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Abstract  

This document present a hierarchical clustering algorithm based on graph theory, which, from generation 

of a path from a given vertex, builds a math word and calculates a cluster under an index. This is made 

possible due to modification of Tarry’s algorithm, by exchanging path elements. When the one 

dimensional clustering index is added to , it gives us, what I have called, Tarry’s hierarchy. From the 

definition of net word, cycle, tree, tree word and vertex, a theorem on the relationship between vertices, 

lines, and letters of a labyrinth is shown, which allows the generation of words and their Dendrograms 

with the application of Euclidian distance. The practical use of these concepts is then shown, namely, that 

they can provides possibilities of connections in arrangements for telephone centrals.  
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Introduction 

The first person who studied the combinatory properties of schemes was Leonard Euler in 1736; 

he studied the network of the seven bridges in Konigsberg, figure 1. He wrote, in Berlin in 1739, 

“in Königsberg Pomeranie, they have a little island named Kneiphof, the river is divided into two 

and around the island there are seven bridges. You can arrange a network where by you only 

walk over one at one time”. He continued, “Is possible for everyone, but that not everyone has the 

capacity to do it” Euler (1739). 

  

The modern theorem enunciated by Euler, demonstrated the necessity of the parity of the valence 

in each vertex: A connected graphic is eulerienne if all vertex have degree pair. Since then, graph 

theory has developed slow but steadily. Its principal contributors are G. Tarry, who wrote about 

labyrinths in 1886 and 1895 (see Tarry 1886 and 1895), D. Konig (1936), C. Berge (1957), with a 

book about graphs and hypergraphs, W. T. Tutte, with his studies about Hamiltonian networks 

(1976). S. Bollobas, who wrote about Hamiltonians cycles in regular graphs, and P. Rosenstielh, 

with Existence d’automates finis capables de s’accorder bien qu’arbitrairement connectés et 

nombreux (1966), and Labyrintologie mathématique (1971), (see Rosenstiehl, 1971), and Les 

graphes d’entrelacement d’un graphe (1976). Recently, works on graph theory, like A 

performance comparison between graph and hypergraph topologies for passive star WDM light 

wave networks, (1998) by H. Bourdin, A. Ferreira and K. Marcus; as well as the work by 

Gondran and M. Minoux, entitled Graphs et Algorithms (1979), have gained attention. More 

recently, the randomized Tarry algorithm has been discussed in the article named searching a 

graph by Shmuel Gal (2004), and by Urretabizkaya and Rodríguez (2004), who implement the 

Tarry algorithm for solving mazes of known structure (2004). Today, graph theory is used in 

branches of mathematics such like theory of groups, topology, and theory of numbers, data 

analysis and clusters. 

 

Among those who have contributed the most to the development of theory and models in 

telephone connections, are A. K. Erlang, who implemented the well-known Erlang Probability 
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Density Function, as well as works on Solutions of Some Problems in the Theory of Probabilities 

of Significance in Automatic Telephone Exchanges, (1917 and 1918); A. and Elldin, with his 

work Switch Calculations General Survey, published by LM Ericsson in (1955). More recent 

works on the subject include, Network Flows: Theory, Algorithms and Applications, by R. V. 

Ahuja, T. L. Magnanti, and J. B. Orlin, (1993), and An Algorithm for Hierarchical network 

design, by G. R. Mateurs, F. R. B. Cruz, and H.P. L. Luna (1994). 

 

Definitions and algorithms 

Definition. A graph is a pair G = (X, U) where X  is a finite set, of vertices of G, each element of 

which is incident to two elements of another finite set V named the set of vertices, see Berge 

(1970).  

 

Definition. A labyrinth, L, is a finite set A not empty and of even cardinality, named set of words 

of L or alphabet, supplied of one involution l without an indeterminate point (i.e: without a 

tendency change) called by the prime operator:  

 

l  A  then  l’  A ,  l’  l  and  (l’)’ = l 

 

and one relation of equivalence (called “with the same right as” where the classes are “the points” 

of labyrinth, the letters of same class has the same right as the point) indicated by the application 

of the letters which belong the letters in the set X of class:  

 

d: A    X    :   d(l) = d(k) 

 

by < the right of  l is equal to right of k >, where < l has the same right as k >, see Rosenstiehl 

(1971). 

 

It is possible to speak of the left of letter too, making: g: A   X  with g(l) = d(l’)    lA, as 

far as the labyrinth its expressed by triad (A, i, d). 

 

Definition. A labyrinth (A, i, d) is said to be orientated, when one part A+ of A such that:  

 

l  A+    l’ A+      l  A 

 

Definition. Based on this definition of a labyrinth (A+, i, d),  is called a word of this labyrinth if 

it belongs to some of following classes: 

 

■   X  is called empty words of  L   

■ l with lA  is called word-letter of the L, and 

■  = l 1 , .., l r, l r+1,…, lp  with  lrA  ()   X  we have d(lr) = g(lr+1)  r = 1, .., p-1 

 

Therefore, given X as the set of vertex, you can have left and right applications in all word of the 

labyrinth L, defined as:  d, g: A  (x)xX  X   or   d, g: L   X  with  g(x) = g(l1) and d(x) = 

d(lp), i.e., g(x) = d(x) = x. And remember,  is cyclical if g() = d(). For more elaborate 

definitions of tree, pure word and neutral word, see Golumbic (1980) and Bollobás (1978). 

 

Definition. One tree A is a graph G = (X, U) connected and non-cyclical.  

 



 

 

Definition.  of  L = (A, i, d) it is a pure word if inside  there exists a occurrence of each letter 

of A.  

 

Definition. If   L and       X,   is a neutral word in , if the neutral element  is a 

neutral word in some -particular.  

 

Algorithm of Tarry 

Definition. If L labyrinth is connected, we say Tarry’s word of L all pure word  L such that 

the entry tree V of  and the out tree W of  are opposites, i. e., W = V ’. 

 

Let L be the lexical of connected labyrinth L = (A, i, g), with l1  A. Let V() be the entry tree of 

, with  a left factor of Tarry’s word  to apply the following algorithm, see Tarry (1895): 

 

T.0   To put      l1 

 

T.1    If    l  L  with  l  and l ‘ V() to put  l  

but 

T.2    If    l  L  with l    to put  l 

if 

but 

T.3    Stop.   Write   =  

         Where  =  is called Tarry’s word                                    occasionally 

 

Note: The inversion of all entry letter is an out letter in  = , where  is a cyclical word, and all letter of 

A haves the same right as the same left of , see Casanova (1982). 

 

Attachment index 

The index of aggregation or level of classification of ways connected to the orientated labyrinth 

L, begin with the first cycle or pleat of the Tarry’s word. In this case, the index level is unit. 

When Tarry’s word  is formed, you always have to replace  in the first place of the first 

obtained cycle.  

 

Definition. If we let l1 and l2  L stand for two paths and let  stand for all letters with the same 

left g(), and  stand for all letter with the same right d(); the minimal distance dM, the inferior  

ultrametric minimal distance over a point x0  l1 and x1  l2 is:  
 

dM(l1, l2) =  min d(x0, x1)  x0 l1 x1 l2 
 

Remember, the algorithm is applied after finding the Tarry’s word and his cluster by couples or 

pleats. To finish the last pleat, begin the letter’s arrangement in . You must begin with the first 

pleat.  

 

Conclusions 

Since every problem demands a full solution using links that indicate the way to construct the 

algorithm solution within in a formal language capable of analyzing a system by which you can 

recreate the transit in its construction in any direction, we have presented here a new and modern 

form of Tarry’s algorithm. This allows us to create a hierarchy based on a vertex, the levels of 

aggregation for the construction of the word of the circuit or labyrinth which applied to the 



 

 

something of the telephones, and lets us know configurations of connections with optimal 

telephone line use, fluidity and economy. 

 

To date there has been no published algorithm of aggregation (hierarchical or otherwise), based 

on theory of graphs, that starting from the construction of a trajectory begun on a given vertex, 

which would construct a math word and calculate an aggregation under an index. The latter has 

been possible thanks to the modification made in Tarry’s algorithm, through the exchange of 

elements, which has allowed a better arrangement in the union of pairs of letters and the 

construction of the math words. The one dimensional aggregated index applied to  results in 

what I have called Tarry’s hierarchy. The next step is to apply weight to aggregation algorithms.    

       

There is no published clustering algorithm (whether hierarchical or not), based on graph theory 

which, from generation of a path starting on a given vertex, builds a math word and calculates 

clustering under an index. This has been possible by modification to Tarry’s algorithm, through 

exchange of elements, which has allowed a better arrangement of letters coupling and the 

construction of a math word. The one dimensional clustering index applied to  gives what I call 

Tarry’s hierarchy. 
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