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Abstract—A self-avoiding walk (SAW) is a sequence of moves
on a lattice not visiting the same point more than once. A SAW
on the square lattice is prudent if it never takes a step towards a
vertex it has already visited. Prudent walks differ from most sub-
classes of SAWs that have been counted so far in that they can
wind around their starting point. Some interesting problems and
sequences arising from prudent walks of one-sided and two-sided
are discussed in this paper. A few methods such as computational,
kernel, generating function, recurrence relation and constructive
method are applied to our study. Several open problems are
posted.
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I. INTRODUCTION

A well-known long standing problem in combinatorics

and statistical mechanics is to find the generating function

for self-avoiding walks (SAW) on a two-dimensional lattice,

enumerated by perimeter. A SAW is a sequence of moves

on a square lattice which does not visit the same point more

than once. It has been considered by more than one hundred

researchers in the pass one hundred years, including George

Polya, Tony Guttmann, Laszlo Lovasz, Donald Knuth, Richard

Stanley, Doron Zeilberger, Mireille Bousquet-Mélou, Thomas

Prellberg, Neal Madras, Gordon Slade, Agnes Dittel, E.J. Janse

van Rensburg, Harry Kesten, Stuart G. Whittington, Lincoln

Chayes, Iwan Jensen, Arthur T. Benjamin, and others. More

than three hundred papers and a few volumes of books were

published in this area. A SAW is interesting for simula-

tions because its properties cannot be calculated analytically.

Calculating the number of self-avoiding walks is a common

computational problem [1], [2], [3].

In order to present our problems and results clearly and

efficiently, we introduce some notations in the following.

East step: E or → or (1, 0), x-step

You can see more in the table below:

(0, 1) (1, 0) (1, 1) (0,−1)
↑ → ↗ ↓
N E NE S

(−1, 0) (−1,−1) (−1, 1) (1,−1)
← ↙ ↖ ↘
W SW NW SE

↑≥k: k or more than k consecutive ↑ steps

↑=k: k consecutive ↑ steps

avoiding ↑≥k: no k or more than k consecutive ↑ steps

avoiding ↑=k: no k consecutive ↑ steps, but can have more

than or less than k consecutive ↑ steps

bxc: the largest integer not greater than x, floor(x)
dxe: is the smallest integer not less than x, ceiling(x)
[xn]f(x) denotes the coefficient of xn in the power series

expansion of a function f(x).
[xmyn]f(x, y) denotes the coefficient of xmyn in the power

series expansion of a function f(x, y).(
n
r

)
the number of combinations of n things r at a time.

(
n

r

)
=

n!

(n− r)!r!

=

(
n

n− r

)
=

(
n− 1
r − 1

)
+

(
n− 1
r

)
(
−n
r

)
= (−1)r

(
n+ r − 1

r

)
In the past few decades, many mathematicians have studied

the following two classical problems:

Classical Problem 1

What is the number of SAWs from (0, 0) to (n− 1, n− 1)
in an n× n grid, taking steps from {↑, ↓,←,→}?

Donald Knuth claimed that the number is between 1.3 ×
1024 and 1.6 × 1024 for n = 11 and he did not be-

lieve that he would ever in his lifetime know the exact

answer to this problem in 1975. However, after a few

years, Richard Schroeppel pointed out that the exact value

is 1, 568, 758, 030, 464, 750, 013, 214, 100 = 22325231 ×
115 422 379 × 487 148 912 401 [4], [5], [6]. It is still an

unsolved problem for n > 25.
Classical Problem 2

What is the number f(n) of n-step SAWs, on the square

lattice, taking steps from {↑, ↓,←,→}?
The number f(n) is known for n ≤ 71 [4], [5], [7], [8].

It is clear that

2n ≤ f(n) ≤ 4× 3n−1

f(m+ n) ≤ f(m)f(n)

There exists a constant C such that

lim
n→∞

f(n)1/n = inf
n
[f(n)]1/n = C.

C = 2.64 (up to 71 steps have been counted).



C = 2.638 (up to 91 steps have been counted).

f(n) ≈ 2.638n

The number of SAWs/ the number of total walks:

1

1200
for n = 20

1

2.4× 108 for n = 50

A recently proposed model called prudent self-avoiding

walks (PSAW) was first introduced to the mathematics com-

munity in an unpublished manuscript of Préa, who called

them exterior walks. A prudent walk is a connected path on

square lattice such that, at each step, the extension of that step

along its current trajectory will never intersect any previously

occupied vertex. Such walks are clearly self-avoiding [9], [10],

[11], [12], [13]. We will talk about some sequences arising

from PSAWs in the following.

II. PRUDENT SELF-AVOIDING WALKS: DEFINITIONS AND

EXAMPLES

A PSAW is a proper subset of SAWs on the square lattice.

The walk starts at (0, 0), and the empty walk is a PSAW. A

PSAW grows by adding a step to the end point of a PSAW

such that the extension of this step - by any distance - never

intersects the walk. Hence the name prudent. The walk is so

careful to be self-avoiding that it refuses to take a single step

in any direction where it can see - no matter how far away -

an occupied vertex. The following walk is a PSAW.

A. Properties of a PSAW

Unlike SAW, PSAW are usually not reversible. There is such

an example in the following figure.

Each PSAW possesses a minimum bounding rectangle,

which we call box. Less obviously, the endpoint of a prudent

walk is always a point on the boundary of the box. Each

new step either inflates the box or walks (prudently) along

the border. After an inflating step, there are 3 possibilities for

a walk to go on. Otherwise, only 2.

In a one-sided PSAW, the endpoint lies always on the top

side of the box. The walk is partially directed.

A prudent walk is two-sided if its endpoint lies always on

the top side, or on the right side of the box. The walk in the

following figure is a two-sided PSAW.

III. SOME SEQUENCES ARISING FROM ONE-SIDED

PSAWS

Sequence 1

What is the number (say f(n) ) of one-sided n-

step prudent walks, taking steps from { ↑,←,→}?
The generating function equals∑
n≥0

f (n) tn =
1 + t

1− 2t− t2

= 1 + 3t+ 7t2 + 17t3 + 41t4 + 99t5 + ...

Also,

f(n) = 2f(n− 1) + f(n− 2)

=
(1−

√
2)n + (1 +

√
2)n

2

=
[
1 0

](n+1∑
k=0

(
n+ 1

k

)[
0 1
2 0

]k)[
1
0

]
.

We obtain sequence A001333 of the On-Line Encyclopedia

of Integer Sequences.[15, A001333]

Sequence 2



The number of one-sided n-step prudent walks, starting

from (0, 0) and ending on y-axis, taking steps from {↑,←
,→} is

1+

b(n−1)/2c∑
k=1

min{n−2k,k}∑
i=1

(
n− 2k + 1

i

)(
k − 1
k − i

)(
n− k − i

k

)
.

We obtain sequence A136029.[15, A136029]

Sequence 3

Consider the number of one-sided prudent walks starting

from (0, 0) to (x, y), taking steps from {↑,←,→}. The

number of such walks with k + x right → steps, k left ←
steps and y up ↑ steps, is

min{y,k+x}∑
i=1

(
y + 1

i

)(
k + x− 1
k + x− i

)(
y + k − i

k

)
.

If k = 2 and x = y = n, we obtain sequence A119578.[15,

A119578]

Sequence 4

The number of one-sided n-step prudent walks, from (0, 0)
to (x, y), ( n− x− y is even) taking steps from {↑,←,→} is

min{y,n+x−y2 }∑
i=0

(
y + 1

i

)(n+x−y
2 − 1

n+x−y
2 − i

)(n−x+y
2 − i
n−x−y

2

)
.

If x = y = 3, we obtain sequence A163761.[15, A163761]

Sequence 5

What is the number of the one-sided n-step prudent walks,

avoiding k or more consecutive east steps, →≥k?

The generating function equals

1 + t− tk
1− 2t− t2 + tk+1

If k = 1,

1 + t− tk
1− 2t− t2 + tk+1

=
1

1− 2t
= 1 + 2t+ 4t2 + 8t3 + 16t4 + 32t5 + ...

If k = 2, we obtain sequence [15, A006356]:

1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, ...

It also counts the number of paths for a ray of light that

enters two layers of glass and then is reflected exactly n times

before leaving the layers of glass.

If k = 3, we obtain sequence [15, A052967]:

1, 3, 7, 16, 38, 89, 209, 491, 1153, 2708, 6360, ...

If k = 4, we obtain sequence [15, A190360]:

1, 3, 7, 17, 40, 96, 229, 547, 1306, 3119, 3119, 7448, ...

For the case k = 3 in the above theorem, there are 16 walks

as follows:

Sequence 6

The number of one-sided n-step prudent walks, taking

steps from {↑,←,→,↗} equals

5 +
√
17

2
√
17

(
3 +
√
17

2

)n
− 5−

√
17

2
√
17

(
3−
√
17

2

)n
.

We obtain sequence A055099.[15, A055099]

Sequence 7

What is the number of one-sided n-

step prudent walks, taking steps from

{→,←, ↑,↗,↘}?
The generating function is

1 + t

1− 4t− 3t2 .

We obtain sequence A126473.[15, A126473]

Sequence 8

What is the number of one-sided n-step prudent walks in the

first quadrant, starting from (0, 0) and ending on the y-axis,

taking steps from {↑,←,→}?
The generating function is

1

2t3
((1 + t) (1− t)2 −

√
(1− t4) (1− 2t− t2)).

Sequence 9

What is the number of one-sided n-step prudent walks

exactly avoiding ←=k, taking steps from {↑,←,→}?
The generating function equals

1 + t− tk + tk+1
1− 2t− t2 + tk+1 − tk+2 .

If k = 1, we obtain sequence A078061.[15, A078061]

Sequence 10

What is the number of one-sided n-step prudent walks

exactly avoiding ←=k and ↑=k (both at the same time)?



The generating function is

1 + t− 2tk + 2tk+1
1− 2t− t2 + 2tk+1 − 2tk+2 .

For k = 1,

f(n) =
(
2n+2 − (−1)bn/2c + 2(−1)b(n+1)/2c

)
/5,

also,

f(n) = 2f(n− 1)− f(n− 2) + 2f(n− 3)
with f(1) = 1, f(2) = 3, f(3) = 7.

This is sequence A007909.[15, A007909]

IV. SOME SEQUENCES ARISING FROM TWO-SIDED

PSAWS

What is the number of two-sided, n-step prudent walks end-

ing on the top side of their box avoiding both patterns ←≥2,

↓≥2 (both at the same time), taking steps from {↑, ↓,←,→}?

Theorem 1. The generating function (say T (t, u) ) of the

above two-sided prudent walks ending on the top side of their

box satisfies(
1− t2u− tu

u− t

)
T (t, u) = 1 + tu+ T (t, t)t

u− 2t
u− t , (1)

where u counts the distance between the endpoint and the

north-east (NE) corner of the box.

For instance, in the following figure, a walk takes 5 steps,

and the distance between the endpoint and the north-east

corner is 3. So we can use t5u3 to count this walk.

Outline of the proof of the theorem:

Case 1: Neither the top nor the right side has ever moved;

the walk is only a west step. This case contributes 1 to the

generating function.

Case 2: The last inflating step goes east. This implies that

the endpoint of the walk was on the right side of the box before

that step. After that east step, the walk has made a sequence of

north steps to reach the top side of the box. Observe that, by

symmetry, the series T (t, u) also counts walks ending on the

right side of the box by the length and the distance between

the endpoint and the north-east corner. These two observations

give the generating function for this class as T (t, t).
Case 3: The last inflating step goes north. After this step,

there is either a west step or a bounded sequence of East steps.

This gives the generation function for this class as(
t2u+

tu

u− t

)
T (t, u)− t2

u− tT (t, t)

Putting the three cases together, we get the generating

function (1) for T (t, u).

Solve this generating function for T (t, u) using the Kernel

Method:

From(
1− t2u− tu

u− t

)
T (t, u) = 1 + tu+ T (t, t)

(
t− t2

u− t

)
,

we can get

(1− tu)
(
u− tu− t− t2u2 + t3u

)
T (t, u)

= (u− t)(1− tu)(1 + tu)− T (t, t) (1− tu) t (2t− u)

Set (1− tu)
(
u− tu− t− t2u2 + t3u

)
= 0, then there is

only one power series solution for u

u =
1

2t2

(
1− t+ t3 −

√
(1− t− t3)2 − 4t4

)
.

Let U be this solution,

U = U(t) =
1

2t2

(
1− t+ t3 −

√
(1− t− t3)2 − 4t4

)
.

(2)

Set

(1 + tu)(u− t)(1− tu) + T (t, t) (1− tu) t (u− 2t) = 0,

and replace u by U :

T (t, t) = (1 + tU)
t− U

t (U − 2t) . (3)

From

(1− tu)
(
u− t− tu− t2u2 + t3u

)
T (t, u)

= (u− t)(1− tu)(1 + tu)− T (t, t) (1− tu) t (2t− u)

get

T (t, u) =
(t− u)(1− tu)(1 + tu)

(1− tu) (u− t− tu− t2u2 + t3u)+

T (t, t) (1− tu) t (2t− u)
(1− tu) (u− t− tu− t2u2 + t3u)

Replace T (t, t) by (3). Now

T (t, u) =
(1 + tu)(u− t)

u− t− tu− t2u2 + t3u

− (1 + tU) (U − t) (1− tu) (u− 2t)
(U − 2t) (1− tu) (u− t− tu− t2u2 + t3u)

where U(t) has been defined in (2).

Sequence 11

Notice that T (t, 1) is the generating function of the number

of two-sided n-step prudent walks ending on the top side of

their box avoiding both patterns ←≥2, ↓≥2, taking steps from

{↑, ↓,←,→}, thus T (t, 1) =

1

2t (1− 2t− t2 + t3) (1− 2t− 2t3)×

((1− 2t) (1− t)
√
(1− t− t3)2 − 4t4−

(1 + t)
(
1− 7t+ 14t2 − 11t3 + 10t4 − 4t5

)
)

= 1 + 3t+ 6t2 + 15t3 + 35t4 + 83t5 + 195t6 + ...



Sequence 12

Note that T (t, 0) is the generating function of the number

of two-sided n-step prudent walks ending at the north-east

corner of their box avoiding both patterns ←≥2, ↓≥2, taking

steps from {↑, ↓,←,→}, so T (t, 0) =

(1− t)
√
(1− t− t3)2 − 4t4 − 1 + 3t− t2 + t3 + t4

(1− 2t− 2t3) t
= 1 + 2t+ 4t2 + 10t3 + 24t4 + 56t5 + 130t6 + 304t7 + ...

Sequence 13

Furthermore, 2T (t, 1)−T (t, 0) is the generating function of

the number of two-sided n-step prudent walks ending on the

top side or right side of their box avoiding both patterns←≥2,

↓≥2, taking steps from {↑, ↓,←,→}, thus 2T (t, 1)−T (t, 0) =
1

(1− 2t− t2 + t3) (1− 2t− 2t3)×

(t (1− t)2
√
(1− t− t3)2 − 4t4+

1− t− 2t2 − 2t3 − 2t4 + 4t5 − t6)
= 1 + 4t+ 8t2 + 20t3 + 46t4 + 110t5 + 260t6 + 616t7 + ...

Open Problem 1

What is the number of two-sided n-step prudent walks,

ending on the top side of their box, avoiding both ←≥k, and

↓≥k (k > 2) taking steps from {↑, ↓,←,→}?
The generating function satisfies:

(
1− t2u1− t

kuk

1− tu −
tu

u− t

)
T (t, u)

= 1 + tu
1− tkuk
1− tu +

u− 2t
u− t tT (t, t),

where u counts the distance between the endpoint and the

north-east corner of the box. For k = 3,

u− t− t2u2 + t3u− t3u3 + t4u2 − t4u4 + t5u3 − tu
u− t

× T (t, u)

= 1 + tu+ t2u2 + t3u3 +
u− 2t
u− t tT (t, t)

i.e.,

(−t+
(
1 + t3 − t

)
u+

(
t4 − t2

)
u2 +

(
t5 − t3

)
u3 +−t4u4)

× T (t, u)
= (1 + tu+ t2u2 + t3u3)(u− t) + t (u− 2t)T (t, t).

Set −t+
(
1 + t3 − t

)
u+
(
t4 − t2

)
u2+

(
t5 − t3

)
u3− t4u4

= 0, and solve for u, as a power series of t. We obtained the

first one hundred terms for u, beginning with

u = t+t2+t3+t4+2t5+4t6+8t7+16t8+33t9+69t10+ ...

Using this u, we can get many examples for the sequence.

Open Problem 2

What is the number of two-sided n-step prudent walks,

ending on the top side of their box, exactly avoiding both

←=2, ↓=2, taking steps from {↑, ↓,←,→}?
The generating function is

(1− t2u

1− tu −
tu

u− t + u
2t3)T (t, u)

=
1

1− tu − u
2t2 +

u− 2t
u− t tT (t, t).

It seems to us it is not trivial to solve this generating

function.

V. SOME THEOREMS AND PROOFS

Theorem 2. The generating function of the number, say

f(n, k), of the one-sided n-step prudent walks, taking steps

from { ↑,←,→}, avoiding k or more consecutive east steps,

→≥ksatisfies

1 + t− tk
1− 2t− t2 + tk+1 ,

and for k ≥ 2,

f(n, k) =

n∑
i=0

i∑
j=0

(−1)
n−j−i
k−1 2i−j

(
i

j

)(
j

n−j−i
k−1

)

+

n−1∑
i=0

i∑
j=0

(−1)
n−j−i−1

k−1 2i−j
(
i

j

)(
j

n−i−j−1
k−1

)

−
n−k∑
i=0

i∑
j=0

(−1)
n−j−i−k

k−1 2i−j
(
i

j

)(
j

n−j−i−k
k−1

)
f(n, 1) = 2n.

Proof: Let F (t) denote the length generating function of

the number of one-sided prudent walks, avoiding k or more

consecutive east steps. We have the following three cases.

(1) For the walks which do not contain North steps, they

can be empty walk, walks with only west steps, walks with

only east steps with length at least one and at most k− 1, the

contributions are 1, t
1−t ,

t(1−tk−1)
1−t respectively.

(2) For the walks obtained by concatenating a one-sided

walk, a North step, and then a West walk, the contribution is

F (t)
t

1− t .

(3) For the walks obtained by concatenating a one-sided

walk, a North step, and then a East walk with at least 1 step

and at most k − 1 steps, the contribution is

F (t)
t2(1− tk−1)

1− t .

Adding these three contributions give the equation

F (t) = 1 +
t

1− t +
t(1− tk−1)
1− t

+ F (t)
t

1− t + F (t)
t2(1− tk−1)

1− t .



Thus,

F (t) =
1 + t− tk

1− 2t− t2 + tk+1 .

Now, let [tn]F (t) denote the coefficient of tn in the power

series expansion of F (t).

[tn]
1 + t− tk

1− 2t− t2 + tk+1

= [tn](1 + t− tk)
∞∑
i=0

(2t+ t2 − tk+1)i

= [tn](1 + t− tk)
∞∑
i=0

i∑
j=0

(
i

j

)
(2t)i−j(t2 − tk+1)j

= [tn](1 + t− tk)

×
∞∑
i=0

i∑
j=0

(
i

j

)
(2t)i−j

j∑
l=0

(
j

l

)
(t2)j−l(−1)lt(k+1)l

= [tn](1 + t− tk)

×
∞∑
i=0

i∑
j=0

j∑
l=0

(
i

j

)(
j

l

)
(−1)−l ti+j−l+lk2i−j

=

n∑
i=0

i∑
j=0

(−1)
n−j−i
k−1 2i−j

(
i

j

)(
j

n−j−i
k−1

)

+

n−1∑
i=0

i∑
j=0

(−1)
n−j−i−1

k−1 2i−j
(
i

j

)(
j

n−i−j−1
k−1

)

−
n−k∑
i=0

i∑
j=0

(−1)
n−j−i−k

k−1 2i−j
(
i

j

)(
j

n−j−i−k
k−1

)
.

Theorem 3. The number of one-sided n-step prudent walks,

starting from (0, 0) and ending on the y-axis, taking steps from

{↑,←,→} is

1+

b(n−1)/2c∑
k=1

min{n−2k,k}∑
i=1

(
n− 2k + 1

i

)(
k − 1
k − i

)(
n− k − i

k

)
.

Proof: In our proof, we will use the following two results

which could be found in some mathematics books such as [16]:

The number of ways of putting n like objects into r different

cells is (
n+ r − 1

n

)
=

(
n+ r − 1
r − 1

)
.

It is also the number of nonnegative integer solutions to the

equation
r∑
i=1

xi = n.

The number of ways of putting n like objects into r different

cells with no empty cell is(
n− 1
r − 1

)
.

It is also the number of positive integer solutions to the

equation
r∑
i=1

xi = n.

Without loss of generality, we assume that there are k East

steps, k West steps and n − 2k North steps in a one-sided

n-step prudent walks, starting from (0, 0) and ending on the

y-axis. We also assume that k > 0 since there is only one

such walk for k = 0. It is easy to see that k ≤ b(n − 1)/2c.
The n− 2k North steps provide n− 2k+1 positions (we can

say n − 2k + 1 different cells) for k East steps and k West

steps to be inserted. Suppose that we put k East steps into

i (1 ≤ i ≤ min{n − 2k, k}) cells with no empty cell. Then

there are
(
k−1
k−1
)

ways of putting k East steps into i cells and(
n−2k+1

i

)
ways of choosing i cells. Now we distribute k West

steps into the remaining n − 2k + 1 − i cells, which give us(
n−k−i
k

)
.

Therefore, we get the number:

1+

b(n−1)/2c∑
k=1

min{n−2k,k}∑
i=1

(
n− 2k + 1

i

)(
k − 1
k − i

)(
n− k − i

k

)
.

Example: For n = 4 in the above theorem, we have 7 such

walks as follows:

Theorem 4. The number, say f(n), of generalized

one-sided n-step prudent walks, taking steps from {↑,←,→
,↗} equals

n∑
i=0

(
i

n− i

)
2n−i(3)2i−n +

n−1∑
i=0

(
i

n− i− 1

)
2n−i−1(3)2i−n+1

=
5 +
√
17

2
√
17

(
3 +
√
17

2

)n
− 5−

√
17

2
√
17

(
3−
√
17

2

)n
,

with generating function

1 + t

1− 3t− 2t2 .



Proof: Let P (t) denote the length generating function of

generalized one-sided prudent walks.

The contribution in P (t) of walks that do not contain North

steps or Northeast steps (horizontal walks) is

1 + t

1− t .

The contribution of walks obtained by concatenating a

generalized one-sided walk, a North step or Northeast step,

then a horizontal walk is

2t(1 + t)

1− t P (t).

Adding these two contributions gives a linear equation for

P (t):

P (t) =
1 + t

1− t +
2t(1 + t)

1− t P (t).

Therefore,

P (t) =
1 + t

1− 3t− 2t2

= (1 + t)

+∞∑
i=0

(3t+ 2t2)i

= (1 + t)

+∞∑
i=0

(
i

j

)
(3t)i−j(2t2)j

= (1 + t)

+∞∑
i=0

i∑
j=0

(
i

j

)
2j(3)i−jti+j

f(n) = [tn]P (t)

=

n∑
i=0

(
i

n− i

)
2n−i(3)2i−n

+

n−1∑
i=0

(
i

n− i− 1

)
2n−i−1(3)2i−n+1.

The second formula of f(n) can be easily derived from the

length generating function.

Example: For n = 2 in the above theorem, we have 14 such

walks:

EN ,NE, WN ,NW ,N(NE),(NE)N ,E(NE),(NE)E,

(NE)W, W (NE), NN, WW , EE, (NE)(NE).

Theorem 5. The generating function of the number, say f(n),
of generalized one-sided n-step prudent walks, taking steps

from {→,←, ↑,↗,↖} is

1 + t

1− 4t− 3t2
= 1 + 5t+ 23t2 + 107t3 + 497t4 + 2309t5

+ 10 727t6 + 49 835t7 + ...

f(n) = [tn] (1 + t)
∑
k≥0

tk (4 + 3t)
k

= [tn] (1 + t)
∑
k≥0

k∑
m=0

(
k

m

)
4k−m3mtm+k

=

n∑
k=0

[(
k + 1

n− k

)
3 +

(
k

n− 1− k

)]
42k−n3n−1−k.

Proof: Let P (t) denote the length generating function of

generalized one-sided prudent walks.

The contribution in P (t) of walks that do not contain North

steps or Northeast steps, or Northwest step (horizontal walks)

is
1 + t

1− t .

The contribution of walks obtained by concatenating a

generalized one-sided walk, a North step or Northeast step

or a Northwest step, then a horizontal walk is

3t(1 + t)

1− t P (t).

Adding these two contributions gives a linear equation for

P (t), from which we can get P (t).
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