
Transforming Computing Education Through Integrated Learning:
A 3D Programming Course For Undergraduate Students

Bowu Zhang1, and Mira Yun2

1Department of Mathematics and Computer Systems, Mercyhurst University, Erie, PA, USA
2Department of Computer Science & Networking, Wentworth Institute of Technology, Boston, MA, USA

Abstract— Computing is increasingly used in a wide variety
of fields, i.e., to compose music, to analyze literature and
to detect the century-old remains in archeology research.
Those interests in computing have led to a growing global
trend in the college education where students and faculty are
engaged in computer-based study of human-computer interac-
tion, digitization, advanced visualization and other research
techniques. This paper explores the integrated learning in
computing and other non-computing disciplines by looking
at an undergraduate course of 3D programming. Students
in this course can experience programming through multiple
lenses so that they can have a comprehensive understanding
of not only programming concepts, but also the knowledge
of applying the computing tools to issues in their own fields.
In particular, we demonstrate a number of student projects
from this course to show that this integrated learning equips
students with valuable tools and knowledge that will build
their skill sets, enhance their careers and prepare them for
complicated issues facing the world today.

Keywords: Computing Education, 3D Programming, Integrated
Learning

1. Introduction
Computing has played a significant role in a wide variety

of fields including mathematics, biology, chemistry, art, music
and history [1]–[7]. Nowadays almost every field incorporates
substantial work and research involving scientific computation
[8], data processing and analysis [9], and software design [10],
etc. For example, biological scientists may need computing
to analyze the protein structure in a human cell [11], while
archeology professors may use computing to estimate the
age of historic remains [12]. Today, computing enables and
inspires new ways to create and interact in every aspect of
our lives, while those non-computing fields inform how we
might use new technology to enrich our human experience.
Therefore, the computing courses constantly attracts many
students who are not CS majors but have passion for learning
useful computing tools to support interests in their primary
fields. However, traditional computing courses have been
referred by many students as abstract, difficult, and boring
[13], thus many gave up in the middle or just stayed away
from computing courses.

In this paper, we discuss the integrated learning in com-
puting and other disciplines. We keep track of the progresses
in an undergraduate computing course to see how we are

able to make the learning of computing courses enjoyable
by integrating interesting topics from a variety of fields.
The integration will allow students to gain knowledge from
distinct fields. Integrated learning is the core component of
today’s college education [14]–[16]. In this constantly chang-
ing world, high-end education should prepare students for a
life where everything is increasingly interconnected. In other
words, students should have a comprehensive understanding
of not only their own field, but also a broad knowledge of the
changing world. We will look at one undergraduate computing
course to display that how the integration complements a va-
riety of other majors, including Anthropology, Biochemistry,
Biology, Chemistry, Earth Sciences, Physics, Psychology, and
Sociology. The class of ”Introduction to 3D programming” is
a 3-credit course for non-cs majors at the Mercyhurst Univer-
sity. This course is designed to provide a broad exposure to the
field, increasing employability in a variety of settings related
to computing. Similar to most of the computing courses,
”Introduction to 3D programming” includes a final project
where students make contacts with practitioners in their field,
complete a research project, and present their work. We
will show that courses such as the 3D programming equip
students with valuable tools and knowledge that will enhance
their careers or prepare them for continued study in graduate
and post-baccalaureate professional programs. These give our
students the opportunity to cross the technology divisions, so
that students will get ready for the transdisciplinary challenges
they will face in the world ahead.

The rest of the paper is organized as follows. Section 2
presents the most related work. Sections 3 discusses how
the integrated learning is implemented in a 3D programming
course for undergraduate programs. A number of course
projects are detailed in section 4, and evaluated in terms
of integration with non-computing disciplines. Finally, we
conclude our work in section 5.

2. Related Work
The computing education has attracted attentions from

educational professionals of all stages including the early
childhood development, the elementary education, the sec-
ondary education and the high education, as computing is
increasingly used in every division of our lives. Various
methods have been discussed to stimulate student interest
in learning computing courses. Based on the course topics,
previous research on computing education can be divided into



two categories: 1) research on traditional computing courses
including programming, software design and data analysis
[17]–[19]; and 2) research on integrated computing courses
which integrates computing with other disciplines such as
art, history and biology [20]–[22]. Work on the first category
mainly aim to simplify and visualize the abstract concepts in
hard core computing courses. Authors in [23] suggested to add
more user-friendly interfaces in programming environment
to make users/students comfortable with programming. In
[24], authors evaluated the popular programming languages
used in education, and they concluded that the object-oriented
language shows superiority over other languages in computing
education, as students can easily relate the concepts to their
lives. A variety of new courses and new education tools
have been proposed in the research of the second category.
[25] introduced a new major named the art in computing
where music, visual art, and theatre are involved in the
computing education, and they reported that this new major
significantly increased participation in computing, especially
attracted students who are not necessarily strong in mathe-
matics. A 3D mapping course in Geology was introduced in
[26]. The authors demonstrated a 3D virtual geology field
trip and discussed the development of the 3D educational
environments. Similar courses have been brought in by [27],
[28] where cutting-edge techniques are employed to motivate
students learning in computing courses. In this paper, we
focus on the integrated learning in computing education. A 3D
programming course is analyzed to demonstrate how different
disciplines can be integrated into computing. Student learning
outcomes support that this integrated learning equips students
with valuable tools and knowledge that will build their skill
sets, enhance their careers and prepare them for complicated
issues facing the world today.

3. Teaching 3D Programming in Alice
The course of ”Introduction to 3D Programming” is a 3-

credit class at the Mercyhurst University. The majority of
student population come from mathematics, business intel-
ligence, music and dance. A substantial group of students do
not have any prior programming experiences. In the course,
we study the 3D programming in Alice. Alice is a open-source
programming environment to create animated movies and
videos. Different from the traditional programming languages
such as c, c++, and java, that emphasize the semantics heavily,
Alice adopts a virtual world where users can simply ”drag-
and-drop” instructions to create programs without worrying
about syntax errors. In Alice, every item is modeled as a
3D object which can be placed into the virtual world, and
every object has built-in functions and properties that can be
used in programs to let them perform operations that users
want. Users can view how the program is executed through the
animated movie, resulting in a straightforward understanding
of how the programming concepts are applied to objects in the
virtual world. Users also can access sounds, images, and texts,
enabling them to learn programming from varied perspectives.

In addition, users can create their own objects and functions
and share with the entire Alice community. In a word, Alice
makes the programming easy and interactive, and therefore
is widely used in the introductory level programming courses
[29], [30].

The programming topics discussed in this course include
objects, variables, functions, selection structure, loop struc-
ture, and mouse and keyboard events. Typically, students
have opportunities to practice every programming concept
taught by creating animated movies and simple video games.
Exercises about objects include Alice and Rabbit [31]. Exer-
cises about variables include simple mathematic operations.
Exercise about selection structure include the grading problem
[31]. Exercises about loop structure include the repetitive
song of crazy scientist [31]. Exercises about mouse and
keyboard events include the helicopter simulation problem
[31]. A final project is required at the end of semester that
integrates aspects of all programming concepts discussed and
demonstrates understanding of the synthesis among them.

Many efforts are made to set up the integrated learning in
3D programming and other seemingly unrelated disciplines.
The integration begins with the spirit of object oriented pro-
gramming, which constitutes the foundation of the Alice soft-
ware. Since everything is made visualized in the Alice virtual
world, it is easy for students to relate the programming to their
personal lives. The examples and exercises used in the class
are also based on the real world scenarios such as daily talk,
gaming, and shopping, which show students the possibility to
model every aspect of our life in 3D programming. The final
project is designed to frame opportunities for students, after
exploring course offerings, to begin a work they may never
consider before. Topics ranging from dance choreography to
biology DNA pattern recognition allow students to tailor the
programming to fit their interests. Compared with that of
other programming courses (Java, C++ or Python), student
satisfaction with the course of 3D programming is around
%10 higher. This course gains the general popularity among
non-CS major students.

4. Course Work
The course of ”Introduction to 3D Programming” em-

phasizes hands-on exercises heavily. Programming exercises
under all kinds of scenarios are assigned after learning every
new concept. Those exercises help students build the skills
and allow students to explore the increasing connections
between the programming and the life/field they are familiar
with. More importantly, students will need to complete a
final project that integrates aspects of all discussed concepts
and demonstrates understanding of the synthesis among them.
Various topics ranging from dance choreography to biology
DNA pattern recognition have been chosen in the past years.
An interesting observation is that students tend to tailor the
programming to fit their interests in their primary fields.
Music majors often prefer to include complicated sounds
effects in their projects, while mathematic majors like to



(a) (b) (c)

Fig. 1
(A) INDIVIDUAL DANCE; (B) PAIR DANCE; (C) GROUP DANCE.

play with statistics (e.g., random number question/quick math
problem). Students are motivated to apply what they learn
about programming to topics they deal with most of the
time in college. Those projects significantly enhance their
understanding in both programming and their own fields. A
number of examples projects are discussed as shown in the
following sections.

4.1 Dance Choreograph Project
Music majors and dance majors tend to dance choreog-

raphy projects. Dance movements in the projects are often
designed based on the real dance programs and implemented
by manipulating the body of human figures in Alice. Also
movements need to be adapted and timed to fit the music.
In addition, to make the dance ”flow”, transitions are often
included. The dance project often involves a number of figures
including human and animals dancing on a stage. Control
structures such as the selection and the loop statements are
often used. The basic program flow is described as follows:
There is a group of dancers on the stage. The dancers begin
to dance when the music start, and they will stop once
the music ends. We classify the dance projects into two
categories based on the number of dancers: 1) individual
dance where each dancer dances independently; 2) group
dance where dancers are implemented as a collection, and
perform similar dance movements simultaneously or in turns.
Detailed implementations are displayed below.

First, let’s focus on the individual dance program. The
program begins with adding a dancer to the virtual world from
the local gallery. We may need to adjust the camera so that
the dancer is right in front of the camera. Then in the object
tree, select the dancer and create an object method named
”dancing”. Next, add instructions to the dancing method to
let the dancer move. We may pose the legs, arms and other
parts of body to create different movements. For example, we
can let the arm swing by dragging and dropping the statement
”dancer-upper-body-left arm.turn right 1/2 revolution”, or we
can let the dancer spin by the statement ”dancer.turn right 1
revolution”. Between movements, we let the camera zoom in

and zoom out to make a special visual effect using the dummy
objects: We drop invisible dummy objects at the position
where we want the camera to be; Then let the camera move by
specifying the target as the created the dummy object. Once
we’ve made a step or two that we are pleased with, we can
make our dance method repeat itself by using a loop. Suppose
we have a dance method that works nicely for a step or two
as in figure 2

Fig. 2
INDIVIDUAL DANCING METHOD

To make it look like a real dance, we need to use some
randomness. The world has random functions that can pro-
duce random numbers within a fixed range. We can let the
dancer move a random distance forward or backward or let
him/her spin a random number of revolutions. Test the method
by dragging it to the world.my first method. Go back to
the dancing method and let the dancer repeat the routine
movements by using the loop. Here we can specify a fixed
number of iterations or have the dance method keep repeating
over and over while the music plays. One way to make the
dance repeat indefinitely is to call the dancing method within
a loop in the my first method. All we need do is to add two
lines in the world. my first method 3

To insert music into the program, we can use the ob-
ject.play() method to import existing songs or you can use
recorder to make your own dance music!

Group dancing requires synchronized movements. For ex-
ample, dancers need to turn right simultaneously, or as some



Fig. 3
REPETITION IN WORLD.MY FIRST METHOD

dancers move a leg forward, the others should move the other
leg back, and so on. An easy way to implement the group
dancing is to put all dancers in a special data structure called
list. Lists are data structures used to group and to organize
objects. Since list items can be processed one-by-one or all
at once (The control structures for all in order and for all
together correspond to these), by using lists, we can save on
writing code if we want to process similar actions on a group
of objects. What we need is to write a single dancing method
and apply it to each list item in turn rather than to write a
method for each item or having a separate call for each item.
We can access a particular object by its index in the list. To
create a list of dancers, we need to add a number dancers to
the virtual world (Fig. 4).

Fig. 4
A LIST OF DANCERS

Similar to the individual dancing method, in the group
dancing method, we just need to create a few steps. We can
do with as few as Fig. 5 and 6(a)

To apply the above the dancing method to the list, we need
to either call ”for every item in the list all together” or ”for
every item in the list all in order” as shown in the figure 6(a).
Check the dancing method to make sure there are no errors.
Then we can call the dancing method in the my first method
repeatedly to fit with the music.

Special stage light and camera movement can be adopted
to create magic stage effects. We may also insert images or
pictures of friends/families to make the program more fun.

4.2 Soccer Player Project
Mathematic majors and sport team players often dive into

sports related projects. In these projects, Alice is used to
model a common scene on the field, such as a ice hockey
game or base ball game. A typical example comes from the
soccer ball game where the user controls a soccer player to
shoot the goal. Projects that fall in this category are very

Fig. 5
DANCING METHOD OF TWO DANCERS

interactive users can enjoy playing the game by the keyboard
or the mouse while a score object is used to keep track of
the progress he or she has made. The basic program flow is
described as follows: There is(are) a (or a number of) soccer
player(s) and a goal keeper on the soccer field. The soccer
player is controlled by a set of particular keys or the mouse to
shoot the goal. The user can determine the direction the ball
kicked into and the speed that the ball will travel at, while the
direction and the distance the goal keeper jumps to defend his
goal is controlled by the computer. Player’s statistics are often
considered in the game, i.e, the chance a soccer player uses
his left foot to shoot the goal or the average distance that a ball
can travel after kicked by a particular player, which leads to
variations to the game. Random functions are often employed
to reflect the sport statistics, such as the direction the player
may kick the ball or the height the goal keeper to jump. Here
we use the random number generator in Alice to implement
the randomness in this game. In order to let player kick the
ball to the user specified direction, we first need to place
a number of invisible circles (Assume there are N circles)
which serve as targets within the gate. Then we assign each
circle a unique number ranging from [1, N ] as its ID so that
every circle represents a direction where the player can shoot
the gate. What the program does is to generate a random
integer on a scale of 1 to N , and let the soccer player shoot
the circle whose ID is equal to the random number generated.
Or the user can click on one of circles to trigger the mouse
click event which make the ball fly to that circle. The random
number is also used on the goal keeper to prevent the player
from scoring. Normally, the goal keeper can jump in 3 (or
5) directions: up, left and right (upper left, upper right), each
of which is represented by an integer from [1, 3]. Then the
program every time generates a random integer within [1, 3]
to indicate the direction the goal keeper to move, and another
random number to indicate the height to jump.

Detailed implementations are displayed below. First, add a
player and a goal keeper to the virtual world. Adjust their



(a) (b)

Fig. 6
(A) DANCING METHOD OF A LIST OF DANCERS; (B) SOCCER PLAYER.

initial positions to put them right in front of the camera.
Then drop a dummy object to label the starting position of
the ball so that the ball can be placed back for the next
game every time it is kicked off. Create a world level method
named ”playershoot” to let the user shoot the goal. In the new
method, we may let the user use the mouse or the keyboard to
choose a circle to kick the ball (invisible circle). Manipulate
the body of the player to perform the action of shooting. Let
the ball move to the goal(circle) while let the keeper jump
simultaneously to stop the ball. The method may look like
Fig. 7

Fig. 7
THE PLAYERSHOOT METHOD

We want the user to play this game a number of times.
Therefore, we add statements in the world.my first method
to call the ”playershoot” method repetitively (Fig. 8). On the
other hand, we create an object to keep track of scores the
user has got and display the value in the virtual world. Thus
another world level method is created to detect if the goal
keeper catches the ball. The value of the score object will be

Fig. 8
THE WORLD. MY FIRST METHOD OF SOCCER PLAYER PROGRAM

incremented by one if the ball is not catched. An example
method is shown in the figure below:

Fig. 9
KEEPING SCORE OF THE SOCCER PLAYER

This project can be easily modified to a multiple-player
game by assigning different players different keyboard events.
More statistical patterns can be applied to the multiple-



player game since the there might be many variations to
the collaborations among players. Professional soccer games
such FIFA World Game are based on the same set of design
principles. Note that the more players there are in the field,
the more random the result will be. This is consistent with
the probability theory that the number of possible cases
increases as the input size increases. On the other hand,
multiple story threads can be implemented in this project by
adding the selection control structures. However, this needs
careful designs of logic to differentiate the conditions for each
possible result.

5. Conclusion
In this paper, we explore the integrated learning in com-

puting courses in undergraduate programs. Integrative cours-
es encourage students to explore important topics through
multiple lenses so that they understand how to approach
complicated issues facing the world today. In particular, we
looked at one programming course for non-cs majors. Course
projects were analyzed to show that integrated learning enable
students to create their own work in a thoughtful way so
they can explore their interests, build skill sets, engage their
intellects and learn from a variety of fields.

References
[1] D. Blank, J. S. Kay, J. B. Marshall, K. O’Hara, and M. Russo, “Calico:

a multi-programming-language, multi-context framework designed for
computer science education,” in Proceedings of the 43rd ACM technical
symposium on Computer Science Education. ACM, 2012, pp. 63–68.

[2] V. Ananthanarayanan and W. Thies, “Biocoder: A programming lan-
guage for standardizing and automating biology protocols,” Journal of
biological engineering, vol. 4, no. 1, pp. 1–13, 2010.

[3] R. Libeskind-Hadas and E. Bush, “A first course in computing with
applications to biology,” Briefings in bioinformatics, vol. 14, no. 5, pp.
610–617, 2013.

[4] J. C. Rubinstein, “Perspectives on an education in computational
biology and medicine,” The Yale journal of biology and medicine,
vol. 85, no. 3, p. 331, 2012.

[5] J. Bresson, C. Agon, and G. Assayag, “Openmusic: visual program-
ming environment for music composition, analysis and research,” in
Proceedings of the 19th ACM international conference on Multimedia.
ACM, 2011, pp. 743–746.

[6] W. Scacchi, “The future of research in computer games and virtual
worlds,” Institute for Software Research, University of California,
Irvine, Irvine, 2012.

[7] R. Wille, S. Offermann, and R. Drechsler, “Syrec: A programming
language for synthesis of reversible circuits,” in System Specification
and Design Languages. Springer, 2012, pp. 207–222.

[8] P. Wallisch, M. E. Lusignan, M. D. Benayoun, T. I. Baker, A. S. Dickey,
and N. G. Hatsopoulos, MATLAB for neuroscientists: an introduction
to scientific computing in MATLAB. Academic Press, 2013.

[9] F. Erickson, “Qualitative research methods for science education,” in
Second international handbook of science education. Springer, 2012,
pp. 1451–1469.

[10] Y. Cai, D. Iannuzzi, and S. Wong, “Leveraging design structure matrices
in software design education,” in Software Engineering Education and
Training (CSEE&T), 2011 24th IEEE-CS Conference on. IEEE, 2011,
pp. 179–188.

[11] E. H. Kellogg, A. Leaver-Fay, and D. Baker, “Role of conformational
sampling in computing mutation-induced changes in protein struc-
ture and stability,” Proteins: Structure, Function, and Bioinformatics,
vol. 79, no. 3, pp. 830–838, 2011.

[12] Y. Kondo, S. Kadowaki, H. Kato, M. Naganuma, A. Ono, K. Sano, and
Y. Nishiaki, “Network computing for archaeology: a case study from
the replacement of neanderthals by modern humans database project,”
Revive the Past, p. 217, 2011.

[13] R. Pau, W. Hall, and M. Grace, “Its boring: female students experience
of studying ict and computing,” School Science Review, vol. 92, no.
341, pp. 89–94, 2011.

[14] L. D. Fink, Creating significant learning experiences: An integrated
approach to designing college courses. John Wiley & Sons, 2013.

[15] M. A. Honey, M. Hilton, et al., Learning science through computer
games and simulations. National Academies Press, 2011.

[16] J. Duffy, L. Barrington, C. West, M. Heredia, and C. Barry, “Service-
learning integrated throughout a college of engineering (slice).” Ad-
vances in Engineering Education, vol. 2, no. 4, 2011.

[17] C. A. Shaffer, T. L. Naps, and E. Fouh, “Truly interactive textbooks
for computer science education,” in Proceedings of the 6th Program
Visualization Workshop, 2011, pp. 97–103.

[18] J. B. Fenwick Jr, B. L. Kurtz, and J. Hollingsworth, “Teaching mo-
bile computing and developing software to support computer science
education,” in Proceedings of the 42nd ACM technical symposium on
Computer science education. ACM, 2011, pp. 589–594.

[19] M. Sahami, M. Guzdial, A. McGettrick, and S. Roach, “Setting the
stage for computing curricula 2013: computer science–report from the
acm/ieee-cs joint task force,” in Proceedings of the 42nd ACM technical
symposium on Computer science education. ACM, 2011, pp. 161–162.

[20] A. Schäfer, J. Holz, T. Leonhardt, U. Schroeder, P. Brauner, and
M. Ziefle, “From boring to scoring–a collaborative serious game
for learning and practicing mathematical logic for computer science
education,” Computer Science Education, vol. 23, no. 2, pp. 87–111,
2013.

[21] L. Ma, J. Ferguson, M. Roper, and M. Wood, “Investigating and improv-
ing the models of programming concepts held by novice programmers,”
Computer Science Education, vol. 21, no. 1, pp. 57–80, 2011.

[22] J. B. Labov, A. H. Reid, and K. R. Yamamoto, “Integrated biology
and undergraduate science education: a new biology education for the
twenty-first century?” CBE-Life Sciences Education, vol. 9, no. 1, pp.
10–16, 2010.

[23] O. Shaer and E. Hornecker, “Tangible user interfaces: past, present,
and future directions,” Foundations and Trends in Human-Computer
Interaction, vol. 3, no. 1–2, pp. 1–137, 2010.

[24] M. S. Horn, E. T. Solovey, R. J. Crouser, and R. J. Jacob, “Comparing
the use of tangible and graphical programming languages for informal
science education,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 2009, pp. 975–984.

[25] B. Manaris, R. McCauley, M. Mazzone, and W. Bares, “Computing in
the arts: a model curriculum,” in Proceedings of the 45th ACM technical
symposium on Computer science education. ACM, 2014, pp. 451–456.

[26] S. J. Whitmeyer, “Community mapping in geology education and re-
search: How digital field methods empower student creation of accurate
geologic maps,” Geological Society of America Special Papers, vol.
486, pp. 171–174, 2012.

[27] S. Bogaerts, K. Burke, and E. Stahlberg, “Integrating parallel and
distributed computing into undergraduate courses at all levels,” in First
NSF/TCPP Workshop on Parallel and Distributed Computing Education
(EduPar-11), Anchorage, AK, 2011.

[28] Y. Khmelevsky and V. Voytenko, “Cloud computing infrastructure
prototype for university education and research,” in Proceedings of the
15th Western Canadian Conference on Computing Education. ACM,
2010, p. 8.

[29] W. P. Dann, S. Cooper, and R. Pausch, Learning to Program with Alice
(w/CD ROM). Prentice Hall Press, 2011.

[30] T. Daly, “Minimizing to maximize: an initial attempt at teaching
introductory programming using alice,” Journal of Computing Sciences
in Colleges, vol. 26, no. 5, pp. 23–30, 2011.

[31] J. Adams, Alice in Action: Computing Through Animation. Cengage
Learning, 2006.


