
Using a Web-Based Testing Tool Repository in

Programming Course: An Empirical Study
Anurag Goswami

North Dakota State University
Computer Science Department

Fargo, USA

anurag.goswami@ndsu.edu

Gursimran S. Walia
North Dakota State University

Computer Science Department
Fargo, USA

Gursimran.walia@ndsu.edu

Sameer Abufardeh
North Dakota State University

Computer Science Department
Fargo, USA

Sameer.abufardeh@ndsu.edu

ABSTRACT

This paper highlights an important issue of the knowledge and

skill deficiency of software testing among undergraduate students

in software engineering discipline. The paper provides an

approach for integrating software testing into computer

programming course in a non-obtrusive manner. The paper

describes the use of the Web Based Repository of Software

Testing Tools (WReSTT) that can assist the instructors in

integrating the testing component into their software engineering

course and also provides the students with all the necessary

resources (tutorials, quizzes, videos etc) for them to gain general

testing knowledge, be able to apply the testing techniques, and

become proficient in the usage of testing tools. This paper

presents the design of the WReSTT, and then presents an

empirical study that was conducted in an introductory computer

programming course at North Dakota State University. The results

from the study showed that the WReSTT can be used to

significantly impact the testing knowledge gained by the students

and that the increased use of the WReSTT resulted in a better

grade for the students on their programming assignments.

Categories and Subject Descriptors

D.2.5 [Testing and Debugging]: Testing tools (e.g., data

generators, coverage testing).

General Terms

Measurement, Experimentation, Languages.

Keywords

WReSTT, Software Testing, Unit Testing, Code Coverage,

Empirical Study.

1. INTRODUCTION
Software testing continues to be a concept that plagues software

engineering students when they enter the software industry

because after their undergraduate degrees. On that note, previous

researchers have found evidence that the graduating software

engineering students and the newly hired software engineering

lack basic testing knowledge, testing ability, and the usage of

software testing tools [1-4, 8]. This has been identified both by

the industrial researchers and the academics as an important

knowledge and skill deficiency among the software engineering

students. More specifically, the researchers have shown through

studies conducted with senior-level undergraduate students that

the students do not have the knowledge of different testing

techniques, lacked the ability to use testing tool (with code

coverage in particular) and created ineffective test cases [1, 2, 3,

4, 8]. While the previous research does not provide or highlight a

specific type of testing the student’s lack, it is believed that the

testing as a whole is an important knowledge deficiency in

graduating students and is a focus of attention of this research

paper.

While there have been approaches to integrate testing into

computer programming courses at various institutions, they do not

rigorously enforce the testing in these course especially during the

introductory computer programming courses. Furthermore, when

testing is used (e.g., upper level courses), there is not enough

support for the students to expose them to the testing tools and

assist them during the usage of testing tools on their programming

assignments. While a lot of testing content is being taught in the

upper level courses or the graduate level courses at our institution,

there is a lack of focus of integrating testing early in the

curriculum. This paper describes the use of the Web Based

Repository of Software Testing Tools (WReSTT) that can assist

the instructors in integrating the testing component into their

software engineering course. The WReSTT also provides the

students with all the necessary resources (tutorials, quizzes,

videos etc) for them to gain general testing knowledge, be able to

apply the testing techniques, and become proficient in the usage

of testing tools.

The WReSTT also incorporates a collaborative and social

networking environment where the students enrolled in a class can

communicate with each other, start and contribute to the

discussion of software testing related topics, gain and compete for

the virtual points (e.g., the number of times each student visited

the testing tutorial) for testing related work, and provide greater

student involvement, cooperation, and team work through the

allocation of the virtual points. The students using the WReSTT

can browse different tutorials depending upon the programming

language employed in their course.

This paper presents the design of the WReSTT, its main features,

and the integration of WReSTT in software engineering courses

without affecting the logistics of the course. The paper presents an

empirical study that was conducted in an introductory computer

programming course at North Dakota State University. The goal

of the study was to evaluate the impact of WReSTT on the

undergraduate students acquisition of the knowledge of testing

objectives, testing techniques, their usage of testing tools, and

their proficiency on using the testing tools (in particular the Unit

testing and the Code Coverage). The results from the study

showed that the WReSTT can be used to significantly impact the

testing knowledge gained by the students and that the students are

highly likely to no use any other resource or online learning

resource if they are not exposed to the WReSTT in their courses.

The results also showed that the increased use of the WReSTT

resulted in a better grade for the students on their programming

assignments.

The rest of the paper is organized as follows. Section 2 describes

the main features of the WReSTT, along with the instructor and

the student view of the WReSTT. Section 3 describes the

experiment design, the participating students, and the data

collected during the experiment run. Section 4 presents the

analysis of the data organized around the study goals. The

discussion of results is provided in Section 5 followed by the

concluding remarks.

2. WEB-BASED REPOSITORY OF

SOFTWARE TESTING TOOLS (WReSTT)
This section provides an introduction of the WReSTT and its

main features to expose undergraduate students to the testing

methods and tools. The following subsection discusses how the

WReSTT can be used in programming courses by the instructors

(or TA’s) and by the students.

2.1 Introduction to WReSTT: Main Features
The WReSTT is designed to be able to provide online learning

resources in software testing. The main components of WReSTT

are shown in Figure 1 [5, 9] and discussed as: 1) WReSTT

provides the students with reading tutorials on a variety of

software testing concepts and methodologies. Students browse

through the testing tutorials, and evaluate their understanding of

those concepts through quizzes. 2) WReSTT also provides

students with access to the video tutorials on different testing

tools classified by category (Coverage, Metrics, Plug-ins, Test

execution, Web), by language (C++, Java, VB .Net), and by test

level (System/UI, Unit). 3) WReSTT provides a collaborative and

social networking learning environment for the students.

WReSTT allows students to upload their user profile, post

comments on the discussion board, and monitor the activity of

other students enrolled in the same class. A unique feature of

WReSTT incorporated assignment of “virtual points” to the

students (e.g., for completing a tutorial and its quiz, posting a

testing related comment related to the forum etc) in order to

increase student involvement at the individual level as well as at

the class level (by allowing students to monitor the virtual point

leaders in the same class).

2.2 Using WReSTT: Instructor View
Instructors can use the WReSTT in their courses (that have some

programming component) by creating a course (e.g., uploading

class roster and the assignment of unique ID and password to each

student) and through the course management (e.g., monitoring the

activity streams, generating student reports, and allocation of

virtual points for student activities). Figure 2 shows a selection of

screen capture (to keep anonymity) that depicts the instructor’s

interface during the course creation and the course management.

Course creation: Instructors can use WReSTT at their campus by

requesting the access from the administrators (authors) of the

WReSTT (link), who will provide the login credentials to the

instructor and will create the template for their course title. Next,

instructors can login to access their course and use the template

instructions to: 1) upload the class roster; 2) create unique login

credential for the students; 3) assign students to virtual teams; 4)

describe the rubric for the allocation of virtual points for different

student activities; 5) enable/disable pre and posttest. There is Help

menu available on the WReSTT to assist the course creation.

Course management: After the creation of the course, the

instructor can manage the course by: 1) monitoring each student’s

activity on the WReSTT (e.g., number of times each student

visited the tutorial, the time it took them to complete a particular

quiz); 2) monitor the virtual points gained by each student in the

class; 3) generate and print student reports using different

statistics related to the class (e.g., number of students completing

a particular quiz, virtual point leaders). Figure 2 shows the

instructors’ view during the course creation and management.

2.3 Using WReSTT: Student View
As mentioned earlier, students need to authenticate themselves to

access the WReSTT for their course. The WReSTT is designed to

mirror the social networking tool features to enhance student

involvement. Figure 2 (right side) shows the students view after

they login to WReSTT.

Figure 1. Design of WReSTT [5, 9]

Some of the main section of students’ interface is highlighted in

Figure 2. That is, each student can create profile, browse the

testing tutorials, take quizzes, watch videos on the testing tools,

interact with other students in the class via testing based

discussions, and monitor the active discussions, activity stream

and the virtual point leaders. In addition, depending upon the way

an instructor wants to run their course, additional virtual bonus

may be assigned for the team-based activities (e.g., all members

have to complete a quiz to get team virtual points) to foster team

collaboration using WReSTT.

3. STUDY DESIGN
The study was designed to investigate the effect of the WReSTT

on the undergraduate students’ acquisition of general testing

concepts, knowledge of testing techniques, and proficiency of

testing tool usage in an introductory computer programming

course at North Dakota State University. The study utilized a

pretest/posttest design in which the participating subjects were

pretested on their testing knowledge prior to the introduction of

the WReSTT. Next, the students worked individually to complete

programming assignments where they were asked to apply the

JUnit (a unit testing framework for the Java) and the EclEmma

(code coverage tool) testing tools using the information contained

in the WReSTT. After the completion of the assignments, the

subjects were tested again (using the same set of questions in the

pretest) to evaluate their difference in the knowledge of the testing

concepts and testing techniques and testing tools. At the

conclusion of the study, the subjects filled a survey to reflect their

experience with the use of WReSTT in the current course and

their desire to use WReSTT in future programming classes. More

details on the study design are presented in the following

paragraphs.

Study Goals: This study has two main goals. The first goal is to

analyze the impact the WReSTT had on the student’s learning of

software testing concepts and tools, and is stated formally as:

Analyze student’s pretest and posttest scores for the purpose

of evaluation with respect to the impact of WReSTT on the

increase in the knowledge acquisition of testing concepts,

techniques, and tools in the context of undergraduate students

enrolled in programming course at a large public university.

The second goal is to analyze the overall satisfaction with the

WReSTT features and its usability in a programming course:

 Analyze student’s post-study questionnaire response for the

purpose of evaluating with respect to the ease of use and

integration of WReSTT in programming course.

Participating Subjects: The participating subjects were 21

undergraduate computer science students enrolled in the

Computer Science II’2013 course at North Dakota State

University. 18 out of 21 students chose to participate in the study.

Artifacts: The students were asked to submit a written report of

the Unit and the Code Coverage testing tools and techniques

used, the test cases, the test execution results during the testing of

their code, and their understanding of the results achieved. The

artifacts were evaluated by the instructor of the course (not

involved during the design of the empirical study).

Study Procedure: The study steps are as follows:

Fig. 2 Instructor view (left side) and the student view (right side)

a) Step 1 – Pretest: A pretest was administered at the beginning

of the study. The test instrument is shown in Appendix A.

The goal of the pretest was to measure the student’s

knowledge of testing concepts and tools prior to using the

WReSTT. The questions on the pretest measured the baseline

knowledge of the testing concepts, knowledge of testing

techniques and testing tools, and the proficiency in testing

tools usage.

b) Step 2 – Training on WReSTT: Next, the subjects were

trained on how to access the WReSTT for browsing tutorials,

taking quizzes, posting and viewing discussion threads. Also,

the students were taught how to use the WReSTT for

watching testing tutorials on different testing techniques and

testing tools.

c) Step 3 – Programming Assignment Description: Using the

information in the WReSTT, the students worked

individually on their programming assignments and test their

code at the Unit level (using JUnit tool to test classes), and to

evaluate the test coverage achieved on their programs (using

EclEmma tool). The students used the tutorials on the JUnit

and the EclEmma tools to learn how to apply these tools. The

students then documented the report of the test execution

results along with the source code which was evaluated by

the course instructor (not a part of the research team).

d) Step 5 – Posttest: At the end of the course assignments, the

students were re-tested on their knowledge of testing

techniques and tools using the same instruments used during

the Step 1 (pretest). The goal of the posttest was to measure

the impact of WReSTT on the increase in testing knowledge.

e) Step 6 – Post-Study Survey: Finally, the subjects were asked

to fill a survey to evaluate the usability and the usefulness of

the WReSTT in introductory programming course. The

survey questions (shown in Appendix B) included questions

related to the student’s overall reaction to the WReSTT,

questions related to the usefulness and adequacy of the

testing tutorials and tools in WReSTT, and open ended

questions to gather feedback on improving the usage of

WReSTT in future courses .

Data Collection and Evaluation Criterion: The data includes the

student’s responses on the pretest and the posttest survey. The

responses (on pretest and posttest) were evaluated by assigning a

value representative of the adequacy of their response. More

details are provided in subsection 5.1.

The student’s responded to the survey questions using the 5-point

likert scale: 1 = Strongly Disagree, 2 = Disagree, 3 = Neither

agree nor Disagree, 4 = Agree, 5 = Strongly Agree. We treated

these scales as interval scales (rather than the ordinal scales),

following the standard practice in the social sciences []. The

survey responses for each question were averaged across all the

students and evaluated for statistical significance (i.e., whether the

average is significantly greater than the middle point of the scale).

The subject’s responses to open ended questions were collected to

help researchers better understand the results. More details are

provided in subsection 4.2

We also collected the grade received by students on the testing

assignments to correlate their perceived usefulness of WReSTT

on their grades.

4. RESULTS AND ANALYSIS
The results are organized around study goals presented in Section

3. Section 4.1 compares the results regarding the students testing

knowledge after and before using the WReSTT. Section 4.2

evaluates the students’ feedback on the use of WReSTT in

programming assignments. In addition, this section presents the

correlation between the usefulness of WReSTT against the

performance on the assignments.

4.1 Pretest vs. Posttest Results
To evaluate the impact of the WReSTT on the students’

knowledge acquisition of the testing concepts and their

proficiency of the testing tools and techniques, a comparison of

the pre-test and post-test results was performed. The students were

assigned a score representative of their responses to the questions

on the pretest and posttest. The rubric for the expected answers

for each question is shown in Appendix A that was used to

calculate the total score for each student. Next, the average score

of all the eighteen students on the pretest vs. the average score on

the posttest were compared. The result showed that the subjects,

performed better on the posttest (an average score of 6.43) as

compared to their performance on the pretest (an average score of

13.85). A one-sample ANOVA test showed that the increase in

the overall testing knowledge (measured by the increase in the

average score of subjects during the posttest when compared to

their. Pretest score) after being exposed to the WReSTT is

statistically significant (p < 0.05).

While this result in interesting, we wanted to evaluate the

usefulness of WReSTT seperately on the students’ increase in the

a) general software testing knowledge, b) testing tool usage, and

c) the proficiency level of the testing tools usage.

General testing knowledge: The student responses to the

questions 1, 2a, and 2b were evaluated during the pretest and

during the posttest. As mentioned earlier, the students were

assigned scores for each question based on the correctness of their

response (see Figure 3 for the questions and the rubric). Then, the

scores on these questions were added to indicate the student’s

general knowledge of software testing and the testing technique.

Fig. 3 General testing knowledge question and expected
answers

The average scores of the “general testing knowledge” of students

increased from an average of 0.45 during the pretest to an average

score of 2.12 during the posttest. A one-sample ANOVA test

demonstrated a significant increase in the general testing

knowledge of students (p<0.05) and a significant increase in the

number of students that were able to apply at least one particular

testing technique (based on the question 2 (b) responses) during

the posttest. Therefore, the WReSTT was able to improve the

students understanding of general testing concepts and their

ability to apply a particular technique to test the code.

Testing tool usage: The questions 3 and 4 (as shown in Figure 4)

were used to evaluate the students testing tool knowledge and its

usage. The scores for questions 3 and 4 were added to indicate

their usage of testing tools. The results showed that, on average,

the subjects knowledge and the usage of testing tools was

significantly higher during the posttest (an average of 0.58) when

compared to their pretest score (an average of 3.2) at p<0.01 level.

Furthermore, the students during the posttest were able to identify

a significantly larger number of tools for each category (i.e., Unit

testing, Functional testing, Code Coverage) when compared to

their responses during the pretest.

The students also rated their proficiency levels in using the testing

tools (part of question 4(b)). This was done to understand whether

the perception of their proficiency for specific tools also increased

(in addition to their actual ability). The students rated their

proficiency for Unit testing, functional testing, and code coverage

on a scale of 1-5 with 1-barely competent and 5-extremely

competent. The results showed that, on average, the subjects felt

more proficient in the testing tool usage (when averaged across all

the three categories for all the students) during the posttest as

compared to their proficiency of tools during the pretest. A

Paired-sample Wilcoxon Signed-Rank test to compare the average

of the ratings at pretest vs. posttest found the increase in the

perceived proficiency to be statistically significant (p = 0.012).

Next, questions 5, 6, and 7 were used to gather evidence regarding

other online resources that the students used for learn testing and

the type of information available on those resources. The students

generally did not report any other online source. Regarding

question 7, the results from a One-sample Wilcoxon Signed-Rank

test showed that the average ratings of the “benefit of using tools

to support testing of programming assignments” after using the

WReSTT (at posttest) was significantly greater than 3 (i.e.,

midpoint of the scale) at p<0.05. Furthermore, a Paired-sample

Wilcoxon Signed-Rank test revealed significant increase in the

students’ perception of benefits during the posttest when

compared to their rating at the pretest (p < 0.01).

4.2 WReSTT Survey Results
After completing the posttest, the students were asked to complete

a post-study survey that evaluated the student’s overall response

to the WReSTT, followed by more specific evaluation of the

testing tutorials in WReSTT. The results of the students ratings

(using a 5-point likert scale ranging from 1-Strongly Disagree to

5-Strongly Agree) is discussed in this subsection.

The first question in the survey collected a response (Yes/No) to

determine what percentage of the students have ever used a

learning source other than WReSTT to learn about testing

concepts and tools. Based on the response from eighteen students,

83% (fifteen) of the students indicated no use of any other

resource. This shows a lack of exposure of software testing in

introductory programming course (in particular at our institution).

Regarding the feedback on the usability of the WReSTT, students

rated the WReSTT on items 2 through 15 using a 5-point scale on

different attributes (e.g., ease of use, ease of learn, expected

functionality, clarity of information, recommendation) as shown

in Table 1. The first two columns of Table 1 show the number and

the description of the attribute being evaluated. The third column

of Table 1 reports the mean and the standard deviation (S.D.)

score from all the eighteen subjects for each attribute.

To evaluate the each attribute of WReSTT, we conducted a One-

sample Wilcoxon Signed-Rank test to determine whether the

mean ratings were significantly greater than 3 (i.e., midpoint of

the scale). The test indicates that the WReSTT received

significantly positive ratings on all fourteen attributes (i.e.,

p<0.05). The last column of Table 1 shows the p-value for each

attribute.

Next, we evaluated the student’s perception of the usefulness of

the testing tutorials in WReSTT. For this purpose, students rated

items 16 through 21 (as shown in Table 2) using a 5-point scale.

Items 16-20 measured the student’s response on usefulness of

WReSTT tutorials in terms of overall quality, quantity, and with

respect to its use on how to use the unit testing / code coverage /

functional testing tools. The average score (S.D.) of each item is

shown in Table 2. The result from a One-sample Wilcoxon

Signed-Rank test that evaluated whether the mean ratings were

significantly greater than 3 (i.e., midpoint of the scale) is shown in

the last column of Table 2. The results showed that the WReSTT

tutorials received significantly positive ratings of all the

characteristics (p <0.05).

Fig. 5 Rest of the questions

Fig. 4 Testing tool usage questions

Regarding the feedback collected from open ended questions, a

significantly large number of students would like to introduce

WReSTT in their future programming courses.

5. DISCUSSION OF RESULTS
The results from this study indicate the promise of using WReSTT

to teach software testing in introductory computer programming

courses. The students understanding of testing concepts, their

knowledge of testing techniques, their tool usage and their

perceived proficiency of the tool usage showed a significant

improvement due to the exposure to the WReSTT. The results

also show that the students had a significantly positive feedback

of the WReSTT in terms of its usefulness, its ease and clarity of

the information. Also, the results from the post-study survey

showed that the WReSTT tutorials helped them understand the

concepts and tools better and that they would not have used

testing tools if they were not exposed to the WReSTT. An

interesting result was the student’s perception that the WReSTT

helped them achieve a better grade in this class. We wanted to

evaluate if this perception was true in reality by analyzing whether

there was any positive correlation between the actual points scores

on the programming assignments by the students (where WReSTT

was used) vs. their rating of the belief that the website helped me

earn a better grade. The result from a linear regression showed a

significantly positive (p= 0.028, r2= 0.42), that the students who

had a significantly positive perception of WReSTT on a better

grade achieved higher points on their programming assignments

(where WReSTT was used).

6. CONCLUDING REMARKS
Based on these results, we would like to continue investigating

the further use of WReSTT in other software engineering courses

at NDSU and other institutions. We would also welcome

collaborations with the researchers at other institutions to help

generalize the study results. Since this was a first study of using

WReSTT at NDSU, we did not used the “virtual points” concepts

and some other social networking features (See Figure 1) in this

study. We have already begin using these features in studies that

are undergoing in the Fall 2013 semester at our institution. The

results from these studies would help us provide better

understanding of the impact of WReSTT’s collaborative learning

environment on the students learning of software testing concepts

and tools over a course of the semester.

7. ACKNOWLEDGMENTS
This work was supported in part by the National Science

Foundation under grant DUE-1225972. We would like to thank

the students who participated in the study and the reviewers of the

Table 2. Response to the usefulness of testing tutorials in WReSTT

Attribute Mean (S.D.) p-value

16 The tutorials in WReSTT helped me to better understand testing concepts
3.84 (0.68)

 <0.01

17 The tutorials in WReSTT helped me to better understand how to use unit

testing tools 3.69 (0.75)

<0.01

18 The tutorials in WReSTT helped me to better understand how to use code

coverage testing tools 3.41 (0.66)

<0.01

19 The tutorials in WReSTT helped me to better understand how to use

functional testing tools 3.36 (0.8)

<0.05

20 The number of tutorials in WReSTT is adequate 3.61 (0.76) <0.01

21 I would not have used testing tools in my project if WReSTT did not exist. 3.92 (0.75) <0.001

Table 1. Overall response to the WReSTT

Attribute Mean (S.D.) p-value

2 Overall, I am satisfied with how easy it is to use the website 3.92 (0.61) <0.01

3 It is simple to use the website 3.78 (0.69) <0.01

4 I feel comfortable using the website 3.5 (0.65) <0.01

5 It was easy to learn to use the website 3.78 (0.57) <0.01

6 I believe I became productive quickly using the website 3.35 (0.92) <0.05

7 The information (such as online help, on page messages, and other

documentation) provided with the web site is clear

4.07 (0.75) <0.01

8 It is easy to find the information I need 3.78 (0.69) <0.01

9 The information is effective in helping me complete the tasks and scenarios 3.61 (0.5) <0.01

10 The interface of the website is pleasant 3.85 (0.77) <0.01

11 I like using the interface of this website 3.64 (0.49) <0.01

12 The website has all the functions and capabilities I expect it to have 3.78 (0.84) <0.01

13 I believe that the website helped me earn a better grade 3.3 (0.65) <0.05

14 I would recommend the website to fellow students 3.71 (0.82) <0.01

15 Overall I am satisfied with the website 3.84 (0.64) <0.01

study design and the earlier version of the paper

8. REFERENCES
[1] Timothy C. Lethbridge. 2000a. Priorities for the education

and training of software engineers. J. Syst. Softw 53, 1 (July

2000), 53–71.

http://dx.doi.org/10.1016/S0164-1212

[2] Andrew Begel and Beth Simon. 2008a. Novice software

developers, all over again. In Proceedings of the Fourth

international Workshop on Computing Education Research

(ICER ’08). ACM, New York, NY, USA, 3–14.

http://dx.doi.org/10.1145/1404520.1404522 .

[3] Jeffrey C. Carver and Nicholas A. Kraft. 2011. Evaluating

the testing ability of senior-level computer science students.

In Software Engineering Education and Training (CSEE T),

2011 24th IEEE-CS Conference on. 169–178.

http://dx.doi.org/10.1109/CSEET.2011.5876084

[4] Vahid Garousi and Tan Varma. 2010. A replicated survey of

software testing practices in the Canadian province of

Alberta: What has changed from 2004 to 2009? J. Syst.

Softw. 83, 11 (Nov. 2010), 2251–2262.

http://dx.doi.org/10.1016/j.jss.2010.07.012

[5] WReSTT Team. Web-based Repository for Software Testing

Tools, 2010. http://wrestt.cis.fiu.edu/ .

[6] ACM/IEEE-CS INTERIM REVIEW TASK FORCE.

2008. Computer Science Curriculum 2008: An Interim

Revision of CS 2001.

http://www.acm.org/education/curricula/ComputerScience20

08.pdf

[7] ASTIGARRAGA, T., DOW, E., LARA, C., PREWITT, R.,

AND WARD, M. 2010. The emerging role of software

testing in curricula. In Transforming Engineering Education:

Creating Interdisciplinary Skills for Complex Global

Environments, 2010 IEEE. IEEE, Piscataway, NJ, USA, 1–

26

[8] T. C. Lethbridge, J. Diaz-Herrera, R. J. J. LeBlanc, and J. B.

Thompson. Improving software practice through education:

Challenges and future trends. In FOSE ’07: 2007 Future of

Software Engineering, pages 12–28, Washington, DC, USA,

2007. IEEE Computer Society.

[9] P. J. Clarke, A. A. Allen, T. M. King, E. L. Jones, and P.

Natesan. Using a web-based repository to integrate testing

tools into programming courses. In Proceedings of the ACM

OOPSLA 2010 Companion, SPLASH ’10, pages 193–200,

New York, NY, USA, 2010. ACM.

[10] P. J. Clarke, J. Pava, Y. Wu, and T. M. King. Collaborative

web-based learning of testing tools in se courses. In

Proceedings of the 42nd SIGCSE Conference, pages 147–

152, New York, NY, USA, 2011. ACM

Appendix A

PRETEST/POSTTEST

.

http://dx.doi.org/10.1016/S0164-1212
http://dx.doi.org/10.1145/1404520.1404522
http://dx.doi.org/10.1109/CSEET.2011.5876084
http://dx.doi.org/10.1016/j.jss.2010.07.012
http://wrestt.cis.fiu.edu/
http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://www.acm.org/education/curricula/ComputerScience2008.pdf

