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Abstract - It is well recognized that missing data could cause 

severe problem in data mining. Due to its importance lots of 

work has been done in the past.  Several algorithms [5-8] are 

proposed for missing data recovery. This paper presents a 

new 1-dimensional linear information decomposition (1-

DLID) approach which is easier for use in missing data 

recovery. In this article, we study one particular problem, in 

which 1-dimensional data set is given and certain percentage 

of data are missing without any other additional information. 

Then the proposed 1-DLID method is used for creating the 

complete data set from both the generated data set and real-

world data set. Comparatively, our experiments showed that 

the proposed method is reliable and can be used for the 

recovery of data set with missing values. The advantages of 

the proposed method are: 1) Will not change the distribution 

of the data set. 2) Easy to use for 1-dimensional dataset. 3) 

Have a higher accuracy, especially there is 10%~30% data 

missing. 4) No need to provide the historical data set. 

Keywords: Information decomposition, Missing data 

recovery, 1-dimensional data 

 

1 Introduction 

 In recent decades, missing data recovery have been 

broadly studied and applied in various domains in order to 

solve many complicated and important real-world problems, 

such as pattern recognition, natural language processing, 

medical diagnosis, and so on[1,2], in the hope of improving 

performance. Meanwhile missing values recovery imputation 

is an existing yet challenging problem in both machine leaning 

and data mining [3]. On the other hand, Missing values in 

real-world data cause severe problem for the learning and 

knowledge discovery. In most cases, missing data problem is 

caused by data logging procedure and systems. Let’s take a 

manufacturing line for example, it is impossible to record all 

the line variables of all the products at any time. That is to 

say, variables which are recorded are only certain kind of 

products, which can be regarded as incomplete measurement 

data values. In addition, the topic of missing data has attracted 

considerable attention in the last decade, as evidenced by 

several recent trends. First, many graduating PhDs in statistics 

and computer science are now claiming “missing data” as an 

area of research. Second, it has become difficult to publish 

empirical work in sociology without discussion of how 

missing data was handled. Thirdly, several methods for 

handling missing data has sprouted-up over the last few years, 

which will be discussed later. Missing data is important to 

consider, because they may lead to substantial biases in 

analyses [4] and in sometimes result in incorrect decision 

making. On the other hand, missing data could be harmless 

except reducing statistical power. 

 The approach discussed in this paper is good at 

processing data set with data missing at random (which is 

called MAR) and helpful for analyzing the incomplete data 

set. Before our approach is presented, we would like to 

discuss the identification scenarios for missing values pointed 

out by Little and Rubin (1987) [5]. Based on the values of 

attributes and the missingness of attributes, the categories of 

missing data include missing completely at random (MCAR), 

missing at random (MAR) and missing not at random 

(MNAR). If data are MAR or MCAR, they can also be 

referred to as “ignorable” data while those MNAR are “non-

ignorable” [6]. There are various methods that have been 

proposed to deal with missing data with each of these methods 

premised on a specific missing data mechanism [7-8], which 

will be discussed in the following section.  

 This paper is structured as follows: Section 2 is a brief 

overview of previous methods. Section 3 describes 

terminologies. That is to say we give some general knowledge 

used in the algorithm. Section 4 is devoted to the introduction 

of our 1-dimensional linear information decomposition 

approach. Section 5 presents experiment results explanation 

based on generated data set. The real-world values 

experiments are organized in section6. Section 7 concludes 

this paper and section 8 describes our future work. 

2 Current techniques and existing 

problems 

        There are many methods that used in missing data 

recovery [7-8]. However every method has its own problems. 

For example, filling manually is very time consuming when 

the missing data set is very large, it is impossible to make 

good use of this approach; MI algorithm is flexible and time 

expensive. Another drawback is that this method is adequate 

for statistics better than data mining. Moreover, it is widely 

used in multivariate normal data. Last but not least is that 

some distribution for the stochasticity must be assumed, which 

can be problematic as well [7] etc.. In this paper, regarding to 

1-Dimensional data set without any historical dataset 



provided, we summarize the most commonly used methods as 

follows: 

1) Listwise deletion[7-8]. By far most times researchers would 

like to simply omit those instances with missing attribute-

values and run the analyses only on the complete instances.  

The major problems of this method are that when parametric 

model based on the attribute-values are not MAR this 

approach does not work well. Moreover, this method may 

lead to a large amount of data being thrown away, miss some 

important information. 

2) Filling Manually[7-8]. This method based on the 

experience of the experts and used in some of statistical area 

with small missing data set.  

The major problem of this method is that it is time consuming 

particularly when the missing data set is very large. It is 

impossible to make good use of this approach. 

3) Mean/Mode Imputation[7-8]. It means Replacing missing 

values with the sample mean. In fact, this method is simple 

and save time when the missing data is numerical rather than 

non-numerical.  

The major problems of this approach are it will make the 

distribution more peaked around the mean and assumes all the 

missing data should be MCAR. 

4) The Expectation Maximization(EM) algorithm. The EM 

algorithm is an elaborate technique for incomplete data or 

data set with missing values. The EM algorithm[9-10] is an 

approach used for finding the maximum-likelihood estimate 

of the parameters based on the assumption of the distribution  

for a given incomplete data set. Usually the EM algorithm is 

used for the following two situations, first there are indeed 

missing values, because of limitation of observation process. 

The second situation is when optimizing the likelihood of a 

function, it is analytically intractable while the likelihood 

function could be simplified by assuming the existence values 

for additional, however, missing or latent parameters. There 

are two steps in EM algorithm, E-step (expectation step) to 

compute the expectation of the expected value of the complete 

data log-likelihood with respect to the unknown data given the 

observed data and current parameter estimates. The second 

step (M-step) is to maximize the expectation which was 

computed in the E-step. That is to say, we find out the new 

parameter ( 1) arg max ( , )i iQ


    . These two steps are 

repeated until ( 1)| |i i error    , the error is the values we 

fixed before the two steps are repeated. 

For this paper, during the experiments the initial values of the 

missing data are produced by computer in random.  Then we 

use it to finish the E-step, after that we can maximize the 

likelihood function and get the  , then with the help of    we 

can renew the missing data, and then go to M-step.  

Problems: Firstly, it is time consuming towards multi-

dimensional dataset. Secondly, the algorithm doesn’t produce 

standard errors for the parameters. Thirdly, it may converge to 

a local maximum of the observed data likelihood function, 

and this depends on starting values.  

Overall, every methods have its own problems, that is to say it 

is hard to find an algorithm that suitable for all kind of 

problems.  For example, it is said handling missing data by 

eliminating cases with missing data (“listwise deletion” or 

“complete case analysis”) will lead to the predicted results 

away from the reality when the remaining data cannot be 

representative of the whole data set. Moreover, the 

Expectation Maximization (EM) algorithm is also one method 

that is used for data mining, however, it can be regarded as an 

auxiliary method such as bootstrapping when obtaining 

standard errors.  

        The major contribution of this paper is to propose a new 

method which is 1-dimensional linear information 

decomposition (1-DLID) approach used for missing data 

recovery. The 1-DLID method is useful in two aspects, one is 

that it can be used for the recovery of missing data; on the 

other hand, it can create or generate data for the incomplete 

data. Compared with other algorithms, 1-DLID has its own 

advantages. For example, unlike EM algorithm, 1-DLID 

approach do not need to set the latent variables even more, we 

do not have to know any kind of probability distribution. 

Therefore, 1-DLID approach is easy to use and can be used in 

any kind of one dimension numerical data set with missing 

values. 

3 Basic terminologies used in missing 

data recovery 

3.1 Information Distribution [11] 

     Let  1 2, , , nX x x x  be a sample observed from an 

experiment, and  1 2, , , mU u u u  be the discrete universe 

of X . 

A mapping from X U  to [0,1],   

: [0,1],X U     

 , ( , )x u x u   

is called an information distribution of X  on U , if ( , )x u  

has the following properties: 

1) Reflexive. ,x X  if ,u U  such that  x u , then 

( , ) 1x u  . 

2) Decreasing. For ,x X  ', '' ,u u U   

if  ' ''u x u x   , then ( , ') ( , '')x u x u  . 

3) Conserved. That is to say 
1

( , ) 1,
m

i j

j

x u


   

1,2, ,n.i    

3.2 1-Dimension Linear Information Distribution[11] 

       Let { | 1,2, ,n}iX x i   be a given sample, R  is 

the universe of discourse of ,X  and 1 2{ , , , }mU u u u  is 

the discrete universe of ,X  where 

1 , 2,3, , .j ju u h j m    For ,ix X  and ,ju U  the 

following formula is called 1-dimensional linear-

information distribution: 



     
1

( , )
0

i j i j

i j

i j

x u h if x u h
x u

if x u h


    
 

 

                     (1) 

Where h  is called step length and   is called linear 

distribution. 

Obviously,   satisfies all properties of an information 

distribution function. 

        For example, let  5,6X  . What we want to do is to 

calculate their relative frequency between 3.4 and 8.2 in order 

to get the soft-histogram [11].That is [3.4,8.6]X  . Assume 

we would like to have three intervals between 3.4 and 8.2. 

That is 
8.2 3.4

1.6,
3

h


   therefore we can get three 

intervals [3.4,5) [5,6.6) [6.6,8.2).    

    We chose 
iu  as the center of each intervals. Accordingly 

1 (3.4 5) 2 4.2u    ,  2 5 6.6 2 5.8u     and 
3 7.4u  , 

Thus  4.2,5.8,7.4U  . Given
1 25, 6x x  , we can get: 

1 1( , ) 1 5 4.2 1.6 0.5x u     ,  1 2( , ) 1 5 5.8 1.6 0.5x u     ,  

1 3( , ) 0x u  ,
2 1( , ) 0x u   , 2 2( , ) 1 6 5.8 1.6 0.875x u      

2 2( , ) 1 6 7.4 1.6 0.125x u     ,
2 3( , ) 0x u  . 

3.3 1-Dimension Linear Information decomposition 

    Let { | 1,2, ,n}iX x i   be a given sample, R  is 

the universe of discourse of ,X  [a,b],A   where 

{ | , }ia = min x i = 1,2, n  and { | , }.ib= max x i = 1,2, n  t  

is the settled number of the intervals that [a,b]A   is 

being divided, usually t  is the number of missing 

values. That is the step length ( )h b a t  , 
1

t

j
j

A A


  and 

[ , ]jA = a+(j -1) h a+ j h  . 
1 2{ , , , }tU u u u  is the 

discrete universe of R  where 1 , 2,3, ,j ju u h j t    

and ( ) / 2ju = a+(j -1) h a+ j h   , that is to say 
ju is the 

center of 
jA . For ( , )i jx u  is obtained from formula (1), 

,ix X  and ,ju U  ijm  obtained from formula (2) is 

called 1-dimensional linear information decomposition 

from 
ix  to 

jA . 

                            ( , )ij i j im x u x                                (2)                         

Where h  is called step length and   is called linear 

distribution.  

    For example, {3.4,5,6,8.2}, t 3X   , then we get 

1 2 3 43.4, 5, 6, 8.2x x x x    , 
1 4.2u  , 

2 5.8u  ,
3 7.4u   

1.6h   and 1 2 3[3.4,5), [5,6.6), [6.6,8.2).A A A     

Therefore, 1-dimensional linear information decomposition 

from 
2x  to 

1A  is: 

21 2 1 2( , ) (1 5 4.2 1.6) 5 2.5m x u x         

Similarly, we can get: 

22 2 2 2( , ) (1 5 5.8 1.6) 5 2.5m x u x        

31 3 1 3( , ) 0m x u x    

32 3 2 3( , ) (1 6 5.8 1.6) 6 5.25m x u x        etc.. 

4 1-DLID approach for missing data 

recovery 

    In the following discussion, the detailed steps about how 

1-dimensional linear information decomposition method used 

in missing data recovery will be introduced. First of all, we 

would like to note that this paper focus on numerical missing 

data. 

        Let  | 1,2, ,iX x i n   be a missing data (incomplete 

data) set; the number of missing values is t , the missed values 

denoted as{ }km | k = 1,2, ,t .  

Let { }ia = min x | i = 1,2, ,n ; { }ib= max x | i = 1,2, ,n . Then 

we get an interval  ,a b . Bear that if we let 0.5c a  or 

1c a   and 0.5d b   or 1d b  , we can get another 

interval that is  ,c d  and will help us get another recovery 

missing data, thus we can choose the average values of all the 

missing data. 

        Let
b a

h
t


 [ ( 1) , ),iA a i h a i h i = 1,2, ,t.        

And we get ( ( 1) ) 2a i h a i h       , then we find out the 

number of 
i ix A  and we get { }i ix A X .  

To clarify, we denote { | 1,2, , } { }i l i iY y l s x A X    , 

then we get 
1

s

l

l

y s


 , 1,2, , .i t  

    In the 1-dimensional linear information decomposition 

approach, we choose the linear distribution as: 

1 /
( , )

0

j i j i

j i

j i

y u h if y u h
y u

if y u h


    
 

 

 

Then we can calculate the following values: 

( , )
iA i if y u  , 1( , )

iA i if y u  and 1( , )
iA i if y u , finally we get the 

thi  missing data value, which is 

1 1( ( , ) ( , ) ( , )) 3
i i ii A i i A i i A i im f y u f y u f y u    . If one of them 

is 0, for example, 1( , )
iA i if y u =0, we get 

1( ( , ) ( , )) 2
i ii A i i A i im f y u f y u  , once two of them are 0, for 

example, 1( , )
iA i if y u = 1( , )

iA i if y u =0, then ( , )
ii A i im f y u . 

   The following steps are used to generate the missing 

values for the data set with missing values: 

1. Given the incomplete data set X  and the number of 

missing data values. 

2.  Compute 
iA  and 

iu . 



3.  Compute , 1,2, , .iy i t  Where t  is the number of 

missing values. 

4.  For each i  compute ( , )
iA i if y u  , 1( , )

iA i if y u  

and 1( , )
iA i if y u . 

5.  Compute
im , if ( , )

iA i if y u  = 1( , )
iA i if y u   

= 1( , )
iA i if y u =0 then 0im  , then (X)im mean . Otherwise, 

1 1( ( , ) ( , ) ( , )) 3
i i ii A i i A i i A i im f y u f y u f y u    . 

If one of them is 0, for example, 1( , )
iA i if y u =0, we 

get 1( ( , ) ( , )) 2
i ii A i i A i im f y u f y u  , once two of them are 0, 

for example, 1( , )
iA i if y u = 1( , )

iA i if y u =0, then 

( , )
ii A i im f y u . 

        The 1-dimensional linear information decomposition 

approach is easy to use; because it doesn’t need any 

restrictions as long as we know the data set with missing 

values or incomplete data set and the number of missing 

values.  In the following sections, the experiments and 

explanation will be discussed. 

5 Experiments and results analyze  with      

generated data set 

5.1 Experimental Data 

        In order to make sure whether the proposed algorithm 

works well or not, we generate data from the Gaussian 

distribution and Gamma distribution.  That is to say the 

generated data set 2{ } ~ ( , )ix N    or 2{ } ~ ( , )ijx N  
 
and 

{ } ~ ( , )ix    or { } ~ ( , )ijx    which can be regard as a 

matrix, either 1 n  or p n . Then we get rid of some of the 

data values randomly with the help of computer (matlab). 

That is to say, we create the data set with missing values and 

ready for using in the experiments. With every data set with 

missing values we used increasing levels of ‘missingness’: 

5%, 10%, 20%, 30% and 50%.  

        The reason why we choose Gaussian distribution and 

Gamma distribution is that because Gaussian distribution is 

widely used in research area, which can be regarded the data 

values is distribute averagely beside the means of the data set. 

However, not every data set that with missing values can 

follow Gaussian distribution in daily life. In order to show that 

1-dimensional linear information decomposition method is 

good at processing any kind of data set rather than Gaussian 

distribution. We used data from Gamma distribution for 

experiment, because the property of data sets is totally 

different from each other. We use the following data sets:  

 

 

 

 

Table 1: Information about the datasets used in this paper  

 

 

    In the following table the results arrived on a Window 8 

laptop equipped with Core i7-2600 CPU at 3.40 GHz and 

8.00 GB RAM is presented. And the matlab 7.0 is use for 

evaluation. 

5.2 Experimental Strategy 

        Because 1-DLID method only require the condition of 

the incomplete data set and the number of missing values 

without any more information such as probability distribution 

or the incomplete data should meet the need of Bayesian 

estimation,  mean/mode imputation method and listwise 

deletion method can be used in the data sets. However, in 

order to show 1-DLID approach works well and can achieve 

good results most of times. We would like to do experiment 

with one of most popular used algorithm which is EM 

algorithm. Overall, the experiments are based on four 

approaches that is 1-DLID method, Mean imputation 

method[6-9], listwise deletion method[6-9] and EM 

algorithm[6-9]. 

        To ensure this is not the case, we performed the 

following for each experimental run: 

1). Generate a data set with matlab 7.0 and save it into a  

file. We would like to generate a 1 n  data set. And we 

denote this data set as tF . 

2). We get rid a certain percentage of the data from tF , and  

we get the missing data set X , which we mentioned before. 

3). Then we come to the proposed steps in section 3. 

5.3 Evaluation Criteria 

        Before the results were presented, we would like to give 

a brief explanation of the errors of all the parameters.  First of 

all the predicted parameters are calculated by the complete 

data, which is the total of data set with missing values and the 

recovered data. Then we compare the predicted parameters 

and the original ones and give the following definition: 

  error is defined as 10 10   , where   is the predicted 

parameter. 

  error is defined as 5 5   , where   is the predicted 

parameter. 



  error is defined as 10 10   , where   is the predicted 

parameter. 

  error is defined as 5 5   , where   is the predicted 

parameter. 

5.4 Results 

        After choosing different intervals  ,a b or  ,c d etc., 

choosing of a good interval is very important, not only it helps 

to achieve a good results but also save time. Most times the 

intervals are chosen as 0.5a min(X)  , 0.5b max(X)  . 

However, sometimes are chosen as 1a min(X)  , 

1b max(X)  or others. Because it is difficult to choose a 

perfect interval, we will discuss in our future papers. In case 

we can get better results, we chosen three different intervals 

and use the average results, which can be regarded better than 

only choose one interval.  After the experiments, we got the 

following results: 

Table 2: Comparison of the results of dataset 2~ (10,5 )X N  

 

Table 3: Comparison of the results of the dataset 

~ (10,5)X 

 

        In order to make the results clear to understand, we have 

presented them in the following pictures: 
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Fig. 1:    error comparison of each method from data 1 to 

data 10 of 2(10,5 )X N  
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Fig. 2:    error comparison of each method from data 1 to 

data 10 of 2(10,5 )X N  
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Fig. 3:    error comparison from data 10 to data 15 of 

(10,5)X   
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Fig. 4:   error comparison of each method from data 10 to 

data 15 of (10,5)X   

 

        As can be seen from figure 1, 1-DLID approach works 

well especially for dataset from 1 to 7, even when there are 

50% of data lost, the  error is still within 10% which is 

smaller than EM method. For the reason that delete method 

and mean imputation method achieved better results for 

 from dataset 8 to dataset 10, we think the normal 

distribution dataset made them works well towards this. 

However, the results predicted by 1-DLID method are 

acceptable. Moreover, the  errors showed in figure 2 also 

proved that 1-DLID approach perform better than the other 

three methods, especially from dataset 1 to dataset 8. While it 

is illustrated that the 1-DLID method also achieves a better 

results compared with EM method and mean imputation 

method. Again because normal distribution data set that delete 

method works well even though 50% of data values lost. And 



this is can be seen from ~ (10,5)X   datasets. Figure 3 told 

us that though 1-DLID method may not achieve a good result 

towards   when there are 5% data lost, it indeed works very 

well on any other datasets except dataset 1. We have to say, 

this error is acceptable, because it is only about 5.43%. 

Similarly, the trend in figure 4 seems the same as figure 3 

towards the errors of  . Figure 4 described that 1-DLID 

approach presents a much better results which the errors 

decreased from 8.79% to 0.53% gradually while the errors of 

other methods are bigger than 1-DLID method, particularly, 

take the mean imputation method for example, its error 

reached nearly 50% when there are 50% data lost, which is 

unacceptable.  

6 Implementation and evaluation  with  

real-world data set 

    To evaluate the proposed method, a suitable and standard 

data set is needed. In this paper, the data set from Wisconsin 

Diagnostic Breast Cancer (WDBC) was chosen for our 

experiments. The original data set was provided by Dr.Willian 

H. Wolberg, W. Nick Street and Olvi L. Mangasarian of 

University of Wisconsin. We chose this kind of dataset 

because: 

1. It has sufficiently large number of attributes and records, 

which is not only make sense for this paper, but also 

helpful for our future experiments, which will based on 

large numbers of attributes. 

2. Except the class attributes, all the other data are numerical 

data, which suit for the proposed approach. 

3. The dataset is from the UCI website, which is reliable and 

can be downloaded. 

Information about the dataset: 

Number of the instances: 198 

Number of attributes:34 input real-valued features(ID, 

outcome, 32 real-valued input features). Based on our method 

is good at processing one-dimensional data set, we randomly 

chose one attributes for our experiments. 

Experiment attribute feature: field 4, which is the Mean 

Radius of the cell nucleus. 

Experiment data Missing attribute values: None 

Missing attribute values of the whole data: Lymph node status 

is missing in 4 cases.  

  The mean, standard error, and "worst" or largest (mean of 

the three largest values)    of these features were computed for 

each image, resulting in 30 features.  For instance, field 4 is 

Mean Radius, field 14 is Radius SE, and field 24 is Worst 

Radius. 

   The chosen dataset is selected for evaluating four missing 

data imputation approaches because it is suitable for doing 

experiment on computer for the Delete method (listwise 

deletion), Mean imputation method, EM imputation and 1-

DLID approach. While Filling Manually and Hot Decking 

Imputation is too time consuming and is not good at 

processing large number data in data mining. Multiple 

Imputation works well in high-dimensional data set, and we 

will do experiment based on MI method in our future 

experiment once we explored our method works in multi-

dimensional data set. 

        Missing data were deleted randomly by the computer, 

and then recovered with the help of the four method 

separately and then compared the index of cluster: Rank index 

and Silhouette index. 

        The following tables and figures show the performance 

of the proposed method and other approaches. Precisely, the 

performance for the reconstructing of the WDBC dataset is 

based on the performance of the classification measures. That 

is to say, the higher rate or the better classification 

performance means better imputation of the missing values. 

Table 4: Results of Rand Index 

 

        The following figure 5 illustrates the performance of the 

methods (in terms of Rand Index) towards different 

percentage of missing values. It can be seen from the chart 

that the proposed 1-DLID method shows a better results than 

the other three methods. 
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Fig. 5: Percentage of Missing Values vs. Rank Index 

 

The following table, the results in terms of Silhouette 

index. The higher rate or better classification performance 

means the better imputation of missing values. 

Table 5: Results of Silhouette index 

 

        The following figure 6 illustrates the performance of the 

methods (in terms of Silhouette index) towards different 

percentage of missing values. It can be seen from the chart 

that the proposed 1-DLID method shows a better results than 

the other three methods. 
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Fig. 6: Percentage of Missing Values vs. Silhouette index 

        Just as we discussed in the first section, delete method 

(or listwise deletion) and mean imputation method usually 

cause bias when the data is not normal distribution. For 

example, several noise data or leverage data can change the 

mean of the data set, and delete some data usually causes 

some important information got lost.  For EM algorithm, it 

may converge to a local maximum of the observed data 

likelihood function, and this depending on starting values.  

However, 1-DLID approach doesn’t have such problems. It 

can make good use of the existing data values. One problem is 

that how to choose a good interval for the 1-DLID method is 

very important, because it can reflect the recovery data set. 

We will do more research and talk this in one particular paper.   

7 Conclusions 

        This paper presented an 1-DLID approach for missing 

data recovery. In the experiments, data are generated based on 

Gaussian distribution and Gamma distribution while the 

missing data is created by computer, that is to say the missing 

data were chosen randomly from computer and removed them 

from the related complete data set to get the test data sets we 

need. Regarding to the 1-dimensional data set, we compare 

our method with deletion method (or listwise deletion), mean 

imputation method and EM algorithm and compare our results 

with the other approaches. The experimental results showed 

that our approach has a precise results, especially when 

missing values between 10% and 30%. More importantly, the 

proposed method is easy to use. If needed researchers can use 

the 1-DLID algorithm several times based on different 

interval, and then choose the average values of each data, the 

results would be improved and more reliable. From the 

generated experiments, we can see that the proposed approach 

does not change the distribution of the data set. And from the 

real-world data set, a higher accuracy is achieved compared 

with the other methods.  

8 Future Works 

        This paper has presented an 1-DLID approach which is 

used for data recovery for the analysis of incomplete data set. 

Like most method, 1-DLID method can create data for the 

data set with missing values while 1-DLID method do not 

need to provide the estimation distribution, which is easier to 

use. However, this method works well in 1-dimensional data 

set. Our future work is to do more exploration and make it 

work in 2-dimensional data set and then multidimensional 

data set and compare with MI algorithm.  What is more, how 

to choose a proper interval that used for data recovery is of 

vital important, and it becomes one of the problems that we 

should overcome in the future. Lastly, we would like to 

develop it into a sophisticated software which will contribute 

to the society and help people recover the missing data. 
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