
	2. Project requirements
	3. Development parts[4]
	3.1 Activities
	3.2 Services
	3.3 Fragments

	4. Glass environment[5]
	4.1 Menu Items
	4.2 Mirror API[5]

	5. Project
	5.1 Touch Interface
	5.2 Voice Recognition

	6. Product release
	7. Conclusion
	8. References

