
Control operators vs. Graph Logic Model

Igor Schagaev
London Metropolitan University, London, UK

i.schagaev@londonmet.ac.uk, also info@it-acs.co.uk

Abstract - Simple paradigm to unite control operators for
programming languages into one scheme using graph-logic
representation of relations between agents (or elements of
interaction) assuming independence of behavior for each
element is presented. Shown that power of this structure
exceed known models of description of behavior for
concurrence and parallelism. Proposed model explicitly
separates concurrency and parallelism and indicates further
steps to automatic reprocessing programs for making them
better tuned to modern architectures.

Keywords: Computer languages, Control structures,
Concurrent structures, Logic, Graph Theory.

1 Introduction
 Every algorithmic language describes decision actions
using logic statement of selection:

 “if” to choose one of two options
 “case of” to choose options from more than two
 “while” when our decision depends on conditions with

uncertain time trigger or other independent parameter
change

This is well supported by classification of relations
introduced by E. Kant [1], whom I consider as a first
theoretical programmer, opposing to a sentimental story of
Ada, lady-lover of lord and part-time poet Byron. (Frankly,
Nabokov’s ADA makes much more sense to me).

E.Kant classified statements in terms of relationships and
possible interactions between elements involved. Accordingly
E. Kant an object might correspond, relate, and interact with
others using the following relationships:

 One-to-one,
 one-to-many,
 many-to-one,
 many-to-many

And it seems to me nice and easy, provided we make
decisions where to go, what to choose and our decisions are
mutually exclusive. That is why, by the way, each processor
instruction set has operator XOR and set-and-wait.

2 New Control Scheme
 Unfortunately or fortunately our decisions are not
always that simple as presented above: we can be friendly
with different groups of people, make not mutually exclusive
decisions, starts selective actions with various taboo: ““you
can go your party but you do not drink and back before
11pm!” - remember? ;), etc., etc.

And this is all executes at the same time... Thus E.Kant
diagram should be extended, one option of extension, called
GLM is shown below on Figure 1. GLM stands for graph
logic model to describe mutual dependency of various kind,
was successfully applied in real world applications, including
active conditional control systems, active safety monitoring
systems, overpowers descriptive power of Markov and
Bellman models and similar. Accordingly GLM, leaving one
state, say “a” we might describe our leaving conditions using
logic basic operators {AND, OR, XOR} attached to a leaving
end of the links between “a” and neighbors.

Figure 1 Graph Logic Model of interactions between nodes

Note that at the same time the various options are possible:
selection of leaving conditions to several neighbors using
{OR} on each out-coming link, or broadcasting to all
neighbors through all out-coming links using {AND}, or
picking just one and only neighbor using {XOR}.

Still, we think that we are the important ones and make
impeccable decisions. This claim stands when we act and all
others just follow…

mailto:i.schagaev@londonmet.ac.uk

But how about civil disobedience (for more on the subject I
recommend to read Henry David Thoreau “On civil
disobedience” or Gandhi passive resistance, when no matter
what and which government (in first example US in the
second UK) instructing how to obey and we do not follow
and note – we act differently?

How to describe Vichy’s collaborationism and De Gaulle
resistance at the same time existing in France during WW2?
How to describe Italian type strikes when people sit in office
and do nothing? (Sound like EC...)

Did anybody spot - we are talking distributed computing now,
as we have introduced various modes of reaction of opposite
side of link and have to accept it’s own will to act without our
“instructions”.

From now on the interactions between nodes with logic based
decision rules applied to “own socket” for both sides of link
are assumed!

All these examples of other nodes involvement in interaction
force us to attribute the same link twice - at the leaving end
and at the incoming end with different logic operators if
necessary, Figure 2.

Figure 2 Logic operators for incoming and out-coming links

Using GLM we are able to describe mentioned above political
phenomena and much wider and wilder conditions appeared
in really of complex models without difficulties.

As another extreme example, when we assume that all logic
operators within graph are operators are XOR we converge
GLM into Markov model. In turn, adding weights (Greek
letters on the graph of Figure 1) on links (cost, time other
independent variables required) and assuming, again XOR as
only operator allowed for out-coming and in-coming links we
are able to describe Bellman optimization model using GLM
notation.

Thus nodes and links between them with attributed logical
operators attached to each leaving and coming ends form, in
fact, new basis for control operators for next generation of
programming languages.

3 Concurrency and Parallelizm

 Almost everything that starts together, or at the same
time or using the same data sooner or later will face a conflict
of interests - parallel branches of program will require final
aggregation of it into few numbers or functions; access to

hardware, or informational, or time resources will be limited
and conflict arises.

There are very few pure parallel program and systems - to
name one known Sony PlayStation or any digital TV set -
where incoming data flow splits and distributed in parallel to
display visual elements.

For all the rest existing descriptive schemes of parallel
program are not actually correct or useful. Use of GLM might
help here:  

What we start in parallel (leaving condition is AND for each
link from a chosen node) might be completed in mutually
exclusive mode (incoming condition XOR).

Using Figure 1 example traces a-d-f and a-b-e-f can be
activated in parallel and eventually end up with conflict of
interests, thus each of incoming links to node f should be
attributed with XOR operators.

Tracing of branches of a program with attaching operators is
becoming interesting area of research as we are able using
GLM to separate really independent segments and allocate
them properly on existing or next generation [2] hardware.

4 Conclusions
 Graph logic model provides exceptional flexibility for
expressing of control in various environments of interacting
agents.

Attributed logical operators attached to each leaving and
incoming ends of edge form new scheme of control operators
for next generation of programming, when number of co-
existing active agents will interact voluntarily.

5 Acknowledgements
 Figure 1 was suggested and drawn by Simon Monkman,
- my former student and good friend. Value your support,
Simon.

6 References

[1] E. Kant “Critics of pure reason”, Everyman ISBN 0-40-
87357-X, 1993

 [2] Schagaev et al. ER A – Evolving Reconfigurable
Architecture. ERA Proc. of Conf: Software Engineering,
Artificial Intelligence, Networking. and Parallel/Distributed
Computing – SNPD 2010, PP 215-220.

