THE EFFECT OF CHANGING PROGRAMMING LANGUAGE TO STUDENT
SUCCESSIN UNDERGRADUATE COMPUTER SCIENCE CURRICULUM
Ebru Celikel Cankaya
University of Texas at Dallas, Richardson, TX, USA
{ebru.cankaya@utdallas.edu}

Abstract- . We measure and compare the effects of changiagptbgramming language in
introductory level courses (Computer Science | Bphéh undergraduate Computer Science (CS)
curriculum. The study presents the example of Usitieof Texas at Dallas (UTD) case, where we
present the results of two approaches: Approachdrevboth CS | and CS Il courses are taught in
Java, and Aprroach 2 where CS | is taught in CHd, @S Il in Java. The paper presents the data
collected from four consecutive semesters and aesalgnd compares the effect of using different
programming languages on student success, as svdllop rates. The results show that changing
the programming language in consecutive sequeridagra@ductory level undergraduate courses in
CS curriculum do not adversely affect the studemtggmance, and in some presented cases it even
helps students score better. Also, we find that¢hange causes once an improvement, and another
time a deterioration in the drop rate, which sutgydise requirement for more data to be collected
in coming semesters.

Key Words- Programming language, CS I, CS II, C++, Java, wgrdduate curriculum.

1. INTRODUCTION

As any education in a specific field of science WoWomputer Science education also
takes enthusiasm, dedication, an ability to hawyéical thinking skills and to use them properly.
Therefore, it gets utterly important to attract aethin students to this demanding major in cobege
and universities. There are factors that obstradram achieving this goal: Ironically, we need to
employ proven to have worked methods as otherwidé&/too costly. In the meantime, we need
to be open to trying new methods so as to seeeif thork for us. Moreover, we need to repeat
trying a new method several semesters to obsemgstency and to determine if the result (either
appearing to be an improvement or decline). Theie tradeoff behind all these as we can hardly
recover from any losses that took place.

This study focuses on the effect of changing theg@mming language in introductory level
courses at undergraduate Computer Science cumictdithe success of students, and therefore to
the retention rate. It presents the results ofsaresters long study obtained at introductory level
programming courses at undergraduate level at Wsityeof Texas at Dallas (UTD) Department of
Computer Science. Specifically, we measure thecetieteaching CS | and CSII courses as once
both in Java, then as CS | in C++ and CS Il in J&Va compare the outcomes based on the
students’ success rates per assessment and seshdinging the programming language has no
significant effect on the performance of studehtt is measured in numeric grade. Furthermore,
the results also show that the change in the progiiag language had no significant effect on the
overall retention rate for these students.

The rest of this paper is organized as followsségtion 2, we present similar efforts that are
adopted in higher education institutes nationwidd aven internationally that aim at improving
Computer Science education in undergraduate leveledl as keeping the retention rates high.
Section 3 shows in detail the outcomes we obtafnesh the data gathered from totally four
consecutive semesters at UTD Computer Science Depat. Section 4 concludes the work and
presents some insight on future work to expanctineent study.

2. BACKGROUND AND MOTIVATION

The effect of changing the programming languageinimoductory level courses at
undergraduate Computer Science curriculum has tdicensequences as changes in student
success, and the retention rate. To improve reteramong CS students, several methods have
been introduced and are being applied. As mentiométkrature: Some of these efforts focus on a
particular group such as minorities, women (Hair#13), needy students, etc. Among these
methods lie such activities as organizing compuéated workshops for prospective students at
high school - or even at middle school - level sat tthey can play, program, and enjoy using
computers and hopefully develop interest towardaputer science (Robinson, Pérez-Quifiones,
2014, Yardi 2007), or taking freshmen CS major shigl to targeted conferences, such as the
Grace Hopper Celebration of Women in Computing éd&do, Judson, 2014), or providing extra
help to students via mentoring programs (Brown, r¥u2014), incorporating a peer led team
learning (PLTL) scheme that involves participatstgdents into small groups (4-8 students) to
meet regularly for additional problem solving sessiin the lead of a peer leader (Horwitz et al.,
2009). Other scholar work focuses on developingatdmnds among CS majors to nourish and
reinforce community identity (Crenshaw et al., 2008et another approach is to change the
curriculum, such as incorporating a theme basedoapp and supporting hands-on labs (Barr,
2012).

Some of these methods are general enough to get Ibetention rates in almost any major in
Universities. There are also more specific actimescan take such as choosing a programming
language that will engage and keep student intémgstogramming. Newhall et al. 2014 presents
the successful results they have obtained by chgntiie programming language from several
years in C, then one year in Java, and afterwadigptang Python in Swarthmore College.
Similarly, we present the effect of programming gdaage on student success, though we
specifically analyze changing programming languiagiae two introductory level CS courses: CS
Iand CS Il at UTD.

All of the above mentioned methods have been apgliecessfully and yielded promising results
in improving student retention rates in undergragluas well as graduate levels. In this work, in
addition to the eventual goal of improving retentrates, we also focus purely on student success:
We investigate if exposing students to two différprogramming languages, namely C++ and
Java, at introductory level programming sequencdergraduate courses CS | and CS Il, or
covering both courses (CS | and CS Il) in one simgbgramming language (in Java) yields better
performance results. For this, we use student stsbeemeasure of performance.

3. EXPERIMENTAL WORK AND RESULTS
We base our experimental results on the dataatetleon four consecutive semesters at
two undergraduate introductory level CS major cesitas CS | and CS Il at University of Texas at

Dallas (UTD) Department of Computer Science.

Table 1: The programming languages used for eacha®8 CS Il courses during four consecutive
semesters.

Preceding CS I CS1I Method
Fall 2012 Java Java Approach 1
Spring 2013 CHt Java Approach 2
Fall 2013 C++ Java Approach 2
Spring 2014 C++ Java Approach 2

As seen in Table 1, at first Java was used asrttgrgamming language for teaching both CS | and
CS 1l introductory level undergraduate courses @l 2012, Then, starting with Spring 2013,
during four consecutive semesters, where Precediid column indicates the CS | level course

that students needed to take as a prerequisit@Sdt. For the sake of ease of reference, we define
and refer to the following labels for two separapproaches: Approach 1: Both CS | and CS Il are
taught in Java (only in Fall 2012). Approach 2: [0S taught in C++ and CS Il is taught in Java
(starting with Spring 2013, continuously throughiBg 2014).

Deciding which programming language to use is adepental level decision and the reason
behind choosing Java (and C++) is to help studgsitexposed to an object oriented programming
language so as to learn fundamental CS conceptsreasd in a popular way (rather than
conventional procedural languages).

It should also be noted that the main focus of @&d CS Il courses is to teach fundamental CS
concepts and a programming language is used asaasnte help program sample code while
teaching these topics. According to UTD DepartmahtComputer Science course curriculum
(UTD Course curriculum URL, 2014), the CS | couis¢roduces fundamental concepts as
introduction to object-oriented software analysissign, and development, classes and objects,
object composition and polymorphism, sorting, seiag, recursion, strings using core classes,
inheritance and interfaces, and Graphical Userfates. The CS Il course teaches more advanced
topics as exceptions and number formatting, fi implementation of primitive data structures -
including linked lists, stacks, queues, and binaegs -, advanced data manipulation using core
classes, and introduction to multi-threading, nmdidlia, and networking.

To examine how students perform under each approachApproach | and Approach I, we
measure student performance (based on numeric greidé 100) per semester. Figure 1 illustrates
these performance values.

iU0.UU e >
PAS
80.00 f—"ﬁv === =7.—;.;-1‘ﬂ:=\ = = —=
o .
60.00 .
=M= Cnring 2012
40.00
Fall 2013
20.00 = S0rING 2014
n.00
Examl ExamZ Exam3 Finai AW 1 HWZ HW3 HwW4 HWD Project Overaii
Grade Grade

Figure 1. Plot for average student performanceapsessment for each semester.

According to Figure 1, student success rates uAgproach 1 (in Fall 2012, when both CS | and
CS Il are taught in Java) outperform Approach 2Sjming 2013 through Spring 2014, when CS |
is taught in C++ and CS Il in Java) only in theafirexam assessment type. For all other
assessments, students either perform the lowest éygproach 1, or their grades are better at least
in one of the Approach 2 based semesters. It shoeilldoted that in Figure 1, some assessment
scores are not applicable to all semesters, (ssdhere is no Exam 3 in Spring 2013 and Fall
2013, and for the Spring 2014 semester, some graesot available yet as the semester still
continues as of March 2014).

Table 2: Average student performance data per ste®es for each semester.

Semester |#of students| Examl | Exam2 | Exam3 Final HW 1 HW2 HW3 HW4 HW5 |Project| Overall Grade

Fall 2012 185 77.52 83.28 75.39 82.82 89.37 87.51 74.95 81.44 93.65 85.53
Spring 2013 45 79.53 85.44 71.71 79.41 78.52 81.57 85.72 85.30 | 87.26 83.11
Fall 2013 120 81.42 86.93 73.19 96.86 86.75 74.36 92.50 89.02 | 93.65 87.78

Spring 2014 47 85.55 9952 | 99.11 | 8160

Table 2 lists the numeric scores that Figure 1 $atelf on. We solely focus on student
performance in CS Il, as this should shed lightwdrether adopting Approach 1 or Approach 2
helps students perform better. Therefore,#loé students column in Table 2 contains the number
of students enrolled to CS Il course for the cquoesling semester. Table 2 shows that Exam 1
scores continue to improve as we progress chroiuallhg through semesters. Exam 2 scores are
very close to each other, though with insignificdifferences. Students seem to have performed
the best in the Final exam, when UTD adopted Apgirdg and it deteriorated later on. In terms of
homeworks, students seem to be better doing in leacteworks. Actually, the underlying reasons
behind them should not only be related to solakgent effort, or to the case where Approach 2 is
adopted, but also the instructors should be credite putting their experience and insight into
making it a smoother transition to switch from QetJava. Still, it would be too soon to conclude
that all semesters under Approach 2 do better erege, as some data are not available by the end
of Spring 2014.

In order to analyze individual student performaneessemester, we plot the charts in Figures 2, 3,
and 4 for Fall 2012, Spring 2013, and Fall 201deesvely. For privacy concerns, student names
are masked with alphabet letters.

|||||"'|lb

|
E
é

i ||||||lv
||||’]||||||»

Exam1

= Final

fid *Illllmzlmuu

m o

il
-

Figure 2. Individual student performances per assest in Fall 2012.

As seen in Figure 2, individual students performststently good (or bad) in the 3 midterm exams
and Final exam for Fall 2012. It should be noteat tbr visibility purposes, the chart in Figures2 i
plot on selected data (particular students andgodat assessments only, even though the full set
of data is available for all 185 students and ldessment categories). The sudden drops in the
figure shows students who did not participate is garticular assessment.

140

=—=Exam1l
120 .

100 13 ’:f\\ (X /22\ W

3 \”;‘\%H

60 A&

—l—Exam2
=d—=Exam3
——HW1

=—t=HW2

—0—HW3

20 HW4

HW5
20

Project

0 +—— T+ F 7T T T

2 Overall

wa »
Tas L T
aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bg br bs

Figure 3. Individual student performances per assest in Spring 2013.

Figure 3 illustrates the student performance fonidterm exams, Final exam, 5 hws and project
and overall grade on an individual basis for Spra@ii3. According to the figure, individual
student performances are consistent per assessment.

Similar to Figures 2 and 3 above, Figure 4 showdridividual student performances on arbitrarily
selected students and assessment categories deat®astonsistent trend.

P S et

az ad ag 3j am ap as av ay bb be bh bk bn bg bt bw bz cd

cg ¢ emcp ¢s cv cy db df ci dl do dr du cx ez ed eg egj em ep

Figure 4. Individual student performances per assest in Fall 2013.

Our work also explores the effect of incorporativgproach 2, i.e. how students perform when
they take CS | in C++, and CS Il in Java. Therel&rsuch students monitored, and we present the
performance scores for these students who tooki€@Spring 2013, and CS Il in Fall 2013. Again,
student names are masked with alphabet lettegzrifcacy (Figure 5).

120 107
2 Q
100 - 87 90
80 81
4
80 6766
mCSlaa 60 53 mCS1bb
mCsilaa Cslibb
40 +
20
)
Examl Exam2 Exam3 HW1 HW2 HW3 Examl Exam2 Exam3 HwW1 HW2 HW3
120
100 -
80 7
mCSlcc mCSldd
60 -
mCSllcc CSiidd
40 +
20 +
0
Exam1 Exam2 Exam3 HW1 HW2 HW3 Examl Exam2 Exam3 HW1 HW2 HW3
ECSlee mCSIff
mCSllee HCSIff
Exam1l Exam2 Exam3 HW1 HW2 HW3 Exam1l Exam2 Exam3 HW1 HW2 HwW3
= = mCSigg ®mCS1hh
. . mCSllgg CS1lhh
Examl Exam2 Exam3 HW1 HW2 HW3 Examl Exam2 Exam3 HW1 HW2 HW3

120 7 120 -
02 100 -1

100
=

85

80 2 74 4 80 1

mCSlii
60 60
mCSIlii

mCSljj
CS1ljj
40 -+ 40 4

20 + 20 +

0
e

7
3

T T
Exam1 Exam?2 Exam3 Exam1 Exam2 Exam3 HW1 HW2 HW.

Figure 5. Same student taking CS | in C++ (Sprid$3) and CS Il in Java (Fall 2013).

According to Figure 5, in CS |l (in Java) the sastident performed sometimes better, and some
other times worse than how he performed in CS Cfirt). Specifically, for Exam 1: on average in
6 out of 10 cases, students perform better (osdimee) in CS Il with Java, when they had CS | in
C++. This actually explains why Exam 1 performs puorest in Fall 2012, when Approach 1
(both CS | and CS Il in Java) was employed (Tabld=br Exam 2 and Exam3: Only in 20% of
Exam?2 (as well as Exam3) grades are equal or battes Il (in Java), which follows CS | taught
in C++. For HW1: All students get higher score<Ci | (in C++) then they do in CS Il (in Java).
This explains well that students need to gain serperience and acquaintance to start performing
satisfactorily in a new programming language. t8tgrwith HW2, 30% of students start to score
better in CS Il with Java, in spite of a C++ backgrd in CS I. And finally for HW3, 20% of the
students could achieve satisfactory (better thaegoml) scores with CS | (in C++) and CS 1l (in
Java). For HW3, it should be taken into considerathat some students have totally missed the
submission and this is why they scored that low.

One of the goals of this paper is to observe tfecebf changing the programming language in two
introductory level courses into retention rates.imeestigate this, we inquire the course drop rates
for the four semesters that we have collectedttitesscs for. Certainly, our focus is on CS Il,iks

is the course where we see the immediate resutisasfging the programming language from what
was taught in CS | (that is C++) to Java. For thkesof generality, we calculate t@ilures
column as the total of number of F (failure) graded W (withdraw) end of semester grades for
the CS Il course per semester. Table 2 shows tlases.

Table 2. Drop rates per semester.

Method | # of students | Failures | Drop rate
Fall 2012 Approach 1 185 6 3.24%
Spring 2013 | Approach 2 45 4 8.89%
Fall 2013 Approach 2 120 2 1.67%
Spring 2014 | Approach 2 42 N/A

We see that drop rates under each approach vaaylémge span. Though in Fall 2012 under
Approach 1 the drop rate is quite low at 3.24%Fall 2013 under Approach 2 this rate is even
lower at 1.67%. So, this can be considered as mipiog result. Still, the considerable jump at
8.89% drop rate is a significant change that néedse investigated to make sure whether it is an

isolated result, or an ongoing tendency with dateoming semesters.

4. CONCLUSION AND FUTURE WORK

We present the four consecutive semester restilthanging programming language in
two introductory level courses CS | and CS Il im@puter Science major at University of Texas at
Dallas (UTD) Department of Computer Science. Wt finalyze Approach 1 where both CS | and
CS Il are taught in Java, then Approach 2, wherd {83aught in C++ and CS Il in Java. Results
show that as opposed to the prejudice, student®rperbetter (or at least now worse) under
Approach 2, as compared to Approach 1.

We also investigate if this change causes increasef rates. Our results show that for one

semester Approach 2 yielded better (lower) dropsrdhan Approach 1, and in another worse

(higher) rates than Approach 1. This indicates that study needs to be expanded to future

semesters to reach a solid conclusion.

As part of the future work, authors are considetm@volve other factors, such as course content,
measuring the effect of mentoring efforts into theecess rates of students, as well as the drop
rates.

5. REFERENCES

Alvarado C., Judson E., “Using Targeted ConferertoeRecruit Women into Computer Science”,
Communications of the ACM, Vol. 57, Issue 3, Mag&fH 4, pp. 70-77.

Barr V., “Create two, three, many courses: An expent in contextualized introductory computer
science”, Journal of Computing Sciences in Collede&6), pp. 19-25.

Brown S., Yuan X., “Techniques for retaining lowrfeeming students: high-need student
mentoring program”, SIGCSE’14, pp. 708.

Crenshaw T. L., Chambers E. W., Metcalf H., Thakidgr‘A Case Study of Retention Practices at
the University of lllinois at Urbana-Champaign”, LSE’'08, March 12-15, 2008, Portland,
Oregon, USA, pp. 412-416.

Haines A., “How one college president is breakingwd barriers for women in tech”,
Forbes;http://www.forbes.com/sites/85broads/201/1/A/Aow-one-college-president-is-breaking-
down-barriersfor-women-in-tech/ [Accessed on 3/014

Horwitz, S., Rodger, S. H., Biggers, M., Binkley,, Brantz, C. K., Gundermann, D., Hambrusch,
S., Huss-Lederman, S., Munson, E., Ryder, B., andaf M. Using peer-led team learning to
increase participation and success of under-repteseyroups in introductory computer science”,
SIGCSE 2009, pp. 163-167.

Newhall T., Meeden L., Danner A., Soni A., Ruiz Wicentowski R., “A Support Program for
Introductory CS Courses that Improves Student Peidoce and Retains Students from
Underrepresented Groups”, SIGCSE’14, March 5-84281lanta, GA.

Robinson A., Pérez-Quifiones M. A., “Underrepresgritéddle School Girls: On the Path to
Computer Science through Paper Prototyping” SIG@&BWarch 5-8, 2014, Atlanta, GA, USA.

UTD Course curriculum URL, 2014ttp://coursebook.utdallas.edu/

Yardi S., Bruckman A., “What is computing? bridgitigg gap between teenagers' perceptions and
graduate students' experiences. ICER '07 IntemaltiGomputing Education Research Workshop,
Atlanta, GA, September 15 - 16, 2007, pp. 39-49.

