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Abstract—Every computer science instructor would like to
have quizzes which can be delivered online, with the answers
captured and marked automatically. Online quizzes are useful
in traditional lecture courses, more useful in online courses
and extremely useful in massively online open courses (MOOC).
While multiple choice quizzes are already widely used, they are
limited. In particular, they are often not effective in evaluating
procedural mastery, e.g., tracing a C program. We present
CQG, a novel online quiz generation framework focusing on
evaluation of procedural mastery. The framework includes code
and detailed processes for the development of new questions and
new question types. The question type development process is
based on a reference architecture and a verification procedure
aimed at minimizing server crashes and marking errors. CQG
has been used in first, second and third-year courses. Twenty-
three quizzes have been developed, focusing on code tracing in
C, C++, Java and Python, on procedures commonly taught in
computer networking courses—such as computing a Hamming
code—and on the classic encryption and decryption algorithms.
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I. INTRODUCTION

Online quizzes relieve the instructor of the tedium of
marking exercises: every instructor’s dream. In courses with
a traditional lecture format, online quizzes are helpful, espe-
cially if the class is large. In courses with online delivery,
online quizzes are a perfect fit. We believe that the biggest
impediment to the widespread use of massively open online
courses (MOOC) is the development of much better online
evaluation.

Online quizzes are in use today, primarily in two formats.
Multiple choice quizzes are easy to create and deliver and,
while limited, are effective for some skill evaluations. At the
other extreme are sophisticated online simulations or labs. This
approach provides impressive capabilities but is expensive to
develop, deliver and maintain.

We present Computational Quiz Generation (CQG), a web
application framework exploiting the opportunity between
multiple choice and online labs/simulations. With this ap-
proach, there are four fundamental steps:

1) The instructor selects a computation.
2) The instructor creates a question, in template form,

by replacing one or more items with placeholders. We

call the placeholders “hotspots” and say that this step
“activates the computation.”

3) The student fills in the hotspots, producing a completed
template.

4) The application automatically checks the student solu-
tion by performing the computation on the completed
template.

We illustrate these steps with a well-known procedure:
adding a column of integers. Figure 1(a) contains a completed
addition problem. In Figure 1(b) the two digits in the sum
have been replaced by hotspots a and b. The student provides
values for a and b; obviously, the solution is correct if and
only if a = 7 and b = 0

This simple example illustrates several important points
about the CQG procedure:

1) So called “backward questions” are possible, where the
hotspots are inputs to the computation. Note that, in a
backward question, the correct answer may differ from
the original. For example, in Figure 1(c), the solution
c = 6 and d = 4 is also correct.

2) While step 2 guarantees that the question is solvable,
many selections of digits and hotspots are not solvable,
as shown in Figure 1(d).

3) Step 4 requires answer checking not answer generation;
the latter is often much harder.

4) The complete computation and the templates derived
from it form an abstraction hierarchy. Figures 1(b) and
(c) are more abstract than Figure 1(a). Figure 1(e) is
more abstract than Figures 1(a–d).

CQG is a web application implemented with HTML forms
technology. Each question is presented as a template. The
student provides answers in HTML input elements, such as
text boxes and pull-down lists, and clicks a “check” button.
CQG checks the completed template and issues a message:
“correct” or “incorrect”.

Section 2 illustrates CQG from the student point of view,
with detailed discussion of four questions and three question
types. Section 3 explains how to use CQG to generate many
questions from a single original computation and how to
produce reusable quizzes from a large pool of questions.
Section 4 presents the main server design goals, and discusses



2 3
4 7
7 0

(a) Original

2 3
4 7
a b

(b) Traditional

2 c
4 d
7 0

(c) Backward

2 0
4 d
7 3

(d) Unsolvable

2 c
4 d
a b

(e) Abstract

Fig. 1. Question generation steps: adding a column of integers

both the server failures encountered to date and the methods
developed to eliminate those failures. Section 5 summarizes
our experience with CQG. Section 6 presents the related work
in quiz generation in computer science.

II. STUDENT VIEW

In the CQG system, a quiz consists of a list of questions.
Each question has a question type; fourteen question types are
currently provided.

A. Active code reading

Many instructors believe that students would write better
code if they spent more time reading code; many instructors
already do ask students to read code. Unfortunately, the
reading tends to be unfocused and little is learned. We lack
precise goals and practical evaluation mechanisms for code
understanding. Many students simply do not know how to
learn much about a program by reading it.

Active code reading is a special case of active learning.
Figure 2(a) shows a question of type Input/output, designed
to support active code reading. On the left side is a complete
C program; on the right are screen cells for command-line
arguments (not used in this question), standard input and
standard output. The student must complete the text field in
the standard output cell and press Check answer. The answer
is correct if the standard output shown on the screen, including
the textbox value, is identical to the standard output from an
actual execution.

(a) Minimum of two integers: forward

(b) Linear search: backward

(c) Binary search: code coverage

Fig. 2. The CQG application: Code Activator question types



Fig. 3. The CQG application: Hamming Code question type

Figure 2(b) shows an Input/output question focusing on
linear search using “slices” of C arrays. In the call to find,
the student may alter only the displacement d and length n of
the slice b[d..d+n−1]. The student is asked to complete an
invocation of find such that the value 7 is located in position
1 of the slice. In a correct answer d = 2 and n is 2 or 3.

Figure 2(c) illustrates the Bullseye question type. Again,
active code reading is the goal. There are two changes in
screen layout from Input/output: (1) there is no standard output
cell and (2) there are one or more highlighted lines in the
code. The student must complete the text fields such that
each highlighted line is executed at least once. In Figure 2(c),
there are four highlighted lines. The function main invokes
binsearch twice, with a textbox for the target element x.
The net effect is that the student must choose two x values
which achieve 100% statement coverage of binsearch.

CQG supports a third active code reading question type.
With Find-the-failure, the code cell contains a specification of
a function F , a purposely faulty implementation of F , and
an invocation of F . The student must supply failure-revealing
values, i.e., values which cause the standard output to be
incorrect with respect to the specification.

While C is used in the examples in this section, C++, Java,
and Python are also supported.

B. A Hamming code question type

CQG question types need not be based on programming
language code, as shown by the Hamming question type in
Figure 3. In a Hamming codeword, the bits in positions
1, 2, 4, 8, . . . are check bits; the other bits are message bits. The
check bits are computed using a generalized parity scheme. In
Figure 3, the student has used the pull-down lists to enter the
first three of the four check bits. The answer is correct if the
completed form is a correct Hamming code.

C. Quiz modes

The tool is designed for two types of quiz: practice and
marked.

1) In a practice quiz, the student is informed immediately
whether his/her answer is correct. No record is kept of
the student’s work.

2) In a marked quiz, the student must log in before be-
ginning the quiz. While no immediate feedback is given
regarding the correctness of his/her answers, the answers
to each question are logged. Marks are computed auto-
matically from the log.

III. QUESTION AUTHOR VIEW

Our goal is to develop quizzes which are usable by students
side-by-side in a lab and reusable by students term by term.
Such quizzes require a large pool of questions. Creating
good automated quiz questions is hard, requiring skill and
experience, as well as refinement through repeated use and
improvement. Many instructors have the ability and desire to
develop such questions but do not have enough time unless
the questions can be generated.

A. Question generation from templates

Question generation in CQG is based on templates. For ex-
ample, the question shown in Figure 2(a) was generated from
the template shown in Figure 4. Generation is implemented in
Python; in actual use, the question author assigns the values
shown in Figure 4 to Python variables. The C code is separated
into global code and main code to make it easier to generate
the extra code occasionally needed to handle answer checking.
Following the code templates are templates for command-line
arguments, standard input and standard output. Each of the
five templates can contain a mixture of plain text and markers
for hot spots: locations which might contain a text field in a
delivered question. In Figure 4, the markers $x0, $x1, and
$y0 are used; a marker can be any string which does not
already occur in the templates.

The list of tuples in Figure 4 specifies how the hot spots are
to be filled in: with a string or numeric constant, or with None.
The latter indicates that the hot spot should appear as a text
field. Since there are five entries in the tuple list, this template
will generate five questions. The question in Figure 2(a) was
generated from the tuple [1,2,None].

The third tuple, [None,None,1], generates a backward
question. The standard input contains a textbox for each of
a and b and the standard output (1) is provided; the student
must supply a and b values such that the output is 1. Forward
questions test procedural mastery in a straightforward way.
With patience and knowledge of C, any forward question can
be answered correctly. Backward questions often require more
sophisticated thinking. Viewed another way, while CQG could
generate the answer for any forward Input/output question,
generating answers for backward questions is an undecidable
problem. Because CQG checks only completed templates, the
undecidability of answer generation is not an issue.



Global code
#include <stdio.h>

Main code
int a,b;
scanf("%d",&a);
scanf("%d",&b);
if (a < b)

printf("Minimum: %d\n", a);
else

printf("Minimum: %d\n", a);

Command-line arguments

Standard input
$x0
$x1

Standard output
Minimum: $y0

Tuple list
[1,2,None]
[9,3,None]
[None,None,1]
[None,None,20]
[None,None,-2]

Fig. 4. Question template for Input-output

Figure 4 illustrates one use of the template abstraction
hierarchy. Each CQG question is a template to be completed
by the student. Each question template, such as the one shown
in Figure 4, is a more general template, completed partially
and repeatedly by the author.

The question in Figure 2(b) was generated from a template
with four hotspots: the three parameters to find plus the
return value in the standard output: [x,d,n,y]. From that tem-
plate, the tuple [7,None,None,1] generated the question
in Figure 2(b). Dozens of four-tuples can be generated with
cut-and-paste in a few minutes. For example, in increasing
order of difficulty are forward questions (1) with d = 0 and
n = 0, (2) with one of d and n non-zero, and (3) with both d
and n non-zero.

The question in Figure 2(c) was generated from a tem-
plate with six hotspots: one for each of the four tar-
get lines and the target elements in each of the two
binsearch invocations. From that template, the tuple
[True,True,True,True,None,None] generated the
question in Figure 2(c). Easy questions contain only a single
targeted line while harder questions include more targeted
lines.

The question in Figure 3 was generated from a significantly
different kind of template. Here, each template contains one

message bitstring, and a list of hotspot indexes for each
generated question. The indexes are (a) one-relative and (b)
refer to the code word generated from the message bitstring,
not the message itself. The forward question in Figure 2(d)
was generated from the message ’0101010’ and index list
[1,2,4,8]. Easy questions are forward and contain very
few hotspots. While it is easy to generate a few Hamming
Code questions by hand, the template format makes tuple
generation attractive. Because the template file is written in
Python, arbitrary Python code can be embedded. Consider the
Python function g(m,n) which takes message string m and
generates all index lists of length n into the code word. This
function is easy to implement in Python, and can be used to
generate large numbers of Hamming questions.

B. Quiz specification with random selection

Support is provided for packaging questions in quizzes. The
author can simply provide a list of questions, along with a
mark for each; each student will see the same quiz. Given a
sufficient collection of templates, however, it is easy to create
a “cheat-proof” quiz, where copying from a neighbor is no
help at all. To accomplish this, the author specifies a list of
question groups. Each group consists of a set of pedagogically
equivalent questions and a number N , indicating the number
of questions to be randomly sampled from the group. Each
time the quiz is begun by a student, the sampling is done
again.

Consider a quiz constructed from the five questions gener-
ated from the template in Figure 4. Suppose that the author
chooses two groups: the two “forward” questions and the
three “backward” questions. A two-question quiz could be
constructed by selecting one question from each of the two
groups. Each time a student begins the quiz, he or she will
receive one of the six possible quizzes.

CQG automatically collects data on student performance
including each submitted answer and the time spent on the
question.

IV. DESIGN AND VERIFICATION

A. Design goals

Aside from fast question generation and reasonably fast
question type development, there are three interdependent
CQG design goals:

1) Minimal by design. We use no clip art, no JPEG images
and no animation. Our intention is to focus the student’s
attention entirely on the activated computation itself.

2) Low server load. A new question retrieved from the
server typically contains a few hundred bytes. A client
answer submitted to the server is typically under 100
bytes. Answer checking is usually very fast. For exam-
ple, in a C Input/output question, the code is precom-
piled. The Hamming answer checking is very fast for
the short bitstrings appropriate for quiz questions.

3) Secure. CQG has been designed to be secure against
attack because it is certain that it will be attacked.
HTML forms [1] are used with no client-side embedded



code, e.g., no Javascript. HTML pages are generated on
the server side using the web2py [2] framework which
provides good support for secure servers.
All answers are type checked to avoid failures during
answer checking. For example, in an Input/output ques-
tion, textbox entries are restricted to string and numeric
constants, making the answer checking immune to code
insertion attacks. Hamming questions use pulldown lists
offering 0 and 1 only. In both question types, the
restrictions are checked server side, to protect against
hacking of HTML GET/POST parameters.

B. Question type and question template verification

As in all software projects, CQG has seen a number of
runtime failures. While the software is not safety-critical, the
failures are costly. The 24-by-7 availability of online quizzes is
lost; failures during marked quizzes are especially problematic.

We focus on failures due to (1) faults in a question type
implementation and (2) faults in a question template. As
is common in Python code, question type implementations
make extensive use of nested lists and dictionaries. Almost
all failures were due to list or dictionary dereferencing errors.

We have attacked question type implementation failures
with active code reviews. In each source file, each list or
dictionary dereference is considered. The reviewer is asked
to prove, informally, that the dereference is guaranteed to be
legal. Usually the proof cannot be carried out unless certain
preconditions are present. In practice, the proofs are usually
short and simple. Most of the effort is consumed by writing
and maintaining the preconditions.

Most template failures appeared as questions which were
either unsafe for one or more answers, or unsolvable. For
example, the question shown in Figure 2(b) is unsafe. Because
array b has 5 elements, if a student enters, e.g., 100 in the first
textbox, the program will attempt to reference addresses far
outside the memory allocated for b. As a result, the behaviour
of the code is unpredictable. On the other hand, if the author
changes the standard output value to, e.g., 2, then the question
is unsolvable. In simple templates with just a few tuples, the
generated questions are usually safe and solvable. In complex
questions with a lot of tuples, we often see a few unsafe or
unsolvable questions.

To ensure that questions are solvable, we usually use the
approach illustrated in Figure 1: each question is derived
from a solved computation by adding hotspots. While it is
relatively easy to avoid unsolvable questions, unsafe questions
are problematic. In particular, for each question type, a process
for demonstrating question safety must be developed. In the
case of C Input/output questions, the template author must
prove, typically manually, that any generated question will
be safe. Recall that the question in Figure 2(b) is unsafe
because entries in the first (slice displacement) or second (slice
length) textbox may cause dereferencing errors. The template
author can avoid these problems by (1) activating only one
of the displacement and length fields in any given question
and (2) using a list box rather than a text box to restrict the

displacement and length to safe values. Of course, with C++,
Java, or Python questions, exception handlers can be used to
achieve safety more elegantly.

With the Hamming question type, safety is guaranteed. The
generator checks that the message is a non-empty bitstring
and that the indexes are in range. Answers are provided using
listboxes offering only bit values, making every generated
question safe.

V. CLASSROOM EXPERIENCE

CQG has been used in four different courses at the Univer-
sity of Victoria:

1) CSc 111—Fundamentals of Programming wih Engineer-
ing Examples.

2) SEng 265—Software Development Methods.
3) SEng 360—Security Engineering.
4) CSc 361—Computer Communications and Networks.

For CSc 111 and SEng 265, there are eight quizzes based on
the active code reading question types using C,covering the
following topics:

1) Loops. The first quiz covers for, while, break, and
continue.

2) Parameter passing. Many of the students have a Java
background, where the language forces call-by-reference
for objects and call-by-value for primitives. Conse-
quently, they struggle with the use of * and &.

3) Pointers and arrays. Even for experienced programmers,
there are misunderstandings on these topics.

4) String libraries. This quiz covers the use and sample
implementations of the most popular functions.

5) Linked lists. The standard insertion, deletion, and search
algorithms are covered.

In CSc 111, the quizzes are distributed across the term; In
SEng 265, they are completed in the first four weeks.

For SEng 265, there are also four quizzes based on the active
code reading question types using Python:

1) Lists. List creation, including list comprehension and list
slices, are covered.

2) Control structures. The standard constructs are covered,
focusing on looping over objects supporting iteration,
such as lists.

3) Functional features. The filter, map, and reduce
functions are covered, as well as lambda expressions.

4) Regular expressions. There are two quizzes on regular
expressions, covering (1) simple matching and (2) string
parsing.

In SEng 265, for example, the same approach scheme was
used for each quiz. In each quiz, there were 20 questions;
each question was selected randomly from a group with at
least 25 questions. The quiz was made available for practice
on Monday. Students took the quiz as many times as they
liked. In the lab on Thursday the quiz was taken for a mark,
with some additional questions and a 30-minute time limit. In
the most recent offering of SEng 265, students were required



to develop their own CQG questions, focusing on n2 sorting
algorithms in C.

In SEng 360, there are five quizzes covering the Caesar, Sub-
stitution, Columnar Transposition, Vernam, Book, and RSA
(with very small keys) encryption and decryption algorithms.
Cryptanalysis using letter, digram and trigram frequencies is
also covered.

In CSc 361, in addition to the Hamming question type shown
in Figure 2(d), five question types were developed for the Fall
2012 offering:

1) CRC. The cyclic redundancy check procedure used for
error detection in Ethernet packets is covered. This
procedure uses a specialized binary long division.

2) FDB. The algorithm used to implement packet forward-
ing in Ethernet switches is covered.

3) Dijkstra. Knowledge of Dijkstra’s shortest path algo-
rithm is evaluated. No code is shown on the display.
Instead, the student must provide the intermediate short-
est path results for each iteration of the algorithm.

4) IP address. A pair of IP addresses and a subnet mask
are provided; the student must determine whether the
addresses are on the same subnet.

5) NAT. The algorithm used to implement the network
address translation used in home routers is covered.

The CSc 361 question types show the variety of procedural
skills which can be evaluated using CQG. In five previous
offerings, these procedures were presented in lecture and then
evaluated on exams. In the Fall 2012 offering, after CQG
practice, the students performed substantially better on the
exams.

VI. RELATED WORK

Code Activator, a CQG predecessor, offered just the three
active code reading applications: Input/output, Bullseye, and
Find-the-failure [3], [4]. CQG improves on Code Activator in
three important ways:

1) After using the Code Activator application, we real-
ized the potential for a generalization: from individual
product to product line. We significantly redesigned the
system to make question type a plugin and implemented
the six computer network question types.

2) We developed the question and the question type verifi-
cation processes.

3) We used CQG in three more offerings of SENG 265 and
in CSC 361, developing many new questions.

The psychology literature contains reports that active re-
trieval is a more effective learning strategy than simple rep-
etition [5]. Industrial software reviews have been shown to
benefit from a question-based, active-learning approach [6].
Active learning has long been advocated in the Computer
Science education community [7], [8]. A variety of approaches
have been used to engage students. Liu has shown how to
improve learning outcomes by replacing traditional lectures
with a 50/50 split between lectures and question-based work
sheets [9]. Wu’s castle [10] is a graphical role-playing game

for teaching students about the execution behaviour of loops.
Students can set various loop parameters, e.g., index start and
end values. To retain student interest, execution is carried out
by animated characters. With PeerWise [11], a web-based tool
for active learning, students collaboratively create multiple
choice questions. Use of the tool correlates positively with
later exam performance. Peer instruction [12], long used in
physics instruction, was adapted to programming courses in
Java. Clickers are used in lecture to answer questions focusing
on previously assigned readings and exercises.

Some approaches to active learning incorporate automated
checking of student work. GraphPad [13] is a web-based
tool aimed at graph data structures. Students draw graphs
which are compared to the instructor’s solution automatically
using a graph isomorphism algorithm. The tool also captures
student interactions at the pen-stroke level for later study by
the instructor. Kumar [14] presents a web-based tutor aimed
at teaching C++ pointers. The tutor presents C++ code with
a pointer error; the student must identify the variable and
line number of the error. Both practice and marked mode are
supported. The tutor is part of the problets framework [15].

With ProgTest [16], A student implements a program ac-
cording to a specification. The program’s correctness is auto-
matically evaluated by running it against unit tests provided
by the instructor.

VII. CONCLUSIONS

In lecture-based, online and MOOC courses, it is very useful
to have online quizzes. CQG is a novel framework for develop-
ing online quizzes using template-based questions to evaluate
procedural mastery. The CGQ framework includes detailed
development processes for questions and for question types.
Fourteen question types have been developed to date. CQG
quizzes have been effective in evaluating procedural mastery
in active code reading, encryption/decryption algorithms, and
a variety of computer networking tasks.
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