
Mining Student Time Management Patterns in

Programming Projects
1

1
 This study was supported in part by a Kutztown University Assessment Grant in 2013.

Dr. Dale E. Parson and Allison Seidel

Kutztown University of Pennsylvania

Kutztown, PA, 19530, USA

Abstract

Computer science faculty members cite procrastination as

one of the key causes of poor student performance in

programming projects. In contrast, students cite

conflicting demands for time. This study uses a tool-driven

process of automated compilation and testing of student

programs to collect student-project data. Data include

when, for how long, how often, and with what magnitude

of effort and accomplishment, students engage in work to

complete programming assignments. Participation is

voluntary, and data from auxiliary sources, including a

questionnaire on conflicting demands on time, complement

automatically collected data. Analyses reveal that

procrastination and excessively brief work sessions are the

main indicators of problems for students with inadequate

prior success in earlier computer science courses. Some

students with successful track records know when they can

afford late starts and short sessions. The time of day that

students work is a contributing factor to success. The goal

is to build an automated warning system for at-risk

students.

Keywords: data mining, programming assessment, student

programming, time management.

1. Introduction

The project reported in this paper grew out of an initial

offering of a master’s level course in data mining using the

Weka toolset [1,2] in conjunction with the annual offering

of two sections of the Java Programming course in spring

2013. Graduate students offered advice on mining the

project work habits of undergraduates, and Java students

voluntarily supplied the initial data set. Java Programming

at Kutztown University is an elective major course that

includes sophomores, juniors and seniors after they

complete the CS1-CS2 introductory course sequence using

C++. The authors extended data collection to two sections

of undergraduate Operating Systems in fall 2013, and to

two sections of Java Programming and one section of

Programming Languages in spring 2014. The range of

courses and student experience levels help to distinguish

consistent attributes from incidental ones in predicting

student project success as a function of time management

and other student work related data. None of the courses

include in-class programming time. All project work takes

place as homework.

The initial investigation grew out of an interest in

quantifying the folklore on both sides of the faculty /

student divide. Faculty members cite procrastination as a

primary cause of poor results in student programming

projects. Students cite conflicting demands on their time

from projects and exams in other courses. While both

factors contribute to project success to some degree, their

contributions are far from simple and linear.

A goal is construction of an advisement program that

would warn at-risk students when their patterns of work on

programming projects begin to exhibit signs of problems.

Anticipated use of this program by students would be

voluntary, as is participation in the ongoing study itself.

The authors chose to report preliminary results before

completion of the full study because we have uncovered

useful information that we are communicating to students

in current courses. Encouraging students to avoid pitfalls

identified in preliminary results may help to uncover the

effectiveness of passing this information along to students.

2. Related work

Edwards, et. al. have previously reported late starts in

programming projects as clearly associated with poorer

results on such projects [3]. That study utilized data from

three programming courses for over five years, in contrast

to the present preliminary study. It confirmed results from

earlier studies about the correlation of earlier project starts

with better rates of project success. Unlike the current

project, that study eliminated both consistently well-

performing students and consistently poorly-performing

students from the analysis in order to focus on intra-student

attributes that vary between successful and unsuccessful

projects. The current study seeks to uncover consistent

work habits leading to success and failure, regardless of

individual student correlations. In fact, the present study is

particularly interested in detecting patterns within at-risk

students, including both consistently poorly-performing

students and intermittently poorly-performing students. The

cited study considered only the latter population.

Results of the present study agree with the results of the

cited study, while detecting additional significant attributes

of student work habits that alter those basic results.

Edwards and Ly have reported on automating analysis

of the specific types of problems that occur in running

student programs [4]. That analysis differs in nature from

the current project, which focuses on correlations between

student work patterns and project success or failure, as

contrasted with specific types of project failure.

Mierle, et. al. examined student code repositories, based

on file modifications that appear in file change submissions

and log files [5]. They found a weak correlation between

normalized number of lines of code per revision and

student success in terms of final grade, and no correlation

with timing of student work. The present study differs in

nature by logging and analyzing student work at a much

finer temporal grain, that of individual make actions within

each student’s private workspace. The present study

uncovers more detailed correlations.

The most recent related study examined confirms the

correlation of poor programming project results with late

project starts [6]. That study allowed student submission of

programs to additional, opaque automated tests (so-called

release tokens). It concluded that availability of these tests

might discourage students from writing their own test

cases, and might encourage procrastination because

students can count on additional available tests no matter

how late they start. The current project takes a different

approach to testing, modeled after the industrial experience

of the instructor. The instructor supplies test cases, requires

students to write additional test cases for some projects,

and uses additional test cases not available to the students

for grading. The latter sets of tests emulate customer

acceptance testing not available to software providers. The

present study collects data on successful and unsuccessful

test runs for instructor-supplied and student-required

testing, but it does not use a limited number of opaque test

runs as a variable. The current study finds several attributes

that correlate with project success, in addition to start time.

3. Data Collection & Extraction

3.1 Using make for attribute collection

Most of the programming projects studied use the GNU

make utility [7] on a Unix server for compilation, testing,

and submission of student programs. A student types make

test in a project directory, leading to automatic compilation

when object or executable files predate their corresponding

source files, followed by automated tests supplied by the

instructor, and then by automated tests written by students

when required. Automated submission of completed

programs takes place via the make turnitin command. For

projects where students offload code from the Unix server

to laptops for development of graphical user interfaces

(GUIs), the instructor supplies an executable Java archive

that serves as an alternative, project-specific makefile.

Using either mechanism, the makefile captures and

compresses data from the project directory and archives it

for later analysis. Analysis defers until after course

completion and grading as part of the agreement between

the instructor and students. Data collected for the study

play no role in grading. A student earns one bonus point on

a scale of 100 project points for participating in the

automated study, and an additional point for completing a

short survey explained in the next section. Students can

also earn these two points by performing actions that

remove their data from the study. Institutional ethical

standards preclude giving bonus point incentives only to

participating students. Participation is voluntary, and

students must not feel grade pressure to participate.

Listing 1 shows the first category of collected data, the

actual zip archives containing detailed student information.

An archive file name encodes the student identifier

(obscured here), the date and time of the triggering make

action, and an identifier for that action. The first two

BUILD lines of Listing 1 show two failed attempts to

compile the assignment, followed by a BUILD leading to a

BUILT record, signifying successful compilation. The

TESTING line signifies the start of automated tests, and

the TESTED line signifies successful execution of tests.

Typically, the student triggers compilation, and testing

when compilation succeeds, by invoking make test, which

triggers make build for updated source files. It is possible

to determine the time and frequency of a student’s attempts

at compilation and testing, and the success of these

attempts, simply by decoding the archive file names. Data

logging activities remain invisible in the interest of

minimizing impact on student workflow.

Each archive contains two files. Listing 2 shows an

example Unix listing file extracted from an archive. It is a

listing of the student’s project directory at the time of

invoking make. Each line shows student ID, the number of

bytes in the file, the file’s most recent modification date

idN_2014-02-12-12-37-43-EST_BUILD.zip

idN_2014-02-12-12-38-48-EST_BUILD.zip

idN_2014-02-12-12-41-50-EST_BUILD.zip

idN_2014-02-12-12-41-53-EST_BUILT.zip

idN_2014-02-12-12-41-53-EST_TESTING.zip

idN_2014-02-12-12-41-55-EST_TESTED.zip

Listing 1: Archives of student make data

and time, and the file’s name. By comparing file sizes and

modification timestamps from successive archives, it is

possible to determine which files have changed, and the net

change in byte size for those files, since the previous make

action for that student project.

The other file extracted from each archive of Listing 1

contains the contents of multiple text files. Each logged

make action concatenates all text files of interest in the

project, in this case Java source files, into a single file with

markers giving start of each file, file name, logging time,

and file contents. The initial use for collecting source files

has been to use the Unix diff utility to determine number of

lines added, changed, and deleted for each source file since

the previous make action. These files could also support

analysis of types of student solution and error mechanisms

in a subsequent study.

In summary, archiving collects all available project data

for a student every time a student compiles, tests, or turns

in a project, including the success or failure of compilation

and testing. Since compilation and testing are automated, it

is possible to determine, automatically, exactly which files

fail compilation and which tests fail testing. For the current

study the focus is on time management patterns, the

magnitude of changes per work session, time of day of

each session, and related data discussed in the next section.

3.2 Collection of auxiliary attributes

There is no means for automatically collecting data about

conflicting demands on student time. The study uses a

survey with three questions: How many computer science

projects from other courses were given out during the

project period? How many computer science projects from

other courses were due during the project period? How

many exams from any course took place during the project

period? This study does not measure non-course time

conflicts such as jobs or extracurricular activities.

Since responses are subjective and accuracy of the

answers is less reliable than the makefile-collected data of

the previous section, the study treats survey answers as

student perceptions of these potential sources of time

conflicts. Correlation of student perceptions with project

success is a measure that the study can inspect objectively.

Student data from other sources include year (freshman,

sophomore, etc.), track (the department has software

development and information technology tracks for

students), course, semester, project number, and project

start and end dates and times. The instructor collects

student email questions about projects, classifying them

into the following categories: 1) informed and detailed, 2)

uninformed and vague, and 3) the total of (1) and (2).

Email provides one sample measure of student interaction

with the instructor. This study does not measure classroom

attendance or office hour meetings with the instructor.

So-called target attributes include project numeric and

letter grade, final course numeric and letter grade, and

centile ranking of project and course numeric grades. The

latter measures are useful in distributing clumped grades

during analysis. A script extracts these data from a grading

spreadsheet after the semester ends.

3.3 Student cumulative grade data

The initial plan was not to use cumulative student grade

data coming into the course. The intent was to base

analysis strictly on conditions and actions relating directly

to the projects. However, initial analysis determined that

some students could perform well with seemingly bad

works habits, while others could not. That fact may account

for some of the lack of correlation between project start

time and project success in the study by Mierle, et. al. [5].

Consequently, this study incorporates four additional

attributes into the dataset: 1) cumulative grade point

average in computer science courses, 2) number of credits

in computer science courses, 3) overall cumulative grade

point average for all courses, and 4) total credits earned.

These four attributes are recorded at the start of the course.

Analysis reveals that including these attributes helps to sort

out students who can afford to use what might be

considered “bad habits” from those who cannot. These

attributes are helpful in identifying potentially at-risk

students who could subscribe to an automated warning

system derived from this study.

4. Data Analysis

4.1 Distinguishing attributes

The study uses 90 attributes concerning student project

activities and related data discussed in the previous section.

These attributes fit into the following categories.

1. Student data include ID, major track, and year in

university.

2. Course-project data include course number,

semester, project number, and project start and end

date-time.

TESTED 2013-03-24-21-45-38-EDT

~idN/JavaLang/FillWord2

idN 5836 Mar 3 15:43 FillWordTest.java

idN 57 Mar 3 16:01 testjava.txt

idN 6248 Mar 3 16:01 testjava.ref

idN 70 Mar 3 16:06 testjava2.txt

idN 2037 Mar 3 16:07 makefile

idN 8951 Mar 3 16:07 testjava2.ref

idN 1183 Mar 13 17:33 IFillWord.java

idN 3474 Mar 14 12:59 FillWordGrows.java

idN 8849 Mar 24 21:33 FillWordBasic.java

idN 5027 Mar 24 21:37 FillWordHelper.java

Listing 2: Listing of student project directory

3. Date-times for start and completion of student

work come in five forms: A) hours from handout

until student start, B) hours from completion until

project due, C) hours from student start until project

due, D) hours from handout until student completion,

and E) hours from student start until completion.

4. Other time management attributes relate to the

concept of a work session, which for this study is a

contiguous period of captured make actions with no

intervals between actions >= 60 minutes in length.

Attributes record the min, max, mean, sample

standard deviation, median and mode for the

following data: length of session time in minutes,

and time between sessions in hours.

5. Additional temporal attributes are total session time,

total number of sessions, and session time-of-day.

Graduate students suggested the latter data category,

which comes in six divisions: sessions centered

between 12 and 3:59 AM, between 4 and 7:59 AM,

between 8 and 11:59 AM, and their three afternoon-

evening counterparts.

6. The study also analyzes size of work (min, max,

mean, sample standard deviation, median and mode)

for the following per-session data attributes: number

of source file bytes changed, number of source

files modified, number of source lines added, lines

deleted, and lines changed.

7. Informed and detailed email messages to the

instructor, uninformed and vague emails, and the

total of these two classes comprise another class of

data as previously discussed.

8. The target attributes of project numeric and letter

grade, final course numeric and letter grade, and

centile ranking of project and course numeric grades

constitute the final category.

Analysis uses only one target attribute at a time because

these attributes are partially redundant. Project numeric

grade trivially determines project letter grade, for example,

without considering other attributes. After some analysis

the study dropped use of overall course grades because

these course grades are a weighted average of course

projects and exams, and some students are habitually poor

test takers. Project preparation patterns showed no clear

correlation to exam results. The study also dropped use of

letter grades in favor of using binned (discretized) numeric

grades in order to allow exploration of binning strategies.

The primary target attribute is project numeric grade, with

project centile ranking also considered in detail.

Data mining has two different modes of operation for

investigators. The first is to make data relationships

clearer to human investigators. The second is to support

creation of automated programs for pattern recognition

and response. The former is the mode of the current study.

The latter is the mode for the anticipated automated early

warning system for at-risk students.

The study used two complementary approaches to thin

the 84 non-target attributes down to a set that exhibits

correlation with target attributes in a way that makes the

data relationships clearer to human investigators. The first

was repeated manual application of Weka’s OneR rule-

based machine learning algorithm [1,2] that uses the

minimum-error attribute for prediction of discrete numeric

attribute bins. OneR selects the single most accurate non-

target attribute to predict the target attribute. Our process

was to use OneR repeatedly to select the next-most

predictive attribute, then remove that attribute, and then

repeat the process. This iterative process also eliminated

partially redundant attributes, along with attributes for

which there were significant numbers of missing values.

For example, the initial study of the Java course did not

capture source files for GUI development projects run on

laptops, so it was necessary to discard diff-based line

add/change/delete attributes when analyzing those projects.

The second approach was to use Weka’s “Select

attributes” capability, applying the “CfsSubsetEval”

algorithm that evaluates the worth of a subset of attributes

by considering the individual predictive ability of each

feature along with the degree of redundancy between them,

in conjunction with a “BestFirst” search method that

searches the space of attribute subsets by greedy hill

climbing augmented with a backtracking facility. This is

essentially the automated version of the semi-manual

approach of the previous paragraph. Both yielded the same

set of predictive attributes.

Listing 3 shows Weka results for six of the most

predictive attributes in predicting the centile ranking of the

project grade. OneR shows that Jstr, the number of hours

from the time the student started the project until the

project deadline, is the single most predictive attribute.

Other analyses duplicate this result. Jstr is more useful

than the time from project handout until start, because

project time periods vary by project, sometimes because of

complexity, but also because of incidental reasons such as

spring break or an exam in the course. Jstr is a measure of

Jstr hours from student start until due deadline

Mavg average minutes of a work session

Mdev sample standard deviation of Mavg

Snum number of work sessions

Mtot total minutes spent on the project

Cgpa computer science GPA at semester start

GprjRank centile ranking of project grade

If Jstr < 24.0 then 0 <= GprjRank <= 13.2

Elseif Jstr < 79.0 then GprjRank > 90.4

Elseif Jstr < 181.0 then 80.7 < GprjRank <= 90.4

Elseif Jstr >= 181.0 then GprjRank > 90.4

(36/111, 32.4%, instances correct)

Listing 3: OneR prediction from 6 attributes

procrastination because it shows how close to the project

deadline a student has waited before starting.

Listing 3 shows that starting a project within the last 24

hours leads to the lowest centile bin, between 0 and 13.2

percentile. This observation accords with previous studies

such as Edwards, et. al. [3], which states, “approximately

two-thirds of the lower scores were received by individuals

who started on the last day or later.” However, the fact that

OneR’s predictions based on Jstr are correct only 32.4%

of the time, and that one-third of the lower scores of [3]

were received by individuals who started earlier than the

last day, show that procrastination is not the only important

attribute at work in determining project quality.

Listing 3 shows a problem with a simple monotonic

interpretation of start time before deadline as the main

attribute of interest. OneR predicts that students starting

between 24 and 79 hours before the due date will attain the

top centile bin (greater than 90.4 percentile), 79-to-181

hour starters will attain the next lower centile bin, and

students starting >= 181 hours will attain the top bin. The

problem is with the 24-79 group attaining the top bin. This

result resonates with the instructor’s experience that some

students can start during the last few days, sometimes send

very focused email questions that may not receive

immediate responses, send subsequent “never mind, I

found it” messages, and complete the project with good

results. It is because of such students that the authors

decided to include the computer science GPA and related

attributes in the study. In fact, replacing centile ranking

with project grade as the target attribute leads to the OneR

rule of Listing 4, with computer science GPA (Cgpa)

replacing Jstr as the most predictive attribute.

This fatalistic prediction of prior GPA as the most

predictive attribute would be discouraging, were it not for

the fact that this OneR rule is wrong 74.8% of the time for

the Java Programming dataset. Cgpa is important, but its

contribution is not deterministic. The next section takes up

the detailed analysis used to find countervailing attributes.

4.2 Patterns for indication of success

The previous section deals with the search through

available attributes. Lack of space precludes inclusion of

strategies for the search through the space of available

machine learning algorithms and correlation techniques.

The guiding principle in this search was intelligibility.

Algorithms and tools whose results are straightforward to

interpret lead to the results reported in this section.

Table 1 shows the results of Simple K-means clustering

[2] for 6 clusters, along with the full programming dataset,

for the six most predictive attributes for project grade Gprj

in Java Programming. Several relationships in the data

appear at the surface.

First, the lowest average project grade of 57.19% in

cluster 4 pairs with the latest starting time Jstr of 36.1875

hours before the project deadline. Cluster 4 is the smoking

gun for the negative effects of procrastination.

However, cluster 0 with the second smallest Jstr of

57.875 pairs with a grade of 93.83%. Comparing these two

clusters shows that the computer science GPA for cluster 0

is 3.3392 compared to 2.255 for cluster 4, suggesting that

the cluster 0 students are better prepared for a somewhat

late start; cluster 0’s Jstr value is 60% greater than cluster

4’s. There are other important differences. Cluster 0’s

average work session time in minutes Mavg is 68.5097,

compared to cluster 4’s 36.6927, and cluster 0’s total

session minutes Mtot is 174.125, compared to 4’s Mtot of

100.6875. Cluster 0 students work in sessions that are 87%

longer, and for overall time that is 75% greater, than

cluster 4 students.

Cluster 5 with the second lowest Gprj value at 88.86%

is significantly better than cluster 4 at 57.19%. The Cgpa

at 2.6143 is also the second lowest, and Mavg is relatively

low at 49.4403 minutes. However, cluster 5 students have a

attribute full data

111 records

cluster 0

24 = 22%

cluster 1

9 = 8%

cluster 2

27 = 24%

cluster 3

7 = 6%

cluster 4

16 = 14%

cluster 5

28 = 25%

Jstr 167.9459 57.875 155.2222 249.7778 238 36.1875 245.25

Mavg 58.1449 68.5097 138.8896 42.4935 63.0163 36.6927 49.4403

Mdev 48.4055 36.8001 116.7501 44.7172 78.8199 21.9392 47.4618

Yavg 5153.661 4435.4986 20419.4735 2605.7539 5061.4645 5635.8594 3066.7782

Snum 5.4324 2.9167 4.4444 5.7407 14.1429 2.625 7.0357

Mtot 302.045 174.125 589.7778 242.2963 884.8571 100.6875 346.1786

Cgpa 3.055 3.3392 3.3411 3.6156 3.1429 2.255 2.6143

Gprj 90.01% 93.83% 99.56% 100.89% 102.29% 57.19% 88.86%

Table 1: Simple K-means clusters for the six most predictive attributes for project grade Gprj in Java Programming

Gprj project grade

If Cgpa < 2.24 then 0 <= Gprj <= 0.625

Elseif Cgpa < 2.635 then 0.625 < Gprj <= 0.815

Elseif Cgpa < 2.945 then 0.815 < Gprj <= 0.925

Elseif Cgpa >= 2.945 then 1.015 < Gprj <= 1.04

(28/111, 25.2% instances correct)

Listing 4: OneR prediction to project grade

high Jstr value of 245.25 hours, the second-highest

number of sessions Snum of 7.0357, and a higher than

average total session minutes Mtot of 346.1786. An early

start and repeated application of time to the project pay off

in giving cluster 5 students a Gprj that is 55% greater than

that of cluster 4.

Finally, Table 1 shows that for most clusters, larger

values for mean session minutes Mavg correlate with

larger values for mean source bytes (characters) modified

per session Yavg, but for cluster 4, the second highest

Yavg of 5635.8594 bytes pairs with the smallest Mavg

value. Cluster 4 students attempted, unsuccessfully, to

complete a large amount of work in very little time.

Other algorithms such as the J48 decision tree and

Bayesian inference [2] give results that are compatible with

the K-means clusters, but that are harder to read and

integrate into a paper because of the amount of detail in

their logic. One additional example is the Pruned M5P

model tree, which uses decision tree-like structure to select

from among a set of linear regression formulas. Below is

the M5P model tree for all Table 1 attributes except Yavg.

Cgpa <= 3.205 :

| Jstr <= 66 :

| | Mavg <= 36.167 : LM1 (5/29.636%)

| | Mavg > 36.167 : LM2 (18/106.448%)

| Jstr > 66 : LM3 (40/57.247%)

Cgpa > 3.205 : LM4 (48/31.383%)

LM num 1: Gprj =

 0.0012 * Jstr + 0.0009 * Mavg

 + 0.0214 * Snum - 0.0002 * Mtot

 + 0.2908 * Cgpa - 0.2251

LM num 2: Gprj =

 0.0001 * Jstr + 0.0009 * Mavg

 + 0.0214 * Snum - 0.0002 * Mtot

 + 0.2278 * Cgpa + 0.0515

LM num 3: Gprj =

 0.0001 * Jstr + 0.0007 * Mavg

 + 0.028 * Snum - 0.0001 * Mtot

 + 0.226 * Cgpa + 0.0893

LM num 4: Gprj =

 0.0008 * Mavg + 0.0143 * Snum

 - 0.0001 * Mtot + 0.1052 * Cgpa + 0.5199

Listing 5: Pruned M5P model tree

LM4: When the tree finds a Cgpa > 3.205, it goes to a

linear formula with the highest constant value for the Gprj

(51.99%) and the lowest weight for the Cgpa. These

students are not typically at risk.

LM3: Otherwise, when Cgpa <= 3.205 and the start

time Jstr is greater than 66 hours before the deadline, the

tree goes to a linear formula with a much smaller constant

value and greater dependence on the Cgpa.

LM2: With Jstr <= 66 and Mavg work time that

exceeds 36.167 minutes, the tree goes to a formula with

more weight on the Cgpa and a lower constant value.

LM1: Finally, with Mavg <= 36.167, the tree goes to a

formula with the greatest dependence on Cgpa and a

negative constant value. A low mean average session time

is an automatic handicap.

There is nothing a student can do to change an incoming

Cgpa, but the tree and formulas of Listing 5 indicate that

students with lower Jstr and Mavg values correlate with

lower constant values and more deterministic ties to the

Cgpa within linear predictors, than students with higher

Jstr and Mavg values. At-risk students need to start earlier

and engage in sessions that exceed 36 minutes. Apparently,

36 minutes are not enough to get properly immersed in

software development. Other Weka models suggest that

Mavg should exceed 60 to 75 minutes.

M5P is one of the better predictors applied to these

attributes, predicting about 55% of the test cases correctly

for this dataset, with a mean absolute error of 13.04% on a

Gprj scale of 100%. Predicting incorrectly 45% of the

time, with an average miss of more than a 10% letter grade,

is not great prediction. A student is a hard nut to crack.

There are, seemingly, hidden variables not measured by the

study. However, Cgpa, Jstr, and Mavg have strong

correlation with project grade, and the latter two attributes

are available for change by students.

Graph 1: Gprj as a function of cumulative Jstr ranges

Graph 1 shows average relationships between Jstr value

ranges and mean project grades Gprj for students in

various Cgpa ranges. Jstr values to the right in the graph

subsume Jstr values to the left. For example, 72 on the X

axis means Jstr <= 72, a range that includes Jstr <= 24.

The maximum grade of 127% in the dataset includes

optional bonus points for one project. The authors

computed Graph 1 by using the Weka preprocessor as a

query tool to eliminate from the dataset Cgpa and Jstr

values outside a desired range, and then entered the

resulting mean Gprj value into an Excel spreadsheet to

plot the graph. All four Cgpa curves show a minimum

spread of 20%, i.e., two letter grades, across the range of

Jstr values. The graph cannot capture the nonlinear

relationships of Jstr to Cpga illustrated by Table 1, but

nevertheless it shows the overall importance of Jstr. All

four curves level out at about 10 to 11 days. It is the

instructor’s experience that most students do not utilize

project periods greater than two weeks in length very well,

requiring the instructor to break big projects in a number of

smaller assignments, each fitting in a two-week interval.

Graph 1 confirms the validity of this practice.

Graph 2, also captured using Weka’s value range

filtering and Excel, shows related curves for the

relationship of cumulative session minutes Mavg in

relation to mean project grade Gprj. Work sessions less

than 60 minutes in length lead to problems for most

students, and sessions at least 75 minutes in length are

better for at-risk students.

Graph 2: Gprj as a function of cumulative Mavg ranges

4.3 Secondary & problematic patterns

Weka’s “Select attributes” capability suggests possible

importance for work sessions with midpoints between 4

AM and 11:59 AM, i.e., morning sessions. Students in

higher Gprj ranges did tend to work in the mornings, but

they also worked more in the afternoons, took an evening

break, and worked again during the four hours before

midnight. At-risk students fell into two groups. One group

started within the last 36 hours, leaving themselves no

opportunity for time management. They did not work in the

morning. The other group started well in advance of the

deadline, performing most of their work during the four

hours before midnight. Our conclusions are that some

morning work after a night’s rest helps to improve a

project’s quality, and that consistently working only at

day’s end, when a student is tired, leads to poor quality.

No other attributes correlate strongly with project

success, including student survey data about conflicting

demands on time. Also, the data collected in the fall 2013

Operating Systems classes were not useful because student

projects consisted of modifying state machines drafted by

the instructor that emphasized analysis and design, with

very little coding, similar to solving a proof. Most of the

work was in the pre-coding stage, and therefore not visible

to data collection via make. Three spring 2014

programming courses will provide much more useful data.

5. Conclusions and Future Work

Procrastination is a culprit in poor results for programming

projects, but it is not a simple, linear one. Some students

who have performed well in past computer science courses

apparently know their limits. However, for many students,

and especially for at-risk students with lower computer

science grade point averages at the start of a programming

course, starting at least 11 days before the due date of a

two-week project yields demonstrable benefits. Also, the

minimum length of a programming work session should be

at least 60 minutes, and preferably 75. Time of day of work

is a contributing factor. In addition to starting early in the

project cycle, students should not work solely at the end of

long days, when they are tired.

There are additional data available for mining. Data

collection in spring 2014 will more than double the size of

the dataset. The M5P model tree algorithm promises to

provide an accurate basis for constructing an early warning

system for at-risk students. The plan is to implement a

prototype system after completing analysis in summer

2014, with voluntary use by students to follow.

References

[1] Machine Learning Group at the University of

Waikato, “Weka 3: Data Mining Software in Java”,

http://www.cs.waikato.ac.nz/ml/weka/, May 2014.

[2] Witten, Frank and Hall, Data Mining: Practical

Machine Learning Tools and Techniques, Third

Edition, Morgan Kaufmann, 2011.

[3] Edwards, Snyder, Pérez-Quiñones, Allevato, Kim and

Tretola, “Comparing Effective and Ineffective

Behaviors of Student Programmers”, Proceedings of

ICER '09: International Computing Education

Research Workshop, Berkeley, CA, August 2009.

[4] Edwards and Ly, “Mining the Data in Programming

Assignments for Educational Research”, Proceedings

of the International Conference on Education and

Information Systems: Technologies and Applications

(EISTA'07), Orlando, FL, July 12-15, 2007.

[5] Mierle, Laven, Roweis and Wilson, “Mining Student

CVS Repositories for Performance Indicators”,

Proceedings of the 2005 International Workshop on

Mining Software Repositories, St. Louis, May, 2005.

[6] Spacco, Fossati, Stamper and Rivers, “Towards

Improving Programming Habits to Create Better

Computer Science Course Outcomes”, Proceedings

of ITiCSE 2013, the 18th Annual Conference on

Innovation and Technology in Computer Science

Education, Canterbury, UK, July 1-3, 2013.

[7] Free Software Foundation, GNU Make home page,

http://www.gnu.org/software/make/, May 2014.

