Implementation of Artificial Neural Networks in MapReduce Optimization

Changlong Li', Xuehai Zhou', Kun Lu!, Chao Wang', Dong Dai?
L University of Science and Technology of China,
2 Texas Tech University, USA
Email: {liclong, xhzhou, local, saint} @mail.ustc.edu.cn, dong.dai@ttu.edu

Abstract—The ability to handle large datasets has become a
critical consideration for the success and ability of industrial
organizations such as Microsoft, Amazon, Yahoo! and Face-
book. As an important cloud computing framework for data
processing, MapReduce is widely used by these organizations.
However, its performance has been seriously limited by its stiff
configuration strategy. In practice, even for a single simple
job in a MapReduce framework, a large number of tuning
parameters have to be set by end users, who often run
into performance problems since they do not know how to
configure them. Besides, once set, most parameters will never
be changed again. This may easily lead to performance loss
due to some misconfigurations. In this paper, we present a
soft computing technique: Artificial Neural Network(ANN) to
achieve the automatic configuration of parameters for MapRe-
duce. Given a cluster and MapReduce job, frameworks can
adapt the hardware and software configurations to the system
dynamically and drive the system to an optimal configuration
in acceptable time with the help of ANN. Experimental results
show that ANN has a great contribution to optimize system
performance and let the system at the speedup of 9x.

Keywords-Neural Network; MapReduce; Automatic Config-
uration; Optimization; Big Data;

I. INTRODUCTION

Since its inception, MapReduce [1] has frequently been
associated with cloud computing and large-scale datasets.
Widely deployment and application at industry organizations
have thrust this programming framework to the forefront of
cloud computing and data processing application domain.
There are growing interests in deploying such a framework
in the Cloud to harness the unlimited availability of virtual-
ized resources of cloud computing. For example, Amazon’s
Elastic MapReduce provides data processing services by
using Hadoop on top of their compute cloud EC2. How-
ever, the performance of MapReduce need to be further
improved: a MapReduce program can run 2-50x slower than
a similar relational query run on an RDBMS with identical
hardware [2], Anderson also showed that Hadoop which is
an implementation of a MapReduce framework performed
bulk data processing at a rate of less than 5 megabytes per
node per second [6]. Current technologies mainly achieve
MapReduce optimization through the way of data locali-
ty, cluster heterogeneity and scheduling strategy. However,
pushing the responsibility for performance optimization into
underlying code will make the code complex and hard to

maintain. Besides, these technologies are always limited by
their scalability and operability.

Existing programming environments for running MapRe-
duce jobs in a cloud platform aim to remove the burden of
hardware and software setup from end users. However, they
expect end users to provide appropriate parameters for run-
ning a job. In the absence of automatic configuration scheme,
users are forced to make job provisioning decisions manually
using best practices. As a result, customers may suffer from
a lack of performance guarantee. The difficulty of setting
up those parameters contains two folders. First, empirical
evidence suggests that the performance of submitted job
is some complex function of the configuration parameter
settings. Second, the features of cluster hardware (memory
capacity, network bandwidth) as well as the characteristics
of MapReduce program (data-intensive, compute-intensive)
also have significant impact on the performance.

As the performance of MapReduce is seriously limited
by its configuration, therefore many techniques that evaluate
and configure system parameters for traditional cluster have
been proposed [7]. However, the effectiveness of these
approaches are often inter-dependent, some of them focus
on a single element only and hence are not able to address
the complex, high-dimensional configuration problem. Oth-
ers such as Minerva [3] are extremely complex for non-
expert users, requiring expertise with advanced tools and
a large number of experiments. Kambatla et al. [5] found
this problem and proposed to select optimal configuration
parameters using a given set of resources, but there is no
guidance on deciding the appropriate number and type of
resources to be allocated. So it is critical and necessary to
propose an auto-configuration scheme that integrates various
aspects of factors as well as parameters to provide optimal
configuration in acceptable time for MapReduce.

There are some complex functions between configuration
parameters, hardware features, program characteristics, and
MapReduce performance. In this paper, we propose ANN,
an artificial neural network, to optimize system performance
through learning the internal relationship between impact
factors. Given an application to run on a given platform,
ANN automatically searches for optimized system configu-
rations from candidate settings. We analyze the relationship
between influential configurations and system performance
with the implementation of the network and then dynam-

error feedback

input layer hidden layer output layer

Figure 1. ANN: z,, represents the setting of configuration parameters, x4
represents program characteristics and x, represents hardware features.

ically adjust the parameters to achieve performance opti-
mization. After trained on the target platform, ANN learns
the internal relationship and makes predictions accordingly.
Based on the prediction, the network could recommend an
optimized configuration and adjust them dynamically. New
collected data will be learned by ANN to improve the
accuracy of recommendation. Experimental results show that
MapReduce framework is able to adapt the configurations to
the system dynamically and drive the system to an optimal
configuration in acceptable time.

This paper is organized as follows. In Section II, we
describe the design of ANN. Section III shows evaluation
based on real-world deployment. We introduce the related
work in Section IV, and finally, Section V presents our
conclusion and the future work.

II. DESIGN

The empirical evidence from Section III suggests that
the performance of a MapReduce job J is some complex
function of the job configuration parameter settings. In
additional, the features of the hardware as well as program
characteristics will impact its performance. There exists
some function F; such that:

y=F;(feP,ieQ,7FecR) ¢))

Here, y represents a metric of system performance(e.g.,
CPU usage), P = {xy,...,x,} represents the setting of
configuration parameters which have significant impact on
performance (parameters have little impact on performance
are ignored), Cj = {&py1,..., Tptq) represents the character-
istics of program and R = {Tptqt1s o) Tptqtr} represents
the features of hardware. Since these parameters display
strong performance interactions with other parameters, the
function relationship is complex and unpredictable. Thus we
design an artificial neural network to learn this function.
ANN, the artificial neural network, consists of an in-
terconnected group of artificial neurons, and it processes
information using a connectionist approach to computation.
Each neuron is shown as a circle in the diagram, and the
lines connecting them are known as weights. As illustrated
in Figure 1, the P, Q and R is the input and performance

metric y is the output. Input variables are applied to the input
units at the left of the diagram. The input layer send data
via synapses to the hidden layer, and then via more synapses
to the output layer. If the output § were inconsistent with
vy, the target value of performance metric (the actual output
in samples), error messages will be back propagated and
values of weights will be adaptively modified during the
process of network training. Hence, the network provides a
direct mapping from system parameters onto weight values
associated with the best fit function. Although the training
of neural networks is computationally intensive, the trained
networks can process new data very rapidly. The more
comprehensive the training set, the more representative the
trained neural network becomes.

Given a cluster and MapReduce job, we can think of
P which represents the setting of configuration parameters
as the only factors that affect system performance. We
provide a table to log all these parameters and their possible
values. Once training complete and the relationship learned,
our recommendation system will traverse the table and
let each parametric combination as input for prediction,
then recommends an optimized configuration and adjust
them dynamically. Since the table size is not very large,
we can quickly lock the optimal solution and adjust them
dynamically. On the other hand, new configurations and
their corresponding performance will be collected as ANN'’s
feedback information to help improving its accuracy and
efficiency through self-learning.

The problem of optimizing the parameters of a given
functional form to fit experimental data points is frequent-
ly encountered in data analysis. In this Section we have
shown that the artificial neural network can provide a direct
mapping from the measured data onto the parameter values
associated with the best fit function.

III. EVALUATION
A. Experimental Setup

In this experiment, we choose Hadoop as our platform: as
an open source implementation of a MapReduce framework,
Hadoop is widely used in production deployments for appli-
cations such as log file analysis, scientific simulation, Web
indexing, report generation and genome sequencing [8]. All
our experiments were performed using local cluster running
on 9 nodes, with 1 master and 8 worker nodes: all machines
have Xeon dual-core 2.53GHz processor with 6GB memory.
We choose the IOR [4] synthetic benchmark as it is generic,
open-source, and highly configurable. ANN carries out the
initial training by running the benchmarks on Hadoop. For
each training run, it collects the performance metric with the
candidate configurations. We choose dstat tool on each node
to measure CPU usage (in terms of User, system, Idle and
Wait percentages), disk usage (number of blocks in and out)
and network usage (bytes/second into and out of network
card) every second.

180
160
140
120
100
80
60
40
20
0

Execution Time (minutes)

1 8 16 32 64 128 256 512
—&—Seriesl| 160 86 20 43 84 70 62 45
Series2 69 34 17 35 48 43 41 32

Execution Time (minutes)

S

/100 &

L8 1N/ &
32 64 10 ,,?

mapfed.reduce.tasks 128 556 512 -9

Figure 2. Execution time of TeraSort benchmark with 100 GB datasets.
There are some complex relationship between performance and parameters
mapred.reduce.tasks + io.sort.factor. Series1 means io.sort.factor = 10, and
Series2 means io.sort.factor = 100.

B. Parameter Analyze

There are 200+ parameters are specified to control the
behavior of MapReduce programs in Hadoop-2.2.0 and more
than 30 of these parameters have significant impact on
job performance. Here we divide the parameters into three
categories. (i) Most parameters are configured for normal
operation and have no impact on performance. For example,
dfs.datanode.dns.nameserver determines IP address and df-
s.datanode.address configures namenode’s port information.
(i) Some parameters can be set when job is submitted. To
run the program in Hadoop, the system will create a job
configuration object based on some given parameters from
users. This job configuration object usually is highly relevant
with the performance. (iii) Apart from the job configuration
parameters whose values are specified explicitly by users,
there are a large number of parameters whose values are
specified implicitly by the system.

All these parameters except the first type control various
aspects of job behavior during execution such as memory
allocation, I/O optimization and network bandwidth usage.
For example, mapred.reduce.tasks determines the number
of reducer tasks and dfs.block.size denotes HDFS block
size. Although different parameters affect performance in
different ways, they are not independent. On the contrary,
they have strong performance interactions with one or more
other parameters. Here we present some empirical evidence

to demonstrate differences in job running times between
good and bad parameter settings in Hadoop. Figure 2 shows
the execution time of TeraSort on cluster for 100GB datasets.
The two parameters, mapred.reduce.tasks and io.sort.factor,
are varied in these figures while all other job configuration
parameters are kept constant. In Figure 2-a, the function re-
lationship between execution time and mapred.reduce.tasks
is changed when the value of io.sort.factor is different. From
the comparison we know that: (i) Configuration parameters
have significant impact on system performance. (ii) A num-
ber of instances of inter-parameter interactions were seen
in our experiments. (iii) There are some complex and high-
dimensional function relationship between parameters and
system performance.

C. Performance Comparison

Statistics show that there are more than 200 parameters
are specified to control the behavior of submitted job in
Hadoop-2.2.0, and more than 30 of these parameters have
significant impact on job performance. Figure 3 (a), (b), (c)
and (d) compare the impact of using the default Hadoop
configuration with ANN’s auto-tuned configuration on the
job execution time. It compares the Hadoop configurable
parameter values due to ANN’s auto-configuration with
the default Hadoop values. The network provides different
configuration scenarios for running TeraSort, WordCount
and PiEstimator benchmark with input data of 1GB, 10G-
B, 50GB and 100GB. As shown in Figure 3, with the
help of ANN, Hadoop is able to adapt the hardware and
software configurations based on the system dynamically
and drive the system to an optimal configuration in an
acceptable time. We know from the comparison that the
running time of benchmarks are about 9 times faster than
default configuration. Moreover, the effect of ANN is more
obvious when datasets scale increased. In particular, param-
eters io.sort.factor and mapred.reduce.tasks have significant
different values. Hadoop TeraSort benchmark sets the default
value of mapred.reduce.tasks to about 0.9 times the total
number of reduce slots in the cluster.

D. Fault Tolerance

Other than performance, we also measured the fault
tolerance of the network. As we know, the success of neural
network’s machine learning depends to a great extent on the
sample. So if the sample size is insufficient or the quality
is not high, ANN cannot learn the relationship accurately.
Here we consider an extreme case, since the hardware
environment changed (or any other reasons), the sample will
be out of date as a result. In this case, the configuration
scenarios putted by ANN may be even worse than the
default because the real relationship may have changed. Our
feedback mechanism solves this challenge. In the process of
self-learning, the proportion of sample is gradually replaced

 Default = ANN Default = ANN

WordCount PiEstimator
(b) Data Size = 10GB

80 800

Z 60

¥

£ 50

£

£ 40

K]

530

220
10
0

Teraort WordCount Pistimator TeraSort
(a) Data Size = 168

Execution Time (s)
5888883

Figure 3.

mDefault = ANN

7000
3000 Z 6000
2500 5000
2000 4000
1500 % 3000
1000 &
500
0 0
TeraSort

TeraSort WordCount Pistimator
(c) Data Size = 5068

m Default = ANN

WordCount Pistimator
(d) Data Size = 100GB

Execution Time (s)
ecution Time (s)

X
8 8

Execution time of TeraSort, WordCount and PiEstimator benchmark with 1GB, 10GB, 50GB and 100GB datasets. The performance of

MapReduce is greatly improved with the help of ANN. Besides, the effect of optimization is more obvious when datasets scale increased.

by subsequent data. In our evaluation, the error or deficiency
of sample can be covered by the measurement data.

IV. RELATED WORK

Recently MapReduce infrastructures and its open source
implementation Hadoop have gained much attention, and
different approaches have been developed to automatically
and efficiently optimize configurations. W. Zheng [10] pre-
sented an approach to achieve automated configuration. Al-
though this heuristics approach efficient in time consuming,
sometimes it cannot reach global optimality. The method
of eliminate database tuning knobs through code rewrites
have been used in Hadoop, but setting the parameter through
code modifying can make the code complex and hard to
maintain. There are also many other schemes proposed to
achieve automatic configuration, Gideon et al. study the
impact of different data sharing options for scientific work-
flows on Amazon EC2, Elastisizer selects the proper cluster
size and instance types for MapReduce workloads running
in the cloud. Most of these existing efforts assume certain
knowledge on the application/middleware internals, but they
did not solve the essential problem: finding the internal
relationship. We solve the problems above by ANN. It
achieves system-wide parameters configuration automatical-
ly through training and self-learning. Also, ANN offers the
expandability and flexibility that allow it to work across
cloud platforms and across hardware updates.

V. CONCLUSION AND FUTURE WORK

Optimization through the way of automatic configuration
is becoming an increasingly important concern for MapRe-
duce frameworks. In this paper, the technology of Artifi-
cial Neural Network is implemented to learn the internal
and high-dimensional function relationship. It accurately
fits the relationship between performance, parameters and
other factors through training and further learning. We also
present a recommend scheme to MapReduce with the help of
ANN, allowing for parameters to be automatically adjusted
between tasks without the need for the framework to be
shutdown or restarted. The experiment results demonstrate
the performance of our approach.

In the near future, we plan to keep on investigating
the factors that affect system performance, and consider to
improve the speed and accuracy of the neural network.

ACKNOWLEDGMENT

We deeply appreciate the anonymous reviewers for their
insightful comments and suggestions. This work was sup-
ported by the National Science Foundation of China under
grants No. 61379040, No. 61272131 and No. 61202053,
Jiangsu Provincial Natural Science Foundation grant No.
SBK201240198.

REFERENCES

[1] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In Proc. of ISDI, 2004.

[2] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. Dewitt, S.
Madden, and M. Stonebraker. A comparison of approaches
to large-scale data analysis. In SIGMOD Conference, pages
165-178, 2009.

[3] G. Alvarez, E. Borowsky, and S. e. a. Go. Minerva: An Au-
tomated Resource Provisioning Tool for Large-scale Storage
Systems. ACM Transactions on Computer Systems (TOCS),
19(4):483-518, 2001.

[4] H. Shan, K. Antypas, and J. Shalf. Characterizing and Pre-
dicting the I/0O Performance of HPC Applications Using a
Parameterized Synthetic Benchmark. In SC. IEEE, 2008.

[5] K. Kambatla, A. Pathak, and H. Pucha. Towards optimizing
hadoop proisioning in the cloud. In HotCloud Workshop
in conjunction with USENIX Annual Technical Conference,
2009.

[6] E. Anderson and J. Tucek. Efficiency matters. In SIGOPS
Workshop, pages 40-45, 2010.

[7] A. Verma, L. Cherkasova, and R. Campbell. ARIA: automatic
resource inference and allocation for MapReduce environ-
ments. In Proc. IEEE/ACM Int’l Conference on Autonomic
Computing(ICAC), 2011.

[8] Chao Wang, Xi Li, Xuehai Zhou, Jim Martin, Ray C. C.
Cheung: Genome sequencing using mapreduce on FPGA with
multiple hardware accelerators, 2013.

[9] Z. Liu, H. Li, and G. Miao. MapReduce-based backpropaga-
tion neural network over large scale mobile data, in /ICNC10,
2010.

[10] W. Zheng, R. Bianchini, and T. D. Nguyen. Automatic
configuration of internet services. In Proc. of ACM European
Conference on Computer Sytems (EuroSys), 2007.

