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Abstract 

Computer science faculty members cite procrastination as 

one of the key causes of poor student performance in 

programming projects. In contrast, students cite 

conflicting demands for time. This study uses a tool-driven 

process of automated compilation and testing of student 

programs to collect student-project data. Data include 

when, for how long, how often, and with what magnitude 

of effort and accomplishment, students engage in work to 

complete programming assignments. Participation is 

voluntary, and data from auxiliary sources, including a 

questionnaire on conflicting demands on time, complement 

automatically collected data. Analyses reveal that 

procrastination and excessively brief work sessions are the 

main indicators of problems for students with inadequate 

prior success in earlier computer science courses. Some 

students with successful track records know when they can 

afford late starts and short sessions. The time of day that 

students work is a contributing factor to success. The goal 

is to build an automated warning system for at-risk 

students. 

Keywords: data mining, programming assessment, student 

programming, time management. 

1. Introduction 

The project reported in this paper grew out of an initial 

offering of a master’s level course in data mining using the 

Weka toolset [1,2] in conjunction with the annual offering 

of two sections of the Java Programming course in spring 

2013. Graduate students offered advice on mining the 

project work habits of undergraduates, and Java students 

voluntarily supplied the initial data set. Java Programming 

at Kutztown University is an elective major course that 

includes sophomores, juniors and seniors after they 

complete the CS1-CS2 introductory course sequence using 

C++. The authors extended data collection to two sections 

of undergraduate Operating Systems in fall 2013, and to 

two sections of Java Programming and one section of 

Programming Languages in spring 2014. The range of 

courses and student experience levels help to distinguish 

consistent attributes from incidental ones in predicting 

student project success as a function of time management 

and other student work related data. None of the courses 

include in-class programming time. All project work takes 

place as homework. 

The initial investigation grew out of an interest in 

quantifying the folklore on both sides of the faculty / 

student divide. Faculty members cite procrastination as a 

primary cause of poor results in student programming 

projects. Students cite conflicting demands on their time 

from projects and exams in other courses. While both 

factors contribute to project success to some degree, their 

contributions are far from simple and linear. 

A goal is construction of an advisement program that 

would warn at-risk students when their patterns of work on 

programming projects begin to exhibit signs of problems. 

Anticipated use of this program by students would be 

voluntary, as is participation in the ongoing study itself. 

The authors chose to report preliminary results before 

completion of the full study because we have uncovered 

useful information that we are communicating to students 

in current courses. Encouraging students to avoid pitfalls 

identified in preliminary results may help to uncover the 

effectiveness of passing this information along to students. 

2. Related work 

Edwards, et. al. have previously reported late starts in 

programming projects as clearly associated with poorer 

results on such projects [3]. That study utilized data from 

three programming courses for over five years, in contrast 

to the present preliminary study. It confirmed results from 

earlier studies about the correlation of earlier project starts 

with better rates of project success. Unlike the current 

project, that study eliminated both consistently well-

performing students and consistently poorly-performing 

students from the analysis in order to focus on intra-student 

attributes that vary between successful and unsuccessful 



projects. The current study seeks to uncover consistent 

work habits leading to success and failure, regardless of 

individual student correlations. In fact, the present study is 

particularly interested in detecting patterns within at-risk 

students, including both consistently poorly-performing 

students and intermittently poorly-performing students. The 

cited study considered only the latter population. 

Results of the present study agree with the results of the 

cited study, while detecting additional significant attributes 

of student work habits that alter those basic results. 

Edwards and Ly have reported on automating analysis 

of the specific types of problems that occur in running 

student programs [4]. That analysis differs in nature from 

the current project, which focuses on correlations between 

student work patterns and project success or failure, as 

contrasted with specific types of project failure. 

Mierle, et. al. examined student code repositories, based 

on file modifications that appear in file change submissions 

and log files [5]. They found a weak correlation between 

normalized number of lines of code per revision and 

student success in terms of final grade, and no correlation 

with timing of student work. The present study differs in 

nature by logging and analyzing student work at a much 

finer temporal grain, that of individual make actions within 

each student’s private workspace. The present study 

uncovers more detailed correlations. 

The most recent related study examined confirms the 

correlation of poor programming project results with late 

project starts [6]. That study allowed student submission of 

programs to additional, opaque automated tests (so-called 

release tokens). It concluded that availability of these tests 

might discourage students from writing their own test 

cases, and might encourage procrastination because 

students can count on additional available tests no matter 

how late they start. The current project takes a different 

approach to testing, modeled after the industrial experience 

of the instructor. The instructor supplies test cases, requires 

students to write additional test cases for some projects, 

and uses additional test cases not available to the students 

for grading. The latter sets of tests emulate customer 

acceptance testing not available to software providers. The 

present study collects data on successful and unsuccessful 

test runs for instructor-supplied and student-required 

testing, but it does not use a limited number of opaque test 

runs as a variable. The current study finds several attributes 

that correlate with project success, in addition to start time. 

3. Data Collection & Extraction 

3.1 Using make for attribute collection 

Most of the programming projects studied use the GNU 

make utility [7] on a Unix server for compilation, testing, 

and submission of student programs. A student types make 

test in a project directory, leading to automatic compilation 

when object or executable files predate their corresponding 

source files, followed by automated tests supplied by the 

instructor, and then by automated tests written by students 

when required. Automated submission of completed 

programs takes place via the make turnitin command. For 

projects where students offload code from the Unix server 

to laptops for development of graphical user interfaces 

(GUIs), the instructor supplies an executable Java archive 

that serves as an alternative, project-specific makefile. 

Using either mechanism, the makefile captures and 

compresses data from the project directory and archives it 

for later analysis. Analysis defers until after course 

completion and grading as part of the agreement between 

the instructor and students. Data collected for the study 

play no role in grading. A student earns one bonus point on 

a scale of 100 project points for participating in the 

automated study, and an additional point for completing a 

short survey explained in the next section. Students can 

also earn these two points by performing actions that 

remove their data from the study. Institutional ethical 

standards preclude giving bonus point incentives only to 

participating students. Participation is voluntary, and 

students must not feel grade pressure to participate. 

Listing 1 shows the first category of collected data, the 

actual zip archives containing detailed student information. 

An archive file name encodes the student identifier 

(obscured here), the date and time of the triggering make 

action, and an identifier for that action. The first two 

BUILD lines of Listing 1 show two failed attempts to 

compile the assignment, followed by a BUILD leading to a 

BUILT record, signifying successful compilation. The 

TESTING line signifies the start of automated tests, and 

the TESTED line signifies successful execution of tests. 

Typically, the student triggers compilation, and testing 

when compilation succeeds, by invoking make test, which 

triggers make build for updated source files. It is possible 

to determine the time and frequency of a student’s attempts 

at compilation and testing, and the success of these 

attempts, simply by decoding the archive file names. Data 

logging activities remain invisible in the interest of 

minimizing impact on student workflow. 

Each archive contains two files. Listing 2 shows an 

example Unix listing file extracted from an archive. It is a 

listing of the student’s project directory at the time of 

invoking make. Each line shows student ID, the number of 

bytes in the file, the file’s most recent modification date 

idN_2014-02-12-12-37-43-EST_BUILD.zip 

idN_2014-02-12-12-38-48-EST_BUILD.zip 

idN_2014-02-12-12-41-50-EST_BUILD.zip 

idN_2014-02-12-12-41-53-EST_BUILT.zip 

idN_2014-02-12-12-41-53-EST_TESTING.zip 

idN_2014-02-12-12-41-55-EST_TESTED.zip 

Listing 1: Archives of student make data 

 



and time, and the file’s name. By comparing file sizes and 

modification timestamps from successive archives, it is 

possible to determine which files have changed, and the net 

change in byte size for those files, since the previous make 

action for that student project. 

The other file extracted from each archive of Listing 1 

contains the contents of multiple text files. Each logged 

make action concatenates all text files of interest in the 

project, in this case Java source files, into a single file with 

markers giving start of each file, file name, logging time, 

and file contents. The initial use for collecting source files 

has been to use the Unix diff utility to determine number of 

lines added, changed, and deleted for each source file since 

the previous make action. These files could also support 

analysis of types of student solution and error mechanisms 

in a subsequent study. 

In summary, archiving collects all available project data 

for a student every time a student compiles, tests, or turns 

in a project, including the success or failure of compilation 

and testing. Since compilation and testing are automated, it 

is possible to determine, automatically, exactly which files 

fail compilation and which tests fail testing. For the current 

study the focus is on time management patterns, the 

magnitude of changes per work session, time of day of 

each session, and related data discussed in the next section. 

3.2 Collection of auxiliary attributes 

There is no means for automatically collecting data about 

conflicting demands on student time. The study uses a 

survey with three questions: How many computer science 

projects from other courses were given out during the 

project period? How many computer science projects from 

other courses were due during the project period? How 

many exams from any course took place during the project 

period? This study does not measure non-course time 

conflicts such as jobs or extracurricular activities. 

Since responses are subjective and accuracy of the 

answers is less reliable than the makefile-collected data of 

the previous section, the study treats survey answers as 

student perceptions of these potential sources of time 

conflicts. Correlation of student perceptions with project 

success is a measure that the study can inspect objectively. 

Student data from other sources include year (freshman, 

sophomore, etc.), track (the department has software 

development and information technology tracks for 

students), course, semester, project number, and project 

start and end dates and times. The instructor collects 

student email questions about projects, classifying them 

into the following categories: 1) informed and detailed, 2) 

uninformed and vague, and 3) the total of (1) and (2). 

Email provides one sample measure of student interaction 

with the instructor. This study does not measure classroom 

attendance or office hour meetings with the instructor. 

So-called target attributes include project numeric and 

letter grade, final course numeric and letter grade, and 

centile ranking of project and course numeric grades. The 

latter measures are useful in distributing clumped grades 

during analysis. A script extracts these data from a grading 

spreadsheet after the semester ends. 

3.3 Student cumulative grade data 

The initial plan was not to use cumulative student grade 

data coming into the course. The intent was to base 

analysis strictly on conditions and actions relating directly 

to the projects. However, initial analysis determined that 

some students could perform well with seemingly bad 

works habits, while others could not. That fact may account 

for some of the lack of correlation between project start 

time and project success in the study by Mierle, et. al. [5]. 

Consequently, this study incorporates four additional 

attributes into the dataset: 1) cumulative grade point 

average in computer science courses, 2) number of credits 

in computer science courses, 3) overall cumulative grade 

point average for all courses, and 4) total credits earned. 

These four attributes are recorded at the start of the course. 

Analysis reveals that including these attributes helps to sort 

out students who can afford to use what might be 

considered “bad habits” from those who cannot. These 

attributes are helpful in identifying potentially at-risk 

students who could subscribe to an automated warning 

system derived from this study. 

4. Data Analysis 

4.1 Distinguishing attributes 

The study uses 90 attributes concerning student project 

activities and related data discussed in the previous section. 

These attributes fit into the following categories. 

1. Student data include ID, major track, and year in 

university. 

2. Course-project data include course number, 

semester, project number, and project start and end 

date-time. 

TESTED 2013-03-24-21-45-38-EDT 

~idN/JavaLang/FillWord2 

idN    5836 Mar  3 15:43  FillWordTest.java 

idN      57 Mar  3 16:01   testjava.txt   

idN    6248 Mar  3 16:01  testjava.ref 

idN      70 Mar  3 16:06   testjava2.txt  

idN    2037 Mar  3 16:07  makefile     

idN    8951 Mar  3 16:07  testjava2.ref 

idN    1183 Mar 13 17:33  IFillWord.java 

idN    3474 Mar 14 12:59 FillWordGrows.java 

idN    8849 Mar 24 21:33 FillWordBasic.java 

idN    5027 Mar 24 21:37 FillWordHelper.java 

Listing 2: Listing of student project directory 

 



3. Date-times for start and completion of student 

work come in five forms: A) hours from handout 

until student start, B) hours from completion until 

project due, C) hours from student start until project 

due, D) hours from handout until student completion, 

and E) hours from student start until completion. 

4. Other time management attributes relate to the 

concept of a work session, which for this study is a 

contiguous period of captured make actions with no 

intervals between actions >= 60 minutes in length. 

Attributes record the min, max, mean, sample 

standard deviation, median and mode for the 

following data: length of session time in minutes, 

and time between sessions in hours. 

5. Additional temporal attributes are total session time, 

total number of sessions, and session time-of-day.  

Graduate students suggested the latter data category, 

which comes in six divisions:  sessions centered 

between 12 and 3:59 AM, between 4 and 7:59 AM, 

between 8 and 11:59 AM, and their three afternoon-

evening counterparts. 

6. The study also analyzes size of work (min, max, 

mean, sample standard deviation, median and mode) 

for the following per-session data attributes: number 

of source file bytes changed, number of source 

files modified, number of source lines added, lines 

deleted, and lines changed. 

7. Informed and detailed email messages to the 

instructor, uninformed and vague emails, and the 

total of these two classes comprise another class of 

data as previously discussed. 

8. The target attributes of project numeric and letter 

grade, final course numeric and letter grade, and 

centile ranking of project and course numeric grades 

constitute the final category. 

Analysis uses only one target attribute at a time because 

these attributes are partially redundant. Project numeric 

grade trivially determines project letter grade, for example, 

without considering other attributes. After some analysis 

the study dropped use of overall course grades because 

these course grades are a weighted average of course 

projects and exams, and some students are habitually poor 

test takers. Project preparation patterns showed no clear 

correlation to exam results. The study also dropped use of 

letter grades in favor of using binned (discretized) numeric 

grades in order to allow exploration of binning strategies. 

The primary target attribute is project numeric grade, with 

project centile ranking also considered in detail. 

Data mining has two different modes of operation for 

investigators. The first is to make data relationships 

clearer to human investigators. The second is to support 

creation of automated programs for pattern recognition 

and response. The former is the mode of the current study. 

The latter is the mode for the anticipated automated early 

warning system for at-risk students. 

The study used two complementary approaches to thin 

the 84 non-target attributes down to a set that exhibits 

correlation with target attributes in a way that makes the 

data relationships clearer to human investigators. The first 

was repeated manual application of Weka’s OneR rule-

based machine learning algorithm [1,2] that uses the 

minimum-error attribute for prediction of discrete numeric 

attribute bins. OneR selects the single most accurate non-

target attribute to predict the target attribute. Our process 

was to use OneR repeatedly to select the next-most 

predictive attribute, then remove that attribute, and then 

repeat the process. This iterative process also eliminated 

partially redundant attributes, along with attributes for 

which there were significant numbers of missing values. 

For example, the initial study of the Java course did not 

capture source files for GUI development projects run on 

laptops, so it was necessary to discard diff-based line 

add/change/delete attributes when analyzing those projects. 

The second approach was to use Weka’s “Select 

attributes” capability, applying the “CfsSubsetEval” 

algorithm that evaluates the worth of a subset of attributes 

by considering the individual predictive ability of each 

feature along with the degree of redundancy between them, 

in conjunction with a “BestFirst” search method that 

searches the space of attribute subsets by greedy hill 

climbing augmented with a backtracking facility. This is 

essentially the automated version of the semi-manual 

approach of the previous paragraph. Both yielded the same 

set of predictive attributes. 

Listing 3 shows Weka results for six of the most 

predictive attributes in predicting the centile ranking of the 

project grade. OneR shows that Jstr, the number of hours 

from the time the student started the project until the 

project deadline, is the single most predictive attribute. 

Other analyses duplicate this result. Jstr is more useful 

than the time from project handout until start, because 

project time periods vary by project, sometimes because of 

complexity, but also because of incidental reasons such as 

spring break or an exam in the course. Jstr is a measure of 

Jstr hours from student start until due deadline 

Mavg average minutes of a work session                         

Mdev sample standard deviation of Mavg  

Snum number of work sessions 

Mtot total minutes spent on the project                                                 

Cgpa computer science GPA at semester start                                              

GprjRank centile ranking of project grade 

If Jstr < 24.0 then 0 <= GprjRank <= 13.2                                                    

Elseif Jstr < 79.0 then GprjRank  > 90.4 

Elseif Jstr < 181.0 then 80.7 < GprjRank <= 90.4 

Elseif Jstr >= 181.0 then GprjRank > 90.4                                         

(36/111, 32.4%, instances correct) 

Listing 3: OneR prediction from 6 attributes 

 



procrastination because it shows how close to the project 

deadline a student has waited before starting. 

Listing 3 shows that starting a project within the last 24 

hours leads to the lowest centile bin, between 0 and 13.2 

percentile. This observation accords with previous studies 

such as Edwards, et. al. [3], which states, “approximately 

two-thirds of the lower scores were received by individuals 

who started on the last day or later.” However, the fact that 

OneR’s predictions based on Jstr are correct only 32.4% 

of the time, and that one-third of the lower scores of [3] 

were received by individuals who started earlier than the 

last day, show that procrastination is not the only important 

attribute at work in determining project quality. 

Listing 3 shows a problem with a simple monotonic 

interpretation of start time before deadline as the main 

attribute of interest. OneR predicts that students starting 

between 24 and 79 hours before the due date will attain the 

top centile bin (greater than 90.4 percentile), 79-to-181 

hour starters will attain the next lower centile bin, and 

students starting >= 181 hours will attain the top bin. The 

problem is with the 24-79 group attaining the top bin. This 

result resonates with the instructor’s experience that some 

students can start during the last few days, sometimes send 

very focused email questions that may not receive 

immediate responses, send subsequent “never mind, I 

found it” messages, and complete the project with good 

results. It is because of such students that the authors 

decided to include the computer science GPA and related 

attributes in the study. In fact, replacing centile ranking 

with project grade as the target attribute leads to the OneR 

rule of Listing 4, with computer science GPA (Cgpa) 

replacing Jstr as the most predictive attribute. 

This fatalistic prediction of prior GPA as the most 

predictive attribute would be discouraging, were it not for 

the fact that this OneR rule is wrong 74.8% of the time for 

the Java Programming dataset. Cgpa is important, but its 

contribution is not deterministic. The next section takes up 

the detailed analysis used to find countervailing attributes. 

4.2 Patterns for indication of success 

The previous section deals with the search through 

available attributes. Lack of space precludes inclusion of 

strategies for the search through the space of available 

machine learning algorithms and correlation techniques. 

The guiding principle in this search was intelligibility. 

Algorithms and tools whose results are straightforward to 

interpret lead to the results reported in this section. 

Table 1 shows the results of Simple K-means clustering 

[2] for 6 clusters, along with the full programming dataset, 

for the six most predictive attributes for project grade Gprj 

in Java Programming. Several relationships in the data 

appear at the surface. 

First, the lowest average project grade of 57.19% in 

cluster 4 pairs with the latest starting time Jstr of 36.1875 

hours before the project deadline. Cluster 4 is the smoking 

gun for the negative effects of procrastination. 

However, cluster 0 with the second smallest Jstr of 

57.875 pairs with a grade of 93.83%. Comparing these two 

clusters shows that the computer science GPA for cluster 0 

is 3.3392 compared to 2.255 for cluster 4, suggesting that 

the cluster 0 students are better prepared for a somewhat 

late start; cluster 0’s Jstr value is 60% greater than cluster 

4’s. There are other important differences. Cluster 0’s 

average work session time in minutes Mavg is 68.5097, 

compared to cluster 4’s 36.6927, and cluster 0’s total 

session minutes Mtot is 174.125, compared to 4’s Mtot of 

100.6875. Cluster 0 students work in sessions that are 87% 

longer, and for overall time that is 75% greater, than 

cluster 4 students. 

Cluster 5 with the second lowest Gprj value at 88.86% 

is significantly better than cluster 4 at 57.19%. The Cgpa 

at 2.6143 is also the second lowest, and Mavg is relatively 

low at 49.4403 minutes. However, cluster 5 students have a 

attribute full data 

111 records 

cluster 0 

24 = 22% 

cluster 1 

9 = 8% 

cluster 2 

27 = 24% 

cluster 3 

7 = 6% 

cluster 4 

16 = 14% 

cluster 5 

28 = 25% 

Jstr 167.9459 57.875 155.2222 249.7778 238 36.1875 245.25       

Mavg 58.1449 68.5097 138.8896 42.4935 63.0163 36.6927 49.4403 

Mdev 48.4055 36.8001 116.7501 44.7172 78.8199 21.9392 47.4618 

Yavg 5153.661 4435.4986 20419.4735 2605.7539 5061.4645 5635.8594 3066.7782 

Snum 5.4324 2.9167 4.4444 5.7407 14.1429 2.625 7.0357 

Mtot 302.045 174.125 589.7778 242.2963 884.8571 100.6875 346.1786 

Cgpa 3.055 3.3392 3.3411 3.6156 3.1429 2.255 2.6143 

Gprj 90.01% 93.83% 99.56% 100.89% 102.29% 57.19% 88.86% 

 

Table 1: Simple K-means clusters for the six most predictive attributes for project grade Gprj in Java Programming 

Gprj project grade               

If Cgpa < 2.24 then 0 <= Gprj <= 0.625 

Elseif Cgpa < 2.635 then 0.625 < Gprj <= 0.815 

Elseif Cgpa < 2.945 then 0.815 < Gprj <= 0.925 

Elseif Cgpa >= 2.945 then 1.015 < Gprj <= 1.04 

(28/111, 25.2% instances correct) 

Listing 4: OneR prediction to project grade 

 



high Jstr value of 245.25 hours, the second-highest 

number of sessions Snum of 7.0357, and a higher than 

average total session minutes Mtot of 346.1786. An early 

start and repeated application of time to the project pay off 

in giving cluster 5 students a Gprj that is 55% greater than 

that of cluster 4. 

Finally, Table 1 shows that for most clusters, larger 

values for mean session minutes Mavg correlate with 

larger values for mean source bytes (characters) modified 

per session Yavg, but for cluster 4, the second highest 

Yavg of 5635.8594 bytes pairs with the smallest Mavg 

value. Cluster 4 students attempted, unsuccessfully, to 

complete a large amount of work in very little time. 

Other algorithms such as the J48 decision tree and 

Bayesian inference [2] give results that are compatible with 

the K-means clusters, but that are harder to read and 

integrate into a paper because of the amount of detail in 

their logic. One additional example is the Pruned M5P 

model tree, which uses decision tree-like structure to select 

from among a set of linear regression formulas. Below is 

the M5P model tree for all Table 1 attributes except Yavg. 

Cgpa <= 3.205 : 

|   Jstr <= 66 : 

|   |   Mavg <= 36.167 : LM1 (5/29.636%) 

|   |   Mavg >  36.167 : LM2 (18/106.448%) 

|   Jstr >  66 : LM3 (40/57.247%) 

Cgpa >  3.205 : LM4 (48/31.383%) 

LM num 1: Gprj = 

    0.0012 * Jstr + 0.0009 * Mavg 

    + 0.0214 * Snum - 0.0002 * Mtot 

    + 0.2908 * Cgpa - 0.2251 

LM num 2: Gprj = 

    0.0001 * Jstr + 0.0009 * Mavg 

    + 0.0214 * Snum - 0.0002 * Mtot 

    + 0.2278 * Cgpa + 0.0515 

LM num 3: Gprj = 

    0.0001 * Jstr + 0.0007 * Mavg 

    + 0.028 * Snum - 0.0001 * Mtot 

    + 0.226 * Cgpa + 0.0893 

LM num 4: Gprj = 

    0.0008 * Mavg + 0.0143 * Snum 

    - 0.0001 * Mtot + 0.1052 * Cgpa + 0.5199 

Listing 5: Pruned M5P model tree  

LM4: When the tree finds a Cgpa > 3.205, it goes to a 

linear formula with the highest constant value for the Gprj 

(51.99%) and the lowest weight for the Cgpa. These 

students are not typically at risk. 

LM3: Otherwise, when Cgpa <= 3.205 and the start 

time Jstr is greater than 66 hours before the deadline, the 

tree goes to a linear formula with a much smaller constant 

value and greater dependence on the Cgpa. 

LM2: With Jstr <= 66 and Mavg work time that 

exceeds 36.167 minutes, the tree goes to a formula with 

more weight on the Cgpa and a lower constant value. 

LM1: Finally, with Mavg <= 36.167, the tree goes to a 

formula with the greatest dependence on Cgpa and a 

negative constant value. A low mean average session time 

is an automatic handicap. 

There is nothing a student can do to change an incoming 

Cgpa, but the tree and formulas of Listing 5 indicate that 

students with lower Jstr and Mavg values correlate with 

lower constant values and more deterministic ties to the 

Cgpa within linear predictors, than students with higher 

Jstr and Mavg values. At-risk students need to start earlier 

and engage in sessions that exceed 36 minutes. Apparently, 

36 minutes are not enough to get properly immersed in 

software development. Other Weka models suggest that 

Mavg should exceed 60 to 75 minutes. 

M5P is one of the better predictors applied to these 

attributes, predicting about 55% of the test cases correctly 

for this dataset, with a mean absolute error of 13.04% on a 

Gprj scale of 100%. Predicting incorrectly 45% of the 

time, with an average miss of more than a 10% letter grade, 

is not great prediction. A student is a hard nut to crack. 

There are, seemingly, hidden variables not measured by the 

study. However, Cgpa, Jstr, and Mavg have strong 

correlation with project grade, and the latter two attributes 

are available for change by students. 

 

Graph 1: Gprj as a function of cumulative Jstr ranges 

Graph 1 shows average relationships between Jstr value 

ranges and mean project grades Gprj for students in 

various Cgpa ranges. Jstr values to the right in the graph 

subsume Jstr values to the left. For example, 72 on the X 

axis means Jstr <= 72, a range that includes Jstr <= 24. 

The maximum grade of 127% in the dataset includes 

optional bonus points for one project. The authors 

computed Graph 1 by using the Weka preprocessor as a 

query tool to eliminate from the dataset Cgpa and Jstr 

values outside a desired range, and then entered the 

resulting mean Gprj value into an Excel spreadsheet to 

plot the graph. All four Cgpa curves show a minimum 

spread of 20%, i.e., two letter grades, across the range of 



Jstr values. The graph cannot capture the nonlinear 

relationships of Jstr to Cpga illustrated by Table 1, but 

nevertheless it shows the overall importance of Jstr. All 

four curves level out at about 10 to 11 days. It is the 

instructor’s experience that most students do not utilize 

project periods greater than two weeks in length very well, 

requiring the instructor to break big projects in a number of 

smaller assignments, each fitting in a two-week interval. 

Graph 1 confirms the validity of this practice. 

Graph 2, also captured using Weka’s value range 

filtering and Excel, shows related curves for the 

relationship of cumulative session minutes Mavg in 

relation to mean project grade Gprj. Work sessions less 

than 60 minutes in length lead to problems for most 

students, and sessions at least 75 minutes in length are 

better for at-risk students. 

 

Graph 2: Gprj as a function of cumulative Mavg ranges 

4.3 Secondary & problematic patterns 

Weka’s “Select attributes” capability suggests possible 

importance for work sessions with midpoints between 4 

AM and 11:59 AM, i.e., morning sessions. Students in 

higher Gprj ranges did tend to work in the mornings, but 

they also worked more in the afternoons, took an evening 

break, and worked again during the four hours before 

midnight. At-risk students fell into two groups. One group 

started within the last 36 hours, leaving themselves no 

opportunity for time management. They did not work in the 

morning. The other group started well in advance of the 

deadline, performing most of their work during the four 

hours before midnight. Our conclusions are that some 

morning work after a night’s rest helps to improve a 

project’s quality, and that consistently working only at 

day’s end, when a student is tired, leads to poor quality. 

No other attributes correlate strongly with project 

success, including student survey data about conflicting 

demands on time. Also, the data collected in the fall 2013 

Operating Systems classes were not useful because student 

projects consisted of modifying state machines drafted by 

the instructor that emphasized analysis and design, with 

very little coding, similar to solving a proof. Most of the 

work was in the pre-coding stage, and therefore not visible 

to data collection via make. Three spring 2014 

programming courses will provide much more useful data. 

5. Conclusions and Future Work 

Procrastination is a culprit in poor results for programming 

projects, but it is not a simple, linear one. Some students 

who have performed well in past computer science courses 

apparently know their limits. However, for many students, 

and especially for at-risk students with lower computer 

science grade point averages at the start of a programming 

course, starting at least 11 days before the due date of a 

two-week project yields demonstrable benefits. Also, the 

minimum length of a programming work session should be 

at least 60 minutes, and preferably 75. Time of day of work 

is a contributing factor. In addition to starting early in the 

project cycle, students should not work solely at the end of 

long days, when they are tired. 

There are additional data available for mining. Data 

collection in spring 2014 will more than double the size of 

the dataset. The M5P model tree algorithm promises to 

provide an accurate basis for constructing an early warning 

system for at-risk students. The plan is to implement a 

prototype system after completing analysis in summer 

2014, with voluntary use by students to follow. 
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