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Abstract—Many famous researchers in computer science,
mathematics and other areas have studied enumerative problems
in lattice path and walks which could be applied to many fields.
We will discuss some new enumerative problems including some
pattern avoidance problems in lattice paths and walks with
several step vectors. Results on stretches and turns are presented
and several open problems are posted. A few approaches are
used in this paper such as computational, generating function,
closed formula and constructional method. You will observe many
interesting integer sequences as well.
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I. INTRODUCTION, NOTATIONS AND PRELIMINARIES

In order to present our problems and results clearly and

efficiently, we introduce some notations in the following.

East step: E or → or (1, 0), x-step

You can see more in the table below:

(0, 1) (1, 0) (1, 1) (0,−1)
↑ → ↗ ↓
N E NE S

(−1, 0) (−1,−1) (−1, 1) (1,−1)
← ↙ ↖ ↘
W SW NW SE

↑≥k: k or more than k consecutive ↑ steps

↑=k: k consecutive ↑ steps

avoiding ↑≥k: no k or more than k consecutive ↑ steps

avoiding ↑=k: no k consecutive ↑ steps, but can have more

than or less than k consecutive ↑ steps

bxc: the largest integer not greater than x, floor(x)
dxe: is the smallest integer not less than x, ceiling(x)
[xn]f(x) denotes the coefficient of xn in the power series

expansion of a function f(x).
[xmyn]f(x, y) denotes the coefficient of xmyn in the power

series expansion of a function f(x, y).(
n
r

)
, the number of combinations of n things r at a time.

(
n

r

)
=

n!

(n− r)!r! =
(

n

n− r

)
=

(
n− 1
r − 1

)
+

(
n− 1
r

)
(
−n
r

)
= (−1)r

(
n+ r − 1

r

)
A lattice path is a path from the lattice point (x1, y1) to the

lattice point (x2, y2), x1 ≤ x2, y1 ≤ y2, we mean a directed

path from (x1, y1) to (x2, y2) which passes through lattice

points with movements parallel to the positive direction of

either axis. Here, we refer to two types steps, viz., x−steps

and y−steps, where an x ( y )−step is a directed line segment

parallel to the x ( y ) axis going right (up) joining two

neighboring points. For counting purposes we may, without

loss of generality, consider lattice paths from the origin to

(m,n) and observe that each such path is characterized by

having exactly m horizontal steps and n vertical steps. If we

denote by f(m,n) the number of paths from (0, 0) to (m,n),
elementary reasoning gives the results

f(m,n) =

(
m+ n

n

)
.

Lattice paths are encountered in a natural way in various

problems, e.g., ballot problems, compositions, random walks,

fluctuations, queues, and the tennis ball problem.

The number of lattice paths from the origin to (m,n), m >
n + t, not touching the line x = y + t, where t is a nonzero

integer satisfies [18](
m+ n

n

)
−
(
m+ n

m− t

)
.

When t = 0, the paths have to touch the line x = y at

the origin, and therefore the number paths from the origin to

(m,n) that do not touch the line x = y except at the origin

is given by

m− n
m+ n

(
m+ n

n

)
.

The number of lattice paths from (r, s) to (m,n) that never

rise above the line y = x is [1](
n+m− r − s

m− r

)
−
(
n+m− r − s
m− s+ 1

)
.

Then the number of lattice paths from (0, 0) to (m,n) that

never rise above the line y = x is(
n+m

m

)
−
(
n+m

m+ 1

)
.

The of n-step lattice paths starting from (0, 0) that never

rise above the line y = x is

n∑
i=dn/2e

n!(2i+ 1− n)
(i+ 1)!(n− i)! =

(
n

bn/2c

)
.

The number of paths from (0, 0) to (n, n) that never rise

above the line y = x is the nth Catalan number, denoted by



Cn, and define C0 = 1.

Cn =
1

n+ 1

(
2n

n

)
=

(
2n

n

)
−
(
2n

n+ 1

)
=

n∑
i=0

(
n

i

)2
with generating function

1−
√
1− 4x
2x

.

Also,

Cn+1 =

n∑
i=0

CiCn−1 =
2(2n+ 1)

n+ 2
Cn.

The tennis ball problem was presented on pages 304− 305
of the book " Sweet Reason: A Field Guide to Modern Logic"

by Tom Tymoczko and Jim Henle in 1995. Their presentation

deals with adding numbered books to a stack on a table,

then removing some, infinitely many times. Motivated by that

presentation, Ralph P. Grimaldi and Joseph G. Moser deal with

performing the process a finite number of times. Since then

more mathematicians have studied the problem, such as C. L.

Mallows and L. Shapiro, R.J. Chapman, T.Y. Chow, A. Khetan,

D.P. Moulton, R.J. Waters, J. E. Bonin, Anna de Mier, M. Noy,

H. Niederhausen, J. Fallon, and S. Gao. [2], [4], [5], [6], [7],

[8], [9], [11], [13], [14], [16], [17] However, it is still wildly

open and might challenge more people in the future.

The number of ways of putting n like objects into r different

cells is
(
n+r−1
n

)
=
(
n+r−1
r−1

)
. [19] It is also the number of

nonnegative integer solutions to the equation

r∑
i=1

xi = n. The

number of ways of putting n like objects into r different cells

with no cell is empty is
(
n−1
r−1
)
. It is also the the number of

positive integer solutions to the equation

r∑
i=1

xi = n.

If p is a prime, then
(
p
i

)
is divisible by p for 1 ≤ i ≤ p−1.

[21]

Fibonacci number: Fn is defined as F0 = 0, F1 = 1, Fn =
Fn−2 + Fn−1 for n ≥ 2.

II. PATTERN AVOIDANCE IN LATTICE PATHS AND WALKS

The number of n-step walks with steps (0, 1), (1, 0) and

(−1,−1) is
(3n)!

(n!)3
.

Theorem 1. The number of 3n-step walks from (0, 0) to (0, 0),
taking steps from {E,N, SW}, and staying above the line y = x
(i.e., any point (x, y) along the path satisfies y ≥ x ) is given

by
(3n)!

(n!)2(n+ 1)!
.

Example: n = 1, three walks: NE(SW ), (SW )NE,

N(SW )E.

This is the sequence [22, A007004]:

1, 3, 30, 420, 6930, 126126, ...

Proof: It is clear that such a 3n-step walk contains n
copies of north, east and southwest step, respectively.

It is also true that the total number of north and east steps is

greater or equal to the number of southwest steps at any lattice

point on a walk. Now we arrange n north and east steps (total

is n ) with n southwest steps to get a 2n-step walk according

to: the total number of the chosen steps is greater or equal to

the number of southwest steps at any lattice point on a walk,

which gives Cn (We do not consider the difference of north

steps and east steps at this moment). Next, we have 2n + 1
positions to insert the remaining n steps of the north steps

and east steps into the 2n-step walk, giving
(
3n
n

)
ways. Now

combine them:

Cn

(
3n

n

)
=

(3n)!

(n!)2(n+ 1)!
.

This theorem also could be proved by using André’s Reflec-

tion Method:(
3n

n, n, n

)
−
(

3n

n+ 1, n− 1, n

)
=

(3n)!

(n!)2(n+ 1)!
.

Theorem 2. The number of 3n-step walks from (0, 0) to

(0, 0), taking steps from {W,S,NE}, and staying within the

first quadrant (i.e., any point (x, y) along the walk satisfies

x, y ≥ 0 ) is given by [12]

4n(3n)!

(n+ 1)!(2n+ 1)!
.

Example: n = 1, two walks: (NE)SW , (NE)WS.

This is the sequence [22, A006335]:

1, 2, 16, 192, 2816, 46592, 835584, ...

Theorem 3. The number of lattice paths avoiding ↑≥2, from

(0, 0) to (m,n) is (
m+ 1

n

)
.

Proof: The m East steps provide m+1 positions (we can

say m+1 different cells) for n North steps to be inserted with

each cell containing at most one element (North step). Then

there are
(
m+1
n

)
ways to choose n cells.

Corollary 4. The number of lattice paths from (0, 0) to (ns+
1, nt− 1), avoiding ↑≥2is(

ns+ 2

nt− 1

)
.

Corollary 5. The number of n-step paths with east and north

steps and with two consecutive north steps forbidden is equal

to [3]
dn/2e∑
i=0

(
n+ 1− i

i

)
= Fn+2.



Theorem 6. The number of walks from (0, 0) to (m,n) (

m ≥ n) take steps from {E,N,NE} is

n∑
k=0

(
m+ n− 2k
n− k

)(
m+ n− k

k

)
.

Proof: Without loss of generality, we assume that there

are k Northwest steps, m−k East steps and n−k North steps

in a walk from (0, 0) to (m,n). It is clear that 0 ≤ k ≤ n.

Firstly, we only consider the number of arrangements ofm−
k East steps and n− k North steps, which give us

(
m+n−2k
n−k

)
ways.

Secondly, m− k East steps and n− k North steps provide

m + n − 2k + 1 positions (we can say m + n − 2k + 1
different cells) for k Northwest steps to be inserted, which

give
(
m+n−k

k

)
.

Therefore, we get the number:

n∑
k=0

(
m+ n− 2k
n− k

)(
m+ n− k

k

)
.

We obtain sequence [22, A001850] for m = n:

1, 3, 13, 63, 321, 1683, 8989, 48639, ...

Sequence [22, A002002] for m = n+ 1:

1, 5, 25, 129, 681, 3653, 19825, ...

The number of walks from (0, 0) to (n, n − 1) ( m ≥ n)

take steps from {E,N,NE}.

Sequence [22, A026002] for m = n+ 2:

1, 7, 41, 231, 1289, 7183, 40081, ...

Sequence [22, A190666] for m = n+ 3:

9, 61, 377, 2241, 13073, 75517, 433905, ...

Example 7. There are 13 walks in the above theorem for

m = n = 2: 6 walks with 2 East steps and 2 North steps,

1 walk with two Northeast steps, 6 walks with 1 Northeast

step, 1 East step and 1 North step: (NE)NE, (NE)EN, NE(NE),

EN(NE),E(NE)N, N(NE)E.

Corollary 8. The number of walks from (0, 0) to (n, n) take

steps from {E,N,NE} is

n∑
k=0

(n+ k)!

(n− k)!(k!)2 .

Theorem 9. The number of lattice paths from (0, 0) to (m,n)
avoiding ↑≥3is

bn/2c∑
i=0

(
m+ 1

n− i

)(
n− i
i

)
.

Proof: Without loss of generality, we assume that there

are i copies of double North Steps, n − 2i copies of single

North step in a lattice path from (0, 0) to (m,n) and avoiding

↑≥3. It is clear that 0 ≤ i ≤ bn/2c. The m East steps provide

m+1 positions (we can say m+1 different cells) for n North

steps to be inserted with each cell containing at most one

element (↑ or ↑2). There are
(
m+1
n−i
)

ways to choose n cells

for the i copies ↑2 and n − 2i copies of ↑. We have
(
n−i
i

)
ways to distribute the i copies ↑2. Therefore, we can get the

number.

Corollary 10. The number of lattice paths from (0, 0) to (ns+
1, nt− 1) avoiding ↑≥3is

b(nt−1)/2c∑
i=0

(
ns+ 2

nt− 1− i

)(
nt− 1− i

i

)
.

Theorem 11. The number of lattice paths from (0, 0) to

(m,n) avoiding ↑≥2 and →≥3is(
n+ 1

m− n− 1

)
+ 2

(
n

m− n

)
+

(
n− 1

m− n+ 1

)
.

Theorem 12. The number of lattice paths from (0, 0) to

(m,n) avoiding ↑≥3and →≥3is

2

bm/2c∑
i=m−n

(
m− i
i

)(
m− i

n−m+ i

)

+

bm/2c∑
i=m−n−1

(
m− i
i

)(
m− i− 1

n−m+ i+ 1

)

+

bm/2c∑
i=m−n+1

(
m− i
i

)(
m− i+ 1

n−m+ i− 1

)
.

The generating function of the above numbers is

[xmyn](
(
1 + x+ x2 + x3

)
(1 + y + y2 + y3)

(1− xy − xy2 − xy3 − x2y − x2y2

− x2y3 − x3y − x3y2 − x3y3)−1).

Corollary 13. The number of lattice paths from (0, 0) to

(n, n) avoiding ↑≥3and →≥3is

2

bn/2c∑
i=0

(
n− i
i

)(
n− i
i

)
+ 2

bn2 c∑
j=1

(
n− j
j

)(
n− j + 1
j − 1

)
.

Theorem 14. The generating function for the number of lattice

paths from (0, 0) to (n, n) avoiding ↑≥3and →≥3, is

(1− t)2
√
(1 + t+ t2) (1− 3t+ t2)− (1− 3t+ t2)(1 + t2)

t2(1− 3t+ t2)
= 2t+ 6t2 + 14t3 + 34t4 + 84t5 + 208t6 + 518t7 + ... .

A proof of this theorem involved finite operator calculus is

in [10].

Example 15. For m ≤ 7 and n ≤ 8, the number of

lattice paths from (0, 0) to (m,n) avoiding ↑≥3and →≥3is



as follows:

n=8 1 15 87

n=7 4 30 114

n=6 1 10 43 113

n=5 3 16 45 84

n=4 1 6 18 34 45

n=3 2 7 14 18 16

n=2 1 3 6 7 6 2

n=1 1 2 3 2 1

n=0 1 1

m=0 m=1 m=2 m=3 m=4 m=5

from (0, 0) to (m,n) avoiding ↑≥3 and −→≥3

Theorem 16. Let f(m,n) be the number of lattice paths from

(0, 0) to (n, n) avoiding ↑k and −→k,taking steps from {↑
,−→}. Then

f(m,n) = f(m− 1, n) + f(m,n− 1)− f(m− k, n− 1)
− f(m− 1, n− k) + f(m− k, n− k).

Corollary 17. The number of lattice paths from (0, 0) to

((ns+ 1), nt− 1) avoiding ↑≥3and →≥3is

2

b(ns+1)/2c∑
i=(ns+1)−n

(
m− i
i

)(
m− i

n−m+ i

)

+

bm/2c∑
i=m−n−1

(
m− i
i

)(
m− i− 1

n−m+ i+ 1

)

+

bm/2c∑
i=m−n+1

(
m− i
i

)(
m− i+ 1

n−m+ i− 1

)
.

Theorem 18. The number of lattice path from (0, 0) to (n, n)
avoiding ↑≥4,→≥4is

2

bn/3c∑
i=0

b(n−3i)/2c∑
j=0

(
n− 2i− j

i

)(
n− 3i− j

j

)
min{bn/3c,b 2i+j2 c}∑

s=0

(
n− 2i− j

s

)(
n− 2i− j − s
2i+ j − 2s

)

+2

bn/3c∑
i=0

b(n−3i)/2c∑
j=0

(
n− 2i− j

i

)(
n− 3i− j

j

)
min{bn/3c,b 2i+j+12 c}∑

s=0

(
n− 2i− j − 1

s

)(
n− 2i− j − s− 1
2i+ j + 1− 2s

)
.

The above numbers equal

[xnyn](

(
1 + x+ x2 + x3

)
(1 + y + y2 + y3)

1− xy (1 + y + y2) (1 + x2 + x) ).

Theorem 19. The generating function of the number of lattice

paths from (0, 0) to (n, n) avoiding ↑≥i,→≥jsatisfies

(

i∑
k=1

xk−1)(

j∑
k=1

yk−1)

1− (
i∑

k=2

xk−1)(

j∑
k=2

yk−1)

.

Problem 20. How to find the number of lattice paths from

(0, 0) to (n, n) avoiding ↑≥i,→≥j , and weakly above the the

diagonal y = x . And how to find a good generating function

for this problem?

III. STRETCHES AND TURNS [15]

A. Lattice Path with East, North Steps:

Consider the paths from (0, 0) to (m,n) with s level-

stretches (a stretch is one or some unextendable continues level

steps),k right turns and h up-stretches.

Let f1(m,n, k) denote number of walks from (0, 0) to

(m,n) with k right turns, then

f1(m,n, k) =

(
m

k

)(
n

k

)
.

Example: f1(1, 1, 1) = 1, f1(1, 1, 0) = 1, f1(2, 2, 1) = 4.
Let f2(m,n, s) denote the number of walks from (0, 0) to

(m,n) with s level-stretches, then

f2(m,n, s) =

(
m− 1
s− 1

)(
n+ 1

s

)
.

Example: f2(1, 1, 1) = 2, f2(1, 2, 1) = 3, f2(3, 2, 2)=6.
Let f3(m,n, h) denote the number of walks from (0, 0) to

(m,n) with h up-stretches, then

f3(m,n, h) =

(
m+ 1

h

)(
n+ 1

h− 1

)
.

Example: f3(1, 1, 1) = 2, f3(1, 2, 2) = 3, f3(3, 3, 2) = 24.
Let f4(m,n, t) denote the number of walks from (0, 0) to

(m,n) with t stretches, then f4(m,n, t) =

2

(
m− 1
t/2− 1

)(
n− 1
t/2− 1

)
when t is even,

(
m− 1
(t− 1)/2

)(
n− 1

(t− 1)/2− 1

)
+

(
m− 1

(t+ 1)/2− 2

)(
n− 1

(t+ 1)/2− 1

)
when t is odd.

Example:f4(1, 1, 2) = 2, f4(3, 3, 4) = 8, f4(2, 1, 3) =
1, f4(3, 4, 5) = 9.

Let f5(m,n) denote the number of walks from (0, 0) to

(m,n). It is well known that

f5(m,n) =

(
m+ n

n

)
=

(
m+ n

m

)
.



We also have

f5(m,n) =
∑
i≥1

(
m+ 1

i

)(
n− 1
i− 1

)
.

Example: f5(1, 1) = 2, f5(1, 2) = 3, f5(2, 2) = 6.

B. ENW Walks

Counting walks which start at the origin (0, 0) and take

unit steps (1, 0), (0, 1), and (−1, 0) with the restriction that

no E step immediately follows a W step and vice verse. The

restriction has the effect of making the walks self-avoiding.

It is a major unsolved problem to enumerate all self-avoiding

walks. We start by counting walks which start at the origin

(0, 0) and take unit steps (1, 0),and (0, 1). Let p(m,n) denote

the number of ENW walks from (0, 0) the (m,n). We have

p(m,n) = p(m,n− 1) + 2
∑
i>0

p(m− j, n− 1)

p(m+ n) =
∑
i=0

p(m+ i, n− i).

Let p1(m,n, h) denote the number of walks from (0, 0) to

(m,n) with h up-stretches, then

p1(m,n, h) = 2
h+1

(
m

h

)(
n− 1
h− 1

)
+2h−1

(
m− 1
h− 2

)(
n− 1
h− 1

)
.

Example:p1(1, 1, 1) = 4, p1(3, 4, 2) = 78.

Let p2(m,n, t) denote the number of walks from (0, 0) to

(m,n) with t stretches, then

p2(m,n, t) =

2(t/2+1)
(
m− 1
t/2− 1

)(
n− 1
t/2− 1

)
when t is even;

2(t+1)/2
(
m− 1
(t− 1)/2

)(
n− 1

(t− 1)/2− 1

)
+

2(t−1)/2
(

m− 1
(t+ 1)/2− 2

)(
n− 1

(t+ 1)/2− 1

)
when t is odd.

Example:p2(1, 1, 2) = 4, p2(4, 3, 4) = 48, p2(1, 2, 3) =
2,p2(3, 4, 5) = 48.

Let p2(N, t) denote the number of walks with length N and

t stretches, then p2(N, t) =

N−t/2∑
n=t/2

2t/2+1
(
N − n+ 1
t/2− 1

)(
n

t/2− 1

)
for even t

N−(t+1)/2∑
n=(t−1)/2

2(t+1)/2
(
N − n− 1
(t− 1)/2

)(
n− 1

(t− 1)/2− 1

)

+

N−(t−1)/2∑
n=(t+1)/2

2(t−1)/2
(
N − n− 1
(t+ 1)/2− 2

)(
n− 1

(t+ 1)/2− 1

)
for odd t.

Example: p2(2, 2) = 4, p2(3, 2) = 8, p2(1, 1) = 3, p2(3, 3) =
6.

Let p(N) be the number of walks of length N , then

p(N) = 3 +

N∑
t=1

p2(N, t).

C. ENW Walks without Ending With a W Step

We now consider ENW walks from (0, 0) to (m,n) with

the additional restriction no walk ends with a W step. Let

q1(m,n, h) denote the number of walks from (0, 0) to (m,n)
with h up-stretches, then

q1(m,n, h) = 2
h−1
(
n− 1
h− 1

)
(

(
m

h− 1

)
+ 2

(
m

h

)
).

Example:q1(1, 1, 1) = 3, q1(2, 2, 1) = 5,q1(3, 4, 2) = 54.
Let q2(m,n, t) denote the number of walks from (0, 0) to

(m,n) with t stretches, then q2(m,n, t) =

3× 2t/2−1
(
m− 1
t/2− 1

)(
n− 1
t/2− 1

)
for even t

2(t−1)/2
(

m− 1
(t+ 1)/2− 2

)(
n− 1

(t+ 1)/2− 1

)
+ 2(t−1)/2

(
m− 1
(t− 1)/2

)(
n− 1

(t− 1)/2− 1

)
for odd t.

Example:q2(1, 1, 2) = 3, q2(4, 3, 4) = 36, q2(1, 2, 3) = 2

,q2(3, 4, 5) = 36.

Let q2(N, t) denote the number of walks with length N and

t stretches, then q2(N, t) =

N−t/2∑
n=t/2

3× 2t/2−1
(
N −m− 1
t/2− 1

)(
n− 1
t/2− 1

)
for even t

N−(t−1)/2∑
n=(t−1)/2

(2(t−1)/2
(
N − n− 1
(t+ 1)/2− 2

)(
n− 1

(t+ 1)/2− 1

)

+ 2(t−1)/2
(
N − n− 1
(t− 1)/2

)(
n− 1

(t− 1)/2− 1

)
)

for odd t.

Example: q2(2, 2) = 3,q2(3, 2) = 6, q2(3, 3) = 4, q2(5, 3) =

24.
Let q(N) be the number of walks of length N , then

q(N) =

N∑
t=1

p2(N, t).

Let q(m,n) denote the number of walks from (0, 0) to

(m,n), then

q(m,n) =

n∑
h=1

2h−1
(
n− 1
h− 1

)
(

(
m

h− 1

)
+ 2

(
m

h

)
).

Example:q(1, 1) = 3, q(1, 2) = 5, q(3, 4) = 129.



q(N) =

N∑
n=1

(

n∑
h=1

2h−1
(
n− 1
h− 1

)
(

(
N − n
h− 1

)
+2

(
N − n
h

)
))+1.

Example: q(0) = 1, q(1) = 2, q(2) = 5, q(3) = 12,q(4) =
29, q(5) = 70, q(6) = 169.

D. END Walks

We now consider walks from (0, 0) to (m,n) and taking

unit steps (1, 0) = E(east) and (0, 1) = N (north) and double

east steps of length 2 denoted by D.

Let c(m,n, h, d) denote the number of walks from (0, 0) to

(m,n) with h up-stretches and d copies of D, then

c(m,n, h, d) =

(
n− 1
h− 1

)(
m− d
d

)(
m− d+ 1

h

)
.

Example: c(1, 1, 1, 0) = 2, c(2, 1, 1, 1) = 2 ,c(6, 6, 4, 2) =
300, c(6, 6, 4, 3) = 10.

Let c(m,n, h) denote the number of walks from (0, 0) to

(m,n) with h up-stretches, then

c(m,n, h) =

m∑
d=0

(
n− 1
h− 1

)(
m− d
d

)(
m− d+ 1

h

)
.

Example: c(1, 1, 1) = 2, c(2, 1, 1) = 5, c(4, 3, 2) = 62.

Let c(m,n) denote the number of walks from (0, 0) to

(m,n),then

c(m,n) =

n∑
h=0

m∑
d=0

(
n− 1
h− 1

)(
m− d
d

)(
m− d+ 1

h

)
.

Example: c(1, 1) = 2, c(1, 2) = 3, c(3, 3) = 40.

Also,

c(m,n) =

n∑
h=0

m∑
d=0

(
n− 1
h− 1

)(
m− d
d

)(
m− d+ 1

h

)

=

m∑
d=0

(
m− d
d

) n∑
h=0

(
n− 1
h− 1

)(
m− d+ 1

h

)

=

m∑
d=0

(
m− d
d

)(
n+m− d
m− d

)
.

Let c(N) denote the number of walks of length N, then

c(N) =

N∑
n=0

N−n∑
d=0

(
N − n− d

d

)(
N − d

N − n− d

)

=

N∑
n=0

N−n∑
d=0

(
N − n− d

d

)(
N − d
n

)
.

Example:c(1) = 2, c(2) = 5, c(3) = 12, c(4) = 29.

IV. OPEN PROBLEMS IN PRUDENT SELF-AVOIDING WALKS

We will talk about two-sided prudent self-avoiding walks

(PSAWs) in the following:

A well-known long standing problem in combinatorics

and statistical mechanics is to find the generating function

for self-avoiding walks (SAW) on a two-dimensional lattice,

enumerated by perimeter. A SAW is a sequence of moves

on a square lattice which does not visit the same point more

than once. It has been considered by more than one hundred

researchers in the pass one hundred years, including George

Polya, Tony Guttmann, Laszlo Lovasz, Donald Knuth, Richard

Stanley, Doron Zeilberger, Mireille Bousquet-Mélou, Thomas

Prellberg, Neal Madras, Gordon Slade, Agnes Dittel, E.J. Janse

van Rensburg, Harry Kesten, Stuart G. Whittington, Lincoln

Chayes, Iwan Jensen, Arthur T. Benjamin, and others. More

than three hundred papers and a few volumes of books were

published in this area. A SAW is interesting for simula-

tions because its properties cannot be calculated analytically.

Calculating the number of self-avoiding walks is a common

computational problem. A PSAW is a proper subset of SAWs

on the square lattice. The walk starts at (0, 0), and the empty

walk is a PSAW. A PSAW grows by adding a step to the end

point of a PSAW such that the extension of this step - by any

distance - never intersects the walk. Hence the name prudent.

The walk is so careful to be self-avoiding that it refuses to

take a single step in any direction where it can see - no matter

how far away - an occupied vertex. The following walk is a

PSAW.

In a one-sided PSAW, the endpoint lies always on the top

side of the box. The walk is partially directed. A prudent walk

is two-sided if its endpoint lies always on the top side, or on

the right side of the box. The walk in the following figure is

a two-sided PSAW.

We studied the pattern avoidance problems on one-sided and

two-sided PSAWs and obtained:

(1) The generating function of the number, say f(n, k), of

one-sided n-step prudent walks exactly avoiding←=k and ↑=k



(both at the same time) satisfies

1 + t− 2tk + 2tk+1
1− 2t− t2 + 2tk+1 − 2tk+2 , and

f(n, k) = g(n, k) + g(n− 1, k)− 2g(n− k, k)
+ 2g(n− k − 1, k), where

g(n, k) =

n∑
i=0

i∑
j=0

j∑
l=0

(
i

j

)
×(

j

l

)(
l

−i− j + l − kl + n

)
(−1)i+j+kl−n 2i−j+l.

(2) The generating function of the number of two-sided

n-step prudent walks, ending on the top side of their box,

avoiding both ←≥k, and ↓≥k (k > 2) taking steps from

{↑, ↓,←,→}satisfies:(
1− t2u1− t

kuk

1− tu −
tu

u− t

)
T (t, u)

= 1 + tu
1− tkuk
1− tu +

u− 2t
u− t tT (t, t)

where u counts the distance between the endpoint and the

north-east corner of the box.

For instance, in the following figure, a walk takes 5 steps,

and the distance between the endpoint and the north-east

corner is 3. So we can use t5u3 to count this walk.

(3) The generating function of the number of two-sided n-

step prudent walks, ending on the top side of their box, exactly

avoiding both ←=2, ↓=2, taking steps from {↑, ↓,←,→},
equals

(1− t2u

1− tu −
tu

u− t + u
2t3)T (t, u)

=
1

1− tu − u
2t2 +

u− 2t
u− t tT (t, t).

Then we come to two open problems and two new results

here:

Problem 21. How to enumerate the number of two-sided

n-step prudent walks, ending on the top side of their box,

avoiding both ←≥i, and ↓≥j (i > j > 2) taking steps from

{↑, ↓,←,→}?
Problem 22. How to enumerate the number of two-sided n-

step prudent walks, ending on the top side of their box, exactly

avoiding both ←=i, ↓=j(i > j > 2) taking steps from {↑, ↓
,←,→}?
Theorem 23. The number of one-sided n-step prudent walks

in the first quadrant, starting from (0, 0) and ending on the y-

axis, taking steps from {↑,←,→}, avoiding ←≥2 and →≥2is

bn+14 c∑
j=0

1

j + 1

(
2j

j

)(
n− 2j + 1

2j

)
.

Proof: We suppose that there are j copies of East steps,

j copies of West steps and n− 2j copies of North steps.

Now we arrange j copies of East steps and j copies of

West steps according to: the total number of the East steps is

greater or equal to the total number of West steps from (0, 0)
to any lattice point on a walk, which gives Cj , the jth Catalan

number.

The n−2j North steps in a walk provide n−2j+1 positions

(i.e., cells) for j East steps and j West steps to be distributed,

with each cell containing at most 1 East step or 1 West step.

Then 0 ≤ j ≤ bn+14 c. There are
(
n−2j+1

2j

)
way to choose 2j

cells for the j East steps and j West steps.

Therefore,

bn+14 c∑
j=0

1

j + 1

(
2j

j

)(
n− 2j + 1

2j

)
.

REFERENCES

[1] B. Bollobás, The Art of Mathematics: Coffee Time in Memphis,

Cambridge University Press, 2006.

[2] J. E.Bonin, A. de Mier, and M. Noy, Lattice path matroids: Enumerative

aspects and Tutte polynomials, J. Combin. Theory Ser. A 104 (2003),

63-94.

[3] L. Carlitz, Zero-one sequences and Fibonacci numbers of higher order,

The Fibonacci Quarterly, Vol. 12 (1974) 1–10.

[4] R. Chapman, T. Chow, A. Khetan, D. P. Moulton, and R. J. Waters,

Simple formulas for lattice paths avoiding certain periodic staircase

boundaries, arXiv:0705.2888v1 (2007).

[5] A. de Mier, A natural family of flag matroids, SIAM Journal on Discrete

Mathematics, 21 (2007),130-140.

[6] A. de Mier, and M. Noy, A solution to the tennis ball problem, Theoret.

Comput. Sci. 346 (2005), 254-264.

[7] J. Fallon, S. Gao, and H. Niederhausen, A finite operator approach to

the tennis ball problem, Congr. Numer. 184 (2007), 5-10.

[8] J. Fallon, S. Gao, and H. Niederhausen, Proof of a lattice paths

conjecture connected to the tennis ball problem, Journal of Statistical

Planning and Inference, 140 (2010), 2227–2229.

[9] R. Grimaldi, and J. Moser, The Catalan numbers and a tennis ball

problem, Congr. Numer. 125 (1997), 65-71.

[10] S. Gao, Using finite operator calculus solving pattern avoidance prob-

lems in lattice paths and walks (in preparation)

[11] M. Jani, and M. Zeleke, A bijective proof of a tennis ball problem,

Bulletin of the ICA, 41 (2004), 89-95.

[12] G. Kreweras, Sur une class de problèmes de dénombrement liés au

treillis des partitions d’entiers." Cahiers Buro 6, 2-107(1965).

[13] C. Mallows, and L. Shapiro, Balls on the lawn, J. Integer Seq. 2 (1999).

[14] D. Merlini, R. Sprugnoli, and M.C. Verri, The tennis ball problem, J.

Combin. Theory Ser. A 99 (2002), 307-344.

[15] A. Nkwanta, and L. Shapiro, Pell walks and Riordan matrices,The

Fibonacci Quarterly,Vol 43.(2005),170-180.

[16] L. Shapiro, Catalan trigonometry, Congr. Numer. 156 (2002), 129-136.

[17] T. Tymoczko, and J. Henle, Sweet Reason: A Field Guide to Modern

Logic, New York: W.H.Freeman and Company (1995).

[18] S. G. Mohanty, Lattice Path Counting and Applications, New York:

Academic Press(1979).

[19] J. Riordan, An Introduction to Combinatorial Analysis (originally pub-

lished: New York: John Wiley 1958), Dover Publications (2002).

[20] G. C. Rota, D. Kahaner, and A. Odlyzko, On the foundations of

combinatorial theory VIII: finite operator calculus. J. Math. Anal. Appl.

42 (1973) 684-760.

[21] H.J. Ryser, Combinatorial Mathematics, Carus mathematical mono-

graphs 14 (Math. Assoc. Am.) 1963.

[22] The Online Encyclopedia of Integer Sequences (2014), published elec-

tronically at http://oeis.org.


